Biological wastewater treatment I

Today's class

- Conventional activated sludge process
 - : Most common approach for BOD removal
 - Design parameters
 - Settling problems
- Biological nutrient removal
 - : Conventional strategies to improve N removal efficiency in the secondary treatment
 - Nitrification
 - Denitrification

Analyzing activated sludge process

Aeration tank & clarifier

Other important design parameters

Food-to-microorganism ratio (F/M)

with respect to TSS: with respect to VSS:

$$F/M = \frac{Q^0 S^0}{VX}$$
 $F/M_v = \frac{Q^0 S^0}{VX_v}$

X = total suspended solids (TSS) in aeration tank (mg/L)
 X_v = volatile suspended solids (VSS) in aeration tank (mg/L)

• Volumetric organic loading rate (OLR): the amount of BOD or COD applied to the aeration tank volume per day

$$Volumetric \ OLR = \frac{Q^0 S^0}{V}$$

Sludge settling problems

- Major cause of the exceedance of the effluent standard for SS & BOD/COD
- Bulking sludge
 - Sludge blanket not stable; large quantities of SS carried along with the clarifier effluent
 - Filamentous bulking: growth of filamentous organisms
 - Viscous bulking: production of excessive amount of extracellular biopolymers
- Air bubbles captured in flocs
 - Nocardioform foam: excessive growth of "Nocardioform" bacteria, which have hydrophobic cell surfaces and thus collects air bubbles
 - Rising sludge: due to internal gas production in flocs (most often N2 production by denitrification)

Biological oxidation of nitrogen

- Necessity for NH₄-N & NO₂-N oxidation
 - The effect of ammonia on receiving water with respect to DO concentrations and fish toxicity
 - The need to provide nitrogen removal to control eutrophication
 - The need to provide nitrogen control for water-reuse applications

Nitrification

- − Two-step biological process: NH_4 -N → NO_2 -N & NO_2 -N → NO_3 -N
- The first step $[NH_4-N \rightarrow NO_2-N]$ is termed as "nitritation"
- Different type of microorganisms are involved for each step

Nitrification: Processes & microbiology

- Process
 - Both suspended & attached growth applicable
 - Suspended growth nitrification processes
 - Note nitrifying bacteria are less competent than aerobic heterotrophs → need maintaining low BOD conc. to activate them!
 - So: operate the reactor at higher SRT than what's needed for BOD removal
- Microbiology
 - Ammonia-oxidizing bacteria (AOB) & nitrite-oxidizing bacteria (NOB) --- aerobic chemoautotrophs
 - AOBs: *Nitrosomonas* (+*Nitrosospira*)
 - NOBs: Nitrobacter (+Nitrococcus, Nitrospina, Nitrospira)

Nitrification stoichiometry

AOB (nitration):	$2NH_4^{+} + 3O_2^{-} \rightarrow 2NO_2^{-} + 4H^+ + 2H_2O$	
NOB:	$2NO_2^- + O_2^- \rightarrow 2NO_3^-$	
Overall:	$NH_4^+ + 2O_2^- \rightarrow NO_3^- + 2H^+ + H_2O_3^-$	

Note: This is the stoichiometry for energy reaction (NOT accounting for biomass growth)

- Oxygen requirement: 2 mole $O_2/1$ mole NH_4^+ = 4.57 g O_2/g NH_4 -N oxidized
- Alkalinity consumption: 2 eq alkalinity/1 mole NH_4^+ = 7.14 g Alk as $CaCO_3/g NH_4$ -N oxidized
- Nitrification cell yield: 0.10~0.15 for AOB & 0.04~0.07 for NOB
- Considering biomass production, the O₂ requirements and alkalinity consumption is slightly less than the calculated values above (<u>why??</u>)

Nitrification stoichiometry

ex) Assuming Y=0.12 g VSS/g NH_4 -N for AOB and Y=0.04 g VSS/g NO_2 -N for NOB, the overall stoichiometry is:

 $NH_4(HCO_3) + 0.9852Na(HCO_3) + 0.0991CO_2 + 1.8675O_2 \rightarrow$

 $0.01982C_5H_7O_2N + 0.9852NaNO_3 + 2.9232H_2O + 1.9852CO_2$

→ 1.8675 mole $O_2/1$ mole NH_4^+ 1.9852 eq Alk/1 mole NH_4^+

Environmental factors affecting nitrification

• DO concentration

- Nitrifying bacteria are more sensitive to DO than heterotrophs
- − Nitrite oxidation is inhibited more at low DO than ammonia oxidation \rightarrow elevated NO₂-N concentration at low DO

• pH

- Optimum at pH of 7.5~8.0
- Ammonia oxidation rate reduces significantly at pH<7.0
- Possibly due to the reduction of free ammonia (NH₃) concentration
- Sufficient alkalinity is needed!
- For wastewater with high NH₄⁺ concentrations and low alkalinity, addition of alkalinity may be needed (lime, soda ash, NaHCO₃, ...)

Environmental factors affecting nitrification

- Toxicity
 - AOB is sensitive to a wide range of organic & inorganic compounds
 - Show significantly reduced ammonia oxidation rate in the presence of toxic substances
- Free ammonia & nitrous acid inhibition
 - NH₃-N & HNO₂
 - − High pH: NH₃-N \uparrow / low pH: HNO₂ \uparrow

Denitrification

Biological reduction of nitrate (NO₃⁻) or nitrite (NO₂⁻) to nitrogen gas (N₂)

• Denitrification required

- To complete the biological nitrogen removal process
- Otherwise, <u>accumulation of NO₃-N</u>: health threats!
- "Blue baby syndrome"
- Korean regulation: < 10 mg NO₃-N/L

• Usually by heterotrophic bacteria

- Wide range of heterotrophs mostly facultative aerobes
- Some autotrophs are capable of nitrate/nitrite reduction
 - Use Fe⁰, Fe²⁺, S²⁻, S⁰, ..., or NH₄⁺

Denitrification

- Two modes of nitrate removal in biological processes
 - Assimilatory nitrate reduction
 - Reduction of NO₃-N to NH₄-N for use in cell synthesis when NH₄-N is not available
 - Independent of DO concentration
 - **Dissimilatory nitrate reduction**: much more significant!
 - Nitrate/nitrite serves as an electron acceptor
 - When DO is absent or limited
 - Mostly facultative bacteria
 - Nitrate reduction proceeds through a series of intermediate products:

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

Denitrification processes

Preanoxic denitrification

- Electron donor provided by influent
- MLE (Modified Ludzak-Ettinger) process: most common for biological nitrogen removal in municipal wastewater treatment

- Postanoxic denitrification
 - BOD not available in anoxic reactor: denitrification by endogenous decay
 - Much slower rate than preanoxic
 - Often external carbon source is added (e.g. methanol, acetate)

Denitrification Stoichiometry

Wastewater: $C_{10}H_{19}O_3N + 10NO_3^- \rightarrow$	$5N_2 + 10CO_2 + 3H_2O + NH_3 + 10OH^-$
---	---

Methanol: $5CH_3OH + 6NO_3^- \rightarrow 3N_2 + 5CO_2 + 7H_2O + 6OH^-$

Acetic acid: $5CH_3COOH + 8NO_3^- \rightarrow 4N_2 + 10CO_2 + 6H_2O + 8OH^-$

Production of alkalinity

- 3.57 g Alk as CaCO₃ produced per g NO₃-N (or NO₂-N) reduced
- 50% of alkalinity consumed by nitrification can be recovered

Denitrification: Organic substrate requirements

- A sufficient amount of organic substrate (e⁻ donor) should be available
 - bsCOD or BOD as an important design parameter
 - Sources of e⁻ donor for denitrification
 - 1) bsCOD in the influent
 - 2) bsCOD produced during biological hydrolysis
 - 3) bsCOD produced during endogenous decay
 - 4) External source such as methanol or acetate
 - ~4 g BOD required per g NO₃-N reduced
 - actual requirement depending on operating conditions and the type of e⁻ donor
 - Especially important to determine the BOD requirements when external carbon source is provided