Chemical unit processes II

Chemical precipitation

 The addition of chemicals to alter the physical state of dissolved and suspended solids and facilitate their removal by sedimentation

Major application

- Improve the performance of primary settling facilities
- Basic step in the independent physical-chemical treatment of wastewater
- Removal of phosphorus
- Removal of heavy metals
- Softening for reuse of treated water

Common chemical reactions for precipitation

Commonly used reactants

- Alum $(Al_2(SO_4)_3 \cdot 18H_2O)$
- Lime (Ca(OH)₂)
- Ferric chloride (FeCl₃)
- Ferrous sulfate (FeSO₄·7H₂O)
- Ferric sulfate $(Fe_2(SO_4)_3)$

Alum precipitation

 Reacts with calcium or magnesium bicarbonate alkalinity to form insoluble Al(OH)₃

$$3Ca(HCO_3)_2 + Al_2(SO_4)_3 \cdot 18H_2O \Rightarrow 2Al(OH)_3 + 3CaSO_4 + 6CO_2 + 18H_2O$$
Calcium Aluminum Aluminum Calcium bicarbonate sulfate hydroxide sulfate (soluble) (insoluble) (soluble)

Alkalinity is required to form precipitants

"Alk as
$$CaCO_3$$
" $3 \times 100 \ g/mole = 0.45 \ mg \ Alk (as $CaCO_3$) / $mg \ alum$

MW of alum$

- Generally addition of alkalinity not needed because of the presence of sufficient alkalinity in wastewater
- The insoluble $Al(OH)_3$ is a gelatinous floc that settles slowly through the wastewater, sweeping out suspended materials

Ferric chloride precipitation

React with alkalinity to precipitate into Fe(OH)₃

$$2FeCl_3 + 3Ca(HCO_3)_2 \rightleftharpoons 2Fe(OH)_3 + 3CaCl_2 + 6CO_2$$
 Ferric Calcium Ferric Calcium chloride bicarbonate hydroxide chloride (soluble) (soluble) (soluble)

Alkalinity requirement:

$$\frac{3 \times 100 \ g/mole}{2 \times 162.2 \ g/mole} = 0.92 \ mg \ Alk(as \ CaCO_3) \ / \ mg \ FeCl_3$$

- If alkalinity supply needed, add lime (Ca(OH)₂)
- Forms gelatinous floc similar to alum

Chemically enhanced primary treatment (CEPT)

- SS & BOD removal in primary treatment can be substantially improved by using chemical precipitants
- 80-90% TSS removal & 50-80% BOD removal
 cf) 50-70% TSS removal & 25-40% BOD removal for typical primary treatment
- Possible benefits
 - High energy value of primary sludge
 - Reduces oxygen supply demands for secondary treatment

Independent physical-chemical treatment

Independent physical-chemical treatment

- Applied when biological treatment is not applicable (industrial wastewater with toxic compounds)
- Disadvantages
 - Inconsistency in meeting discharge requirements
 - High chemical cost
 - Handling and disposal of large volume of sludge
 - → Generally not successful for municipal wastewater treatment

Chemical phosphorus removal

- Two general approaches for P removal
 - Chemical treatment
 - Chemical can be added at various points of the treatment train
 - Biological treatment
 - Modification of secondary treatment (to be discussed later)
- Chemicals used for P removal by precipitation
 - $-Al^{3+}$, Fe³⁺, Fe²⁺, Ca²⁺

Addition of chemicals at a single dosing point at various locations for P removal: (a) before primary sedimentation; (b) before and/or after biological treatment; (c) after secondary treatment; (d) chemical addition prior to single-stage filtration; and (e) chemical addition prior to dual-stage filtration

Phosphate precipitation using Al and Fe

Al or Fe phosphates are insoluble

$$Al^{3+} + H_n P O_4^{3-n} \rightleftharpoons Al P O_4 \downarrow + nH^+$$
$$Fe^{3+} + H_n P O_4^{3-n} \rightleftharpoons Fe P O_4 \downarrow + nH^+$$

- But this is a very simple representation
- The precipitation mechanism is complicated generally thought to occur by:
 - Phosphate adsorption onto hydrous ferric or aluminum oxide precipitates
 - Incorporation of phosphate into the hydrous oxide structure
 - Formation of mixed cation phosphates (Ca, Mg, Fe, or Al phosphates)
 - Formation of ferric or aluminum phosphate

Phosphate precipitation with calcium

- Precipitate into an insoluble hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂]
- Ca²⁺ is usually provided in the form of lime (Ca(OH)₂)
- Note that the lime added to water first reacts with bicarbonate alkalinity to precipitate CaCO₃:

$$Ca(HCO_3)_2 + Ca(OH)_2 \rightleftharpoons 2CaCO_3 \downarrow + 2H_2O$$

(reaction for lime softening)

• As more Ca(OH)₂ is added, excess Ca²⁺ will react with the phosphate to precipitate into hydroxyapatite:

$$10Ca^{2+} + 6PO_4^{3-} + 2OH^- \rightleftharpoons Ca_{10}(PO_4)_6(OH)_2 \downarrow$$

 The quantity of lime required will depend primarily on the alkalinity of the wastewater

Struvite formation for NH₄⁺ & P removal

Struvite

- Magnesium ammonium phosphate hexahydrate, MgNH₄PO₄·6H₂O
- Serious problem in the processing of primary sludge and waste activated sludge
- Formation of accumulation of struvite crystals cause problems in pipelines, pumps, etc.

Controlled struvite precipitation is of recent interest because:

- Of its value as a fertilizer (nutrients in wastewater into valuable product)
- Combine removal of NH₄⁺ & P is possible

http://umanitoba.ca

Struvite formation for NH₄⁺ & P removal

Formation of struvite

$$Mg^{2+} + NH_4^{+} + PO_4^{3-} + 6H_2O \rightleftharpoons MgNH_4PO_4 \cdot 6H_2O$$

- Molar ratio of 1:1:1 for precipitation
- Solubility product, K_s:

$$K_{S} = \{Mg^{2+}\}\{NH_{4}^{+}\}\{PO_{4}^{3-}\} \approx [Mg^{2+}][NH_{4}^{+}][PO_{4}^{3-}]$$

$$pK_s = 13.0$$
 for struvite

- Struvite dissolution/precipitation is a function of Mg²⁺, NH₄⁺, PO₄³⁻ concentrations
- Various reactions are involved in Mg²⁺, NH₄⁺, PO₄³⁻

Reactions involved in struvite chemistry

Reaction	pK
$NH_4^+ \rightleftharpoons NH_3 (aq) + H^+$	9.25
$H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+$	2.1
$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$	7.2
$HPO_4^{2-} \rightleftharpoons PO_4^{3-} + H^+$	12.3
$MgOH^+ \rightleftharpoons Mg^{2+} + OH^+$	2.56
$MgH_2PO_4^+ \rightleftharpoons Mg^{2+} + H_2PO_4^-$	0.45
$MgHPO_4 \rightleftharpoons Mg^{2+} + HPO_4^{2-}$	2.91
$MgPO_4^- \rightleftharpoons Mg^{2+} + PO_4^{3-}$	4.8
$MgNH_4PO_4 \cdot 6H_2O \rightleftharpoons Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O$	13.0

$$C_{T,Mg} = [Mg^{2+}] + [MgOH^{+}] + [MgH_2PO_4^{+}] + [MgHPO_4] + [MgPO_4^{-}]$$

$$C_{T,NH_3} = [NH_4^{+}] + [NH_3]$$

$$C_{T,PO_4} = [H_3PO_4] + [H_2PO_4^{-}] + [HPO_4^{2-}] + [PO_4^{3-}] + [MgH_2PO_4^{+}] + [MgHPO_4] + [MgPO_4^{-}]$$

Struvite solubility change with pH

Define the "conditional solubility product", P_s as:

$$P_{S} = C_{T,Mg} \cdot C_{T,NH_{3}} \cdot C_{T,PO_{4}} = \frac{K_{S}}{\alpha_{Mg^{2+}} \cdot \alpha_{NH_{4}} + \cdot \alpha_{PO_{4}}^{3-} \cdot \gamma_{Mg^{2+}} \cdot \gamma_{NH_{4}} + \cdot \gamma_{PO_{4}}^{3-}}$$

$$\alpha_{Mg^{2+}}, \alpha_{NH_{4}}^{+}, \alpha_{PO_{4}}^{3-} = \text{ionization fraction of individual constituents}$$

$$ex) \alpha_{Mg^{2+}} = [Mg^{2+}]/C_{T,Mg}$$

$$\gamma_{Mg^{2+}}, \gamma_{NH_{4}}^{+}, \gamma_{PO_{4}}^{3-} = \text{activity coefficients of individual constituents}$$

– From the reactions in the previous slide, we see that the α values are a function of pH

Struvite solubility change with pH

minimum solubility at pH \approx 10.3 \rightarrow most favorable for precipitation

Enhancing struvite formation

- So, the struvite formation is a function of
 - pH
 - Ionic strength: higher Ps at higher ionic strength → unfavorable for precipitation
 - Temperature: reaction constants are function of temp. generally, Ps increase with temp. to some point (20-35°C) and then decrease

Enhanced struvite formation for nutrient removal

- Form struvite in controlled settings (reactors)
- Add an excess amount of Mg²⁺ into high pH liquid waste

Chemical precipitation for HM removal

Common precipitants

- Hydroxide (OH⁻), sulfide (S²⁻): most metal salts with these anions are insoluble
- Carbonate (CO₃²⁻) is sometimes used

Co-precipitation with phosphorus

 During chemical precipitation of P (using alum, iron, or calcium), heavy metals may co-precipitate with the major precipitant

Chemical precipitation for HM removal

pH dependence

- Solubility of metal hydroxides and sulfides is a function of pH
- The point of minimum solubility (optimum pH) varies for different metals

Conventional vs. advanced chemical oxidation

Conventional oxidation processes

- The use of oxidizing agents such as ozone (O_3) , hydrogen peroxide (H_2O_2) , permanganate (MnO_4) , chlorine dioxide (ClO_2) , chlorine (Cl_2) or HOCl), and oxygen (O_2) to bring about the change in the chemical composition of a compound

Advanced oxidation processes (AOPs)

 The <u>free hydroxyl radical (HO·)</u> is used as a strong oxidant to destroy specific organic compounds that cannot be oxidized easily by conventional oxidants

Typical strength of oxidants

$$- HO\cdot > O_3 > H_2O_2 > HOCl > ClO_2 > MnO_4^- > O_2 > OCl^-$$

Conventional chemical oxidation

- Chemical oxidation of organic constituents
 - Oxidation of residual COD

Conventional chemical oxidation

Chemical oxidation of ammonium

- "Breakpoint chlorination": addition of chlorine (Cl_2 or HOCl) to the point that all ammonium in water can be just converted into N_2 gas
- Overall reaction:

$$3HOCl + 2NH_4^+ \Rightarrow N_2 + 3HCl + 2H^+ + 3H_2O$$

- Limitations
 - Chemical cost
 - Buildup of acid which consumes alkalinity
 - Build up of TDS
 - Chlorine-containing byproducts
- Usually applied for wastewater that has undergone nitrification
 - Treatment of residual ammonium
 - Disinfection prior to discharge

- Destroy trace constituents that cannot be oxidized completely by conventional oxidants
- Especially useful when potable reuse is considered
- Hydroxyl radical (HO·): very strong oxidant
 - Capable of the complete oxidation of most organic compounds into simple forms (CO₂, H₂O, HCl, etc.)
 - Presence of unpaired electron → react rapidly with nearly all electron-rich organic compounds
 - Generally 2nd order reaction (function of concentrations of both HO· & compound to be oxidized)
 - 2nd order rate constant for HO· generally in the order of 10⁸~10⁹ L/mole·s
 (3~4 orders of magnitude greater than the rate constants for other oxidants)

Characterization of the degree of degradation

- Primary degradation: a structural change in the parent compound
- Acceptable degradation: a structural change in the parent compound to the extent that toxicity is reduced
- Ultimate degradation: conversion of organic carbon to inorganic CO₂
- Unacceptable degradation: a structural change in the parent compound resulting in increased toxicity

Reactions by hydroxyl radicals

1. By radical addition (common):

The addition of the hydroxyl radical to an unsaturated organic compound results in the production of a radical organic compound that can be further oxidized into stable products

$$R + HO \cdot \rightarrow ROH \cdot$$

2. By hydrogen abstraction (common):

The hydroxyl radical is used to removal a hydrogen atom from organic compounds, forming a radical organic compound. The radical organic compounds react with oxygen to produce a peroxyl radical, which can react with other organic compounds.

$$R - H + HO \cdot \rightarrow R \cdot + H_2O$$

3. By electron transfer:

Results in the formation of ions of a higher valence. Oxidation of a monovalent negative ion (-1) will result in the formation of an atom or a free radical.

$$R^n + HO \cdot \rightarrow R^{n+1} + OH^-$$

4. By radical combination:

Two radicals can combine to form a stable product.

$$HO \cdot + HO \cdot \rightarrow H_2O_2$$

- Processes for advanced oxidation
 - = processes for the production of HO·
 - Ozone/UV
 - Photodegradation of O₃ in wet air with UV light

$$O_3 + H_2O + UV(\lambda < 310 nm) \rightarrow O_2 + 2HO$$
.

 Compounds are degraded by direct ozonation, photolysis, or reaction with the hydroxyl radical

– Ozone/H₂O₂

 Effective for compounds that do not absorb UV or photolysis is not effective because of water quality

$$H_2O_2 + 2O_3 \rightarrow 2HO \cdot +3O_2$$

- H₂O₂/UV

- Requires relatively high H_2O_2 concentration for HO· formation \rightarrow high H_2O_2 concentration in the effluent
- Not good for drinking water treatment, but OK for water reclamation

$$H_2O_2 + UV(\lambda \approx 200 \sim 280 \text{ nm}) \rightarrow 2HO \cdot$$

Limitations

Byproduct formation

- Oxidation of Br⁻ in water to form bromate (BrO₃⁻; carcinogen)
- Formation of carboxylic acids, or sometimes halogenated acetic acids (HAAs) as organic byproducts

Impact of carbonate species

• High concentrations of CO₃²⁻ and HCO₃⁻ in wastewater react with HO· to reduce the efficiency

Impact of pH

- pH determines the concentrations of carbonate species
- H₂O₂/UV process is more effective at very high pH

Impact of metal ions

 Metal ions such as Fe²⁺ and Mn²⁺ can consume a significant quantity of chemical oxidants and scavenge HO· → reduced AOP effectiveness