수처리용 WO3 기반 가시광촉매 개발 및 광촉매의 구조-효율 관계 규명

To develop WO_3/gC_3N_4 (WCN) for water treatment by investigating structurephotocatalytic efficiency relationships

한치헌

23.04.26

수질오염의 공학적 해결

Department of Civil & Environmental Engineering, Seoul National University

Contents

1. Introduction

- 1) Background
- 2) Literature review
- 3) Objectives

2. Development of WCNs (WO₃/g-C₃N₄)

- 1) Materials and methods
- 2) Results and discussion
- 3) Research plans

3. Removal of 14 pharmaceutical compounds

- 1) Materials and methods
- 2) Results and discussion

Background (1/5)

✤ AOPs (Advanced Oxidation Processes)

Background (3/5)

Photocatalyst

(Fujishima *et al.*, *Nature*, 1972)

Electrochemical Photolysis of Water at a Semiconductor Electrode

ALTHOUGH the possibility of water photolysis has gated by many workers, a useful method has o developed. Because water is transparent to v cannot be decomposed directly, but only by r wavelengths shorter than 190 nm (ref. 1).

For electrochemical decomposition of water difference of more than 1.23 V is necessary electrode, at which the anodic processes occur, a where cathodic reactions take place. This poten

is equivalent to the energy of radiation with a wavelength of approximately 1,000 nm. Therefore, if the energy of light is used effectively in an electrochemical system, it should be possible to decompose water with visible light. Here we

$TiO_2 + 2 hv \rightarrow 2 e^- + 2 p^+$ (excitation of TiO_2 by light)	(1)
$\begin{array}{c} 2 \ p^+ + \ H_2 O {\rightarrow} \frac{1}{2} \ O_2 + 2 \ H^+ \\ (at \ the \ TiO_2 \ electrode) \end{array}$	(2)

$$2 e^-+2 H^+\rightarrow H_2$$
 (3)
(at the platinum electrode)

The overall reaction is

$$H_2O + 2 hv \rightarrow \frac{1}{2}O_2 + H_2$$

(D.D. Dionysiou *et al.*, 2016)

(4)

Background (2/5)

Photocatalysis mechanism

Introduction

Background (4/5)

• UV/TiO_2 for water treatment

Fig. 1. Scheme of UV-LED photoreactor (up) and UV-LED module (down).

Microcystin LR (MC-LR)

Anatoxin (ANTX)

 $[MC-LR]_{0'}$ $[ANTX]_{0} = 1 mg/L$, $[TiO_{2}] = 0.05 g/L$

Table 1 Water quality parameters of the Han River sample.

Parameters	Value
COD (mg L ⁻¹)	13.0
TOC (mg L^{-1})	3.12
DOC (mg L^{-1})	2.79
pH	7.69
Conductivity (µS cm ⁻¹)	214.1
Turbidity (NTU)	0.16
$SUVA_{254}$ (L mg-C ⁻¹ m ⁻¹)	4.77
Alkalinity (mg L ⁻¹)	45

(B. Yang et al., 2020)

Background (5/5)

Visible light-based photocatalyst

- Visible light is abundant in sunlight and has the advantage of less input energy compared to UV generation. And LED has less heat generation and power consumption, and long lifespan.
- \triangleright WO₃ and *g*-C₃N₄ have band potential suitable for the use of visible light.
- Therefore, WO₃/g-C₃N₄ (WCN) composite is being studied as an eco-friendly visible photocatalyst for water treatment.

Literature review (1/2)

Removal of organic compound using WCN under visible light irradiation

Year	Authors	Journal	Dosage (g/L)	Bandgap (eV)	WCN Synthesis Temp. (°C)	Target Compound	Initial Conc. (mg/L)	Light source	Reaction time (min)	Removal efficiency (%)	ROS
2014	S. Chen et al.	Appl. Catal. B	2	2.7	500->520	MB	30	Xe Lamp (500 W, >400 nm)	60	87.90%	02 ^{-•} >HO [•]
2017	X. Liu et al.	Appl. Surf. Sci.	0.5	2.61, 2.67	550	MB	50	Xe Lamp (300 W, >400 nm)	90	95%	O2 ^{-•}
2017	L. Cui et al.	Appl. Surf. Sci.		2.69	550	Rh B	5	Xe Lamp (500 W, >420 nm)	120		
2019	B. Chai et al.	Appl. Surf. Sci.	1	2.73	550	Rh B	5	Xe Lamp (300 W, >420 nm)	180	90.40%	$O_2^{-\bullet} > h^+ > HO^{\bullet}$
2018	T. Xiao et al.	Appl. Catal. B		2.73, 2.64	550	CFS TC	25	Xe Lamp (300 W, >420 nm)	120	82.00%	02 ^{-•} , HO [•]
	A.I. Navarro- Aquilar et al.	J. Photochem. Photobiol. A	1	2.66	500	CPX OG	10 20	Xe Lamp (35 W)	240	98.00%	h^+ O_2^-
2019	J. Chen et al.	J. Alloys Compd.	0.33	2.7	550	Rh B	10	Xe Lamp (500 W, >420 nm)	100	96%	$O_2 \rightarrow HO \rightarrow h^+$
	J. Singh et al.	J. Alloys Compd.	0.5	2.16	550	MB RbX	5 45	CFL lamp (65 W)	160	97.82%	O2 ^{-•} >HO [•]

% MB: methylene blue, Rh B: Rhodamine B, CPX: ciprofloxacin, OG: orange G RbX: Remazol brilliant red X-3BS

Literature review (2/2)

GCN synthesis temperature and photocatalytic efficiency

Year	Authors	Journal	Bandgap (eV)	GCN Synthesis Temp. (°C)	Photocatalytic activity	Photocatalytic efficiency	Light source
2015	I. Papailias <i>et al</i> .	Appl. Surf. Sci.	2.76-2.37	450, 550, 650	NO oxidation	CN-450 > CN-550 > CN-650	UV, visible light
2017	Z. Lu et al.	Chem. Eng. J.	2.76-2.5	450, 500, 550, 600	NO oxidation	CN-500 > CN-450 > CN-550 > CN-650	150 W tungsten halogen lamp (UV&vis)
2022	B. Rani <i>et al</i> .	Chemosphere	2.87-2.83	450, 550(1h), 550(2h)	MB, RhB removal	M-450 > M-550(1h) > M-550(2h)	UV (254 nm)

> There have been very few studies on the relationship between structure of $WO_3/g-C_3N_4$ and photocatalytic efficiency for removal of organic compound.

To develop $WO_3/g C_3N_4$ (WCN) for removing of Rhodamine B by investigating structure-photocatalytic efficiency relationships

- To characterize of WCNs for morphology, configuration and bandgap analysis photocatalyst through thermal-condensation of melamine and WO₃ at different temperatures
- > To compare of photocatalytic efficiencies of WCNs by removing rhodamine B
- To investigate relationships between structure and photocatalytic efficiency of WCNs

Novelty: Investigation of relationship of the structure of WCN and photocatalytic efficiency

Materials & methods Photocatalytic experiment (1/2)

Photocatalytic experiment

Materials & methods Photocatalytic experiment (2/2)

Synthesis of $WO_3/g-C_3N_4$ (WCN)

Results & discussion Material characterization

SEM analysis

✤ TEM analysis

- \succ WO₃ had a granular shape and GCN had a bulk sheet shape.
- > As synthesis temperature decreased, more rod shapes were observed.
- > Granular WO_3 particles were embedded in GCN.
- > As in the SEM images, the rod shape was found as the synthesis temperature decreased.

Results & discussion Material characterization

✤ XRD analysis

FT-IR analysis

- ➤ The peak of monoclinic WO₃ was well maintained and that of melem was observed in 430 WCN (13.1°).
- As the treatment temperature decreased, the peak of g-C₃N₄ was split (27.6°), and that of melem was clearly observed (13.1°). (I. Papailias *et al.*, 2015)
- As the treatment temperature decreased, the intensity of primary (3092 cm⁻¹) and secondary amine (1400-1460 cm⁻¹) peak increased. (I. Papailias *et al.*, 2015, B. Chai *et al.*, 2018).

Results & discussion **Photocatalytic experiment**

✤ Removal of Rh B using WCNs

- > All WCNs had better photocatalytic efficiencies than WO₃ and GCNs.
- > 430 WCN showed higher photocatalytic efficiencies than 500 WCN.

3. Results & discussion **Photocatalytic experiment**

✤ Reactive oxygen species (ROS) scavenging test

t-BuOH (HO[•] scavenger), EDTA-2Na (h⁺ scavenger), N₂ purging (O₂ removal)

- > Inhibition effect on the removal of Rh B: EDTA-2Na >> N_2 purging > *t*-BuOH
- > Valence band hole is main ROS in vis-

LED/WCN system ($h^+ >> O_2^{-\bullet} > HO^{\bullet}$)

Research Plans

▶ 500 WCN보다 430 WCN에서 condensation정도가 낮은 carbon nitride 함량이 많고, 이러한 구조 의 차이가 광촉매 효율의 차이로 이어질 것으로 예상하고 있음.

(합성온도별 WO₃와 CN의 비율을 같게 통제한 후 구조의 차이를 확인할 예정)

- ➤ TGA 및 ICP 분석을 통해 WO₃와 CN이 존재하는 비율을 비교 (500 WCN vs 430 WCN) 비율을 같게 합성한 후 (변인 통제) WCN의 구조 및 특성들을 비교
- ➤ SS NMR을 이용한 ¹³C, ¹⁵N 분석을 통해 합성한 WCN의 구조를 더 구체적으로 파악
 430 WCN은 500 WCN에 비해 덜 condensation된 구조로 적은 수의 heptazine (3개의 CN고리)과
 WO₃로 구성되어 있을 것으로 예상됨.

Introduction Background

Pharmaceutical compounds (PhCs)

(H. Cheung et al., 2019)

그래픽=김성규 기지

- The use of PhCs is steadily increasing worldwide.
- PhCs are being discharged into the water system, threatening the ecosystem and human health.

(Y. Yoon et al., 2010)

						negative		ро	sitive
Compound	Chemical formula	MW	Structure	рКа	Compound	Chemical formula	MW	Structure	рКа
Atenolol (ATN)	고혈압 치료제 C ₁₄ H ₂₂ N ₂ O ₃	266.336		9.48/11.1	Acetylsalicylic acid (ASA)	소염진통제 C9H8O4	180.158	O OH O OH CH ₃	3.41
Metoprolol (MTP)	$C_{15}H_{25}NO_3$	267.364	CH3 H ₀ C H H OH	9.68	Acetaminophen (AAP)	진 <mark>통제</mark> C ₈ H ₉ NO ₂	151.163	OH OH	9.38
Propranolol (PPN)	C ₁₆ H ₂₁ NO ₂	259.34		9.49	lopromide (IPM)	조영제 C ₁₈ H ₂₄ I ₃ N ₃ O ₈	791.112		11.09
Mefenamic acid (MFA)	<mark>소염진통제</mark> C ₁₅ H ₁₅ NO ₂	241.28	H ₃ C H ₃ H H ₅ C H ₃ H	3.73	Caffeine (CAF)	신경 각성제 C ₈ H ₁₀ N ₄ O ₂	194.19	CH ₃ N - CH ₃	6.1/10.4
Ibuprofen (IBP)	C ₁₃ H ₁₈ O ₂	206.29	ОН5 ОН	4.41	Sulfamethazine (SMZ)	항생제 C ₁₂ H ₁₄ N ₄ O ₂ S	278.33		2.6/7.59
Diclofenac (DCF)	C ₁₄ H ₁₁ Cl ₂ NO ₂	296.148		4.15	Sulfamethoxazole (SMX)	$C_{10}H_{11}N_3O_3S$	253.279	H ₂ N O CH ₃	1.7/5.6
Naproxen (NPX)	C ₁₄ H ₁₄ O ₃	230.26	о СССТОН	4.19	Carbamazepine (CBZ)	뇌전증 조울증 치료제 C ₁₅ H ₁₂ N ₂ O	236.269		2.3/7

Materials and methods Analysis of 14 PhCs using LC/MS-MS

[LC/MS-MS] Agilent 1290 Infinity II / 6470 triple quadrupole

[LC column] Agilent EclipsePlus C18 RRHD 1.8 μm 2.1 × 100 mm

Positive mode							
Compound		Precursor ion	Product ion	Fragmentor	Collision energy		
Compound		(m/z)	(m / z)	(V)	(eV)		
Atenolol	ATN	267.2	145	161	29		
Metoprolol	MTP	268.2	74.1	161	25		
Propranolol	PPN	260.2	116	122	17		
Caffeine	CAF	195.1	138	122	21		
Carbamazepine	CBZ	237.1	194	161	21		
Sulfamethazine	SMZ	279.1	186	122	17		
Sulfamethoxazole	SMZ	254.1	92	122	29		
Mefenamic acid	MFA	242.1	224	224	17		
Acetaminophen	AAP	152.1	110	110	17		
Iopromide	IPM	791.9	572.8	196	24		

Negative mode								
Compound		Precursor ion (m/z)	Product ion (m/z)	Cone voltage (V)	Collision energy (eV)			
Acetylsalicylic acid	ASA	137	93.1	83	17			
Diclofenac	DCF	294	250	83	9			
Naproxen	NPX	229.1	169	83	33			
Ibuprofen	IBP	205.1	161.1	83	5			

Materials & methods Photocatalytic experiment

Photocatalytic experiment

Results & discussion **Photocatalytic experiment**

✤ WO₃와 430 WCN의 14 PhCs 제거 효율 비교

▶ 흡착률이 낮은 물질 중 ASA, AAP, SMZ, SMX의 광촉매에 의한 제거율은 WO₃ 보다 430 WCN에서 더 높았음.

▶ 예상과는 다르게 CAF, CBZ는 430 WCN 에서 더딘 제거속도를 보였고, IPM의 경우 430 WCN에서 제거율이 현저히 감소하였음.

▶ 이는 HO·기반인 WO₃와 h⁺, O₂⁻·기반인 430 WCN의 제거 기작 차이 때문인 것으로 보이며, 특히 IPM은 h⁺, O₂⁻·와의 반응성이 매우 낮은 것으로 생각됨.

▶ WO₃ 보다 개선된 WCN 가시광촉매를 합성하였고 이를 14 PhCs의 제거를 통해 확인하였음.

➢ HO·이 main ROS인 WO₃와 달리 WCN은 h+가 main ROS인 것으로 확인되었고, 이러한 ROS 생성 기작 차이로 인해 14 PhCs의 제거 양상도 다르게 나타남.

▶ 모든 PhCs들을 효과적으로 제거하기 위해 기존보다 우수한 성능의 WCN의 개발 필요성을 확인하였음.

Thank You

3. Preliminary Results **Energy band potential of WO₃ photocatalyst**

Valence band, conduction band and bandgap energy

- Bandgap = VB CB
- Bandgap energy: 2.72 eV
- VB potential: 2.88 eV
- CB potential: 0.16 eV

Valence band of WO_3 has oxidative potential to oxidize H_2O to HO^{\bullet} .

Results & discussion Bandgap energy of photocatalysts

Bandgap energy analysis using UV-DRS **

<Band structure of WCNs>

- As the treatment temperature decreased, the bandgap size of WCN and GCN gradually increased. \geq
- However, there was no change in the bandgap size of heat-treated WO_3 photocatalysts. \geq

3. Results & discussion **Photocatalytic experiment**

Removal of Rh B using WCNs

> All WCNs had better photocatalytic efficiencies than WO₃ and GCNs.

> Lower temperature WCNs (480-430 WCN) showed higher photocatalytic efficiencies than 500 WCN.