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In This Lecture

 Process of developing an ML task
 Setting goals
 Building end-to-end system
 Data-driven refinement

 Hyperparameter search
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Key to Success in ML?
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Example: Street View Address 
Number Transcription
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Three Step Process
 Use needs to define metric-based goals

 What error metric to use, and your target value for the metric

 Build an end-to-end system
 Establish a working end-to-end pipeline as soon as possible

 Data-driven refinement
 Repeatedly make incremental changes such as gathering new data, 

adjusting hyperparameters, or changing algorithms, based on specific 
findings from your instrumentation
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Identify Needs
 High accuracy or low accuracy?
 Surgery robot: high accuracy
 Celebrity look-a-like app: low accuracy
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Choose Metrics
 Accuracy? (% of examples correct)

 Coverage? (% of examples processed)

 Precision? (% of detections that are right)

 Recall? (% of objects detected)

 Amount of error? (For regression problems)
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Choose Metrics
 Many applications require more advanced metrics

 In some cases, it is much more costly to make one kind of a mistake than 
another

 E-mail spam detection system
 It can make two types of mistakes: incorrectly classifying a good email as spam, and 

incorrectly classifying spam as a good email
 Between the two mistakes, what is worse?

 Binary classifier to detect a rare disease
 Suppose only one in every million people has this disease
 Detector H: we can easily achieve 99.9999% accuracy by always outputting ‘healthy’
 To solve the problem we can instead measure precision and recall
 ‘Detector H’ would achieve very low recall, with precision undefined (but, no mistake of 

classifying healthy person as unhealthy)
 In general, precision and recall are inversely proportional: PR-curve (precision on the y 

axis and recall on the x axis) helps identify the relation
 Such classifier outputs �𝑦𝑦 = 𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥). We can choose to classify x as ‘unhealthy’ if �𝑦𝑦 >

𝜃𝜃. By varying 𝜃𝜃, we can trade precision for recall
 We can summarize the performance with a single number rather than a curve, by using F-

score:   F = 2𝑝𝑝𝑝𝑝
𝑝𝑝+𝑟𝑟
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Choose Metrics
 Coverage: fraction of examples for which an ML system is able to 

produce a response
 In some applications, it is possible for the ML system to refuse to make a 

decision
 This is useful if the ML system can estimate how confident it should be 

about a decision
 E.g., a deep neural network with softmax output layer for classification outputs 

probabilities for each classs

 One can always obtain 100% accuracy by refusing to process any example, 
but this reduces the coverage to 0%
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End-to-end System
 Get up and running ASAP

 Build the simplest variable system first

 What baseline to start with though?
 Copy state-of-the-art from related publication
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Deep or Not?
 Lots of noise, little structure -> not deep

 Little noise, complex structure -> deep

 Good shallow baseline:
 Use what you know
 Logistic regression, SVM, boosted tree are all good
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Default Baseline Models
 Choose the general category of model based on the structure of 

data
 Supervised learning with fixed-size vectors as input: use a feedforward 

network with fully connected layers
 Input with known topological structure (e.g., image): use CNN

 Begin with piecewise linear unit (ReLU, Leaky ReLU, etc.)

 Sequence input or output: use gated recurrent net (LSTM or GRU)

 Optimization algorithm
 SGD with momentum with a decaying learning rate

 Decaying linearly until reaching a fixed minimum learning rate, decaying exponentially, or 
decreasing the learning rate by a factor of 2-10 each time validation error plateaus

 Adam
 Batch normalization can be very useful especially for convolutional 

networks and networks with sigmoidal nonlinearities
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Fully Connected Baseline
 2-3 hidden layer feedforward neural network

 AKA “multilayer perceptron”

 Rectified linear units
 Batch normalization
 Adam
 Maybe dropout
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Convolutional Network Baseline
 Download a pretrained network
 Or copy-paste an architecture from a related task

 Or:
 Deep residual network
 Batch normalization
 Adam
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Recurrent Network Baseline
 LSTM
 SGD
 Gradient clipping
 High forget gate bias

𝑓𝑓𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑓𝑓 + �
𝑗𝑗

𝑈𝑈𝑖𝑖,𝑗𝑗
𝑓𝑓 𝑥𝑥𝑗𝑗

𝑡𝑡 + �
𝑗𝑗

𝑊𝑊𝑖𝑖,𝑗𝑗
𝑓𝑓ℎ𝑗𝑗

𝑡𝑡−1 )

Why? lets gradient flow
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Default Baseline Models
 Regularization

 Early stopping should be used almost universally
 Dropout: an excellent regularizer easy to implement and compatible with 

many models and training algorithms
 Batch normalization

 Reusing models and algorithms
 If your task is similar to another task that has been studied extensively, 

copy a trained model from that task
 E.g., it is common to use features from a CNN trained on ImageNet to 

solve other computer vision tasks
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Determining Whether to Gather 
More Data

 It is often much better to gather more data than trying many 
different algorithms

 How to decide whether to gather more data?
 Determine the performance on the training set
 If the performance is poor, the learning algorithm is not effectively using 

the data
 Inspect data for defects
 Inspect software for bugs
 Try to increase the size of the model by adding more layers or hidden units, or improve 

the learning algorithm, for example by tuning the learning rate hyperparameter
 If large models and hyperparameter tuning do not work, the quality of the training data 

may be too low
 This suggest collecting cleaner data or collecting richer set of features
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Checking Data for Defects
 Can a human process it?
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Increasing Depth
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Determining Whether to Gather 
More Data

 How to decide whether to gather more data?
 If the training error is acceptable, then measure the test error
 If the test error is small, we are done
 If the test error is much worse than training error (overfitting), than 

gathering more data is one of the most efficient solutions
 Its feasibility depends on the cost
 E.g., At large internet companies it may be easy to collect large amount of data; on the 

other hand, in medical applications it may be very costly to gather more data

 Other options when the test error is unacceptable
 Dataset augmentation
 Reduce the size of the model
 More regularization
 Otherwise, improve the learning algorithm itself (an active area of research)

 How much data to gather?
 Experiment with training set sizes on a log scale (e.g., 2x, 4x, 8x, …)



U Kang 21

Dataset Augmentation

 The best way to make a machine learning model generalize 
better is to train it on more data

 Dataset augmentation
 Create fake data and add it to the training set
 Has been effective especially for object recognition

 Image augmentation
 Translation
 Rotation
 Scaling

 Injecting noise: a form of data augmentation
 Neural networks are not very robust to noise; one way to improve the 

robustness of neural networks is to train them with random noise 
applied to their inputs
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Dataset Augmentation
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Selecting Hyperparameters
 Hyperparameters affect the performance of deep models significantly

 Performance: time and memory cost
 Accuracy

 Two basic approaches
 Manual choice
 Automatic choice: active research area

 Goal of hyperparameter tuning
 Find the lowest generalization error
 Adjust the effective capacity of the model to match the complexity of the task

 Effective capacity is constrained by three factors
 Representational capacity of the model
 The ability of the learning algorithm to successfully minimize the cost function
 How much the cost function and training procedure regularize the model
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Generalization Error
 Generalization error follows a U-shaped curve

 Underfitting: low capacity. Generalization error is high since the training error is high
 Overfitting: too high capacity. Generalization error is high since the generalization gap is high
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Learning Rate
 The most important hyperparameter
 Controls the effective capacity of the model

 The effective capacity is the highest when the learning rate is correct for the optimization 
problem

 When the learning rate is too large, gradient descent can inadvertently increase rather than 
decrease the training error

 When the learning rate is too small, the error is also large (stuck at a local minimum)



U Kang 26

?
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Hyperparameter Search
 Grid search

 For each hyperparameter, select a small finite set of values to explore
 Train a model for every joint specification of hyperparameter values 
 Typically, a grid search involves picking values approximately on a logarithmic scale 

(e.g., number of hidden units taken with the set {50, 100, 2500, 500, 1000, 2000}
 Grid search usually performs best when it is performed repeatedly, using a refined 

range
 Suppose we run a grid search over hyperparameter 𝛼𝛼 using values of {-1, 0, 1}
 If the best value found is 1, we should shift the grid and run another search with 𝛼𝛼 in {0, 

1, 2}
 If the best value found is 0, then we may wish to refine our estimate by running another 

search over {-0.1, 0, 0.1}

 Problem with grid search: computational cost grows exponentially with the 
number of hyperparameters: O(nm) for m hyperparameters each taking at most n 
values
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Hyperparameter Search
 Random search

 Simple to program, more convenient to use, and converges much faster to 
good values of the hyperparameters

 Typically,  use a uniform distribution on a log-scale for positive real-valued 
hyperparameters
 E.g., log_learning_rate ~ uniform(-1, -5)

 Why random search finds good solutions faster than grid search?
 Because there are no wasted experimental runs
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What you need to know

 Process of developing an ML task
 Setting goals

 Accuracy, precision, recall, coverage, error…
 Depend on each application

 Building end-to-end system
 Use appropriate baseline methods

 Data-driven refinement
 Decide whether to collect more data based on training error 

and validation error

 Hyperparameter search
 Random search and grid search are useful
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Questions?
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