Anaerobic fermentation & oxidation

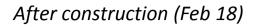
Anaerobic fermentation & oxidation

Applications

- Stabilization of waste sludge
- Treatment of high-strength organic wastes
- Pretreatment step for conventional biological treatment

Advantage

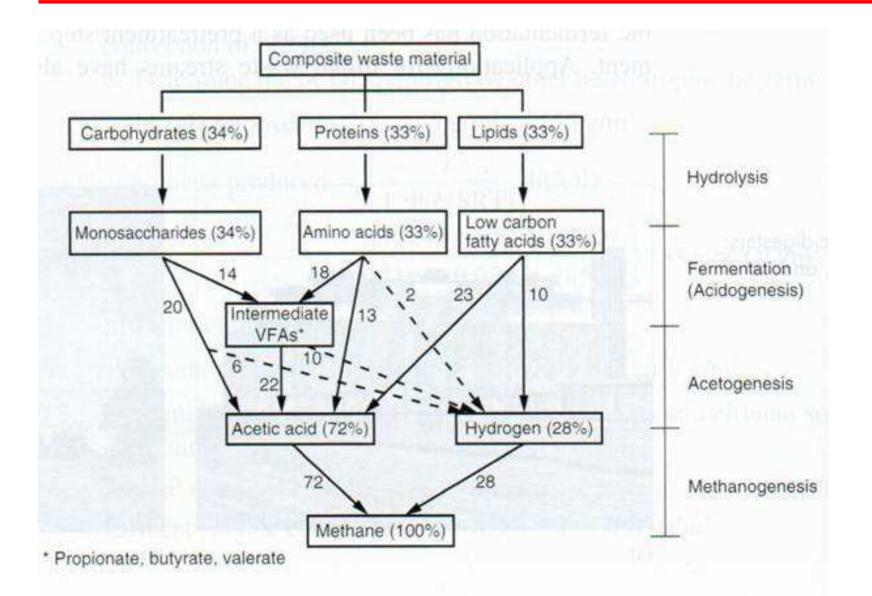
- Low biomass yield
- Energy production in the form of methane (of recent interest!)
 - WWTP -- ~2% of total energy cost in USA
 - Target on energy positive treatment of wastewater


• Disadvantage

- Effluent quality usually not as good as aerobic treatment

Before construction (Jan 15)

Hongchun energy town, Korea (animal manure + food waste)

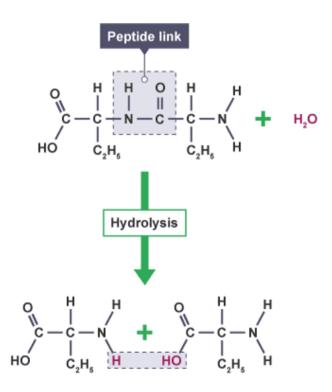


Dear Island wastewater treatment plant, MA, USA (sewage sludge)

Pathway of anaerobic conversion of wastes

Steps of anaerobic conversion (1)

• Hydrolysis


- − Particulates - - → Soluble molecules - - → Monomers
- By extracellular enzymes

• Acidogenesis (fermentation)

- Use: sugars, amino acids, fatty acids (both e⁻ donor & acceptor)
- Produce: VFAs, CO₂, H₂

Acetogenesis

- Use: VFAs other than acetate
- Produce: acetate, H₂, CO₂

Steps of anaerobic conversion (2)

Methanogenesis

- By methanogens (belongs to domain Archaea)
- Two groups of methanogens
 - *aceticlastic* methanogens: <u>acetate</u> \rightarrow CH₄ + CO₂
 - hydrogenotrophic methanogens: $\underline{H}_2 + \underline{CO}_2 \rightarrow \underline{CH}_4$
- − In anaerobic digestion process, ~72% methane from acetic acid & ~28% from H₂ (→ gas production of ~65% CH₄ & ~35% CO₂)

Syntrophic relationship

- Methanogens acidogens & acetogens
 - Acidogens & acetogens: produce H₂, acetate, etc.
 - Methanogens: cleans up the acido/acetogenesis end products
 - Acetogens require relatively low H₂ partial pressure
- Often called as "Interspecies hydrogen transfer"

COD balance for anaerobic process

(COD utilized) = (Biomass COD) + (Methane COD)

- No e⁻ acceptor consumed!
- COD of methane = 64 g COD/mole CH_4

= 2.86 g COD/L CH_4 (@ 0°C, 1 atm)

COD balance for anaerobic process

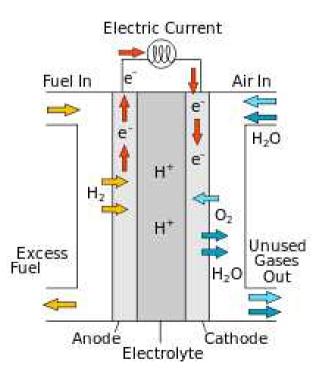
Q: An anaerobic reactor, operated at 35°C, is used to process a wastewater stream with a flow of 3000 m³/d and a bCOD concentration of 5000 g/m³. At 95% bCOD removal and a net biomass yield of 0.04 g VSS/g COD, what is the amount of methane produced in m³/d?

Process kinetics

- Low yield coefficients
 - Low energy gain by chemical transformation
 - Fermentation: Y \sim 0.06 g VSS/g COD; b \sim 0.02 d⁻¹
 - Methanogenesis: Y ~ 0.03 g VSS/g COD; b ~ 0.008 d⁻¹
- Consider two steps:
 - Hydrolysis
 - Soluble substrate utilization for fermentation and methanogenesis
 - Methanogenesis the rate-limiting step
- High SRT is needed (around 40 d) due to slow degradation rate

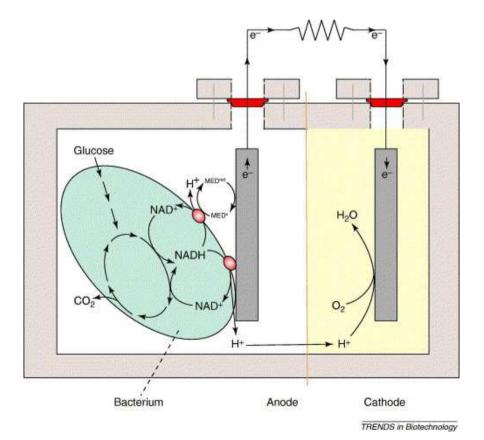
Process stability

- Kinetics of VFA production is faster than utilization (methanogenesis)
- At steady state, sufficient methanogen population is established to maintain low VFA concentration (<200 g/m³) & pH≥7.0
- Unstable digester operation may develop under transient loading conditions (VFA production > utilization): VFA accumulation & pH drop
- Low pH leads to decline in methanogenic activity: process failure
- Methanogenic inhibition can also occur by acetate accumulation (acetate conc. > 3000 g/m³)

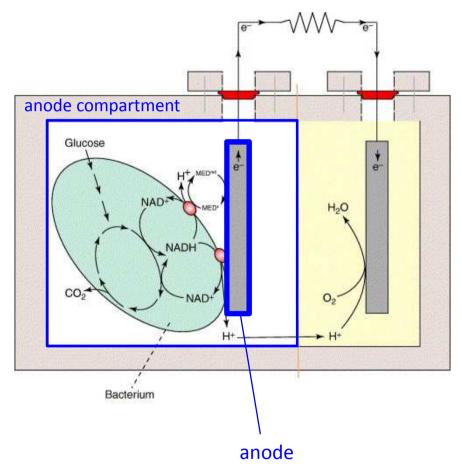

Microbial fuel cells

Fuel cell

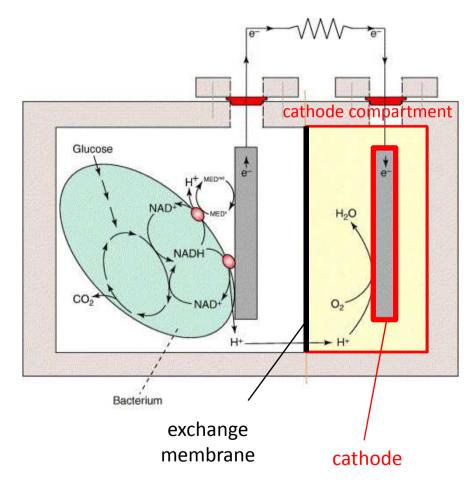
- A device that converts the chemical energy from a fuel into electricity through an electrochemical reaction of hydrogen with oxygen or another oxidizing agent
- Each half reaction of the overall redox reaction occurs separately at each electrode
 - Oxidation half reaction (Anode)


ex)
$$\frac{1}{2}H_2 \rightarrow H^+ + e^-$$

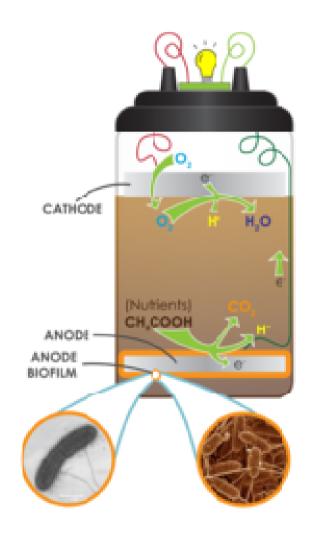
- Reduction half reaction (Cathode)
 - ex) $\frac{1}{4}O_2 + H^+ + e^- \rightarrow 2H_2O$
- Electrons move through the electric circuit (electricity generated)
- H⁺ move through the electrolyte


Microbial Fuel Cell (MFC)

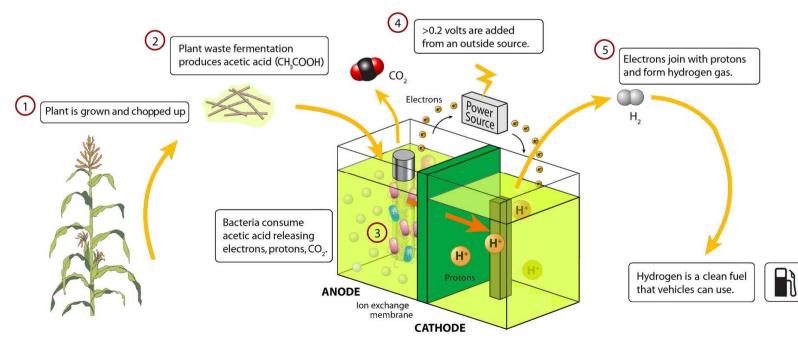
- A device that converts the chemical energy to electrical energy by the action of microorganisms
- The redox reaction is catalyzed by microorganisms


MFC – Anode compartment

- Anode
 - Should be conductive, biocompatible, chemically stable with substrate
 - Stainless steel mesh, graphite plates or rods
- Bacteria live in the anode compartment and oxidize the substrate provided
- Anode compartment should be kept low in DO
- Substrates: usually organics carbohydrates, protein, VFAs, cellulose, and wastewater


MFC – Cathode compartment / EM

- Cathode compartment
 - Usually oxygen is used as an oxidizing agent
 - Catalysts used for the oxygen reduction reaction: Pt most common
- Exchange membrane
 - Allows proton (H⁺) to flow from the anode compartment to cathode compartment


Soil-based MFCs

- Soil serves as
 - Anode compartment
 - Proton exchange membrane
- And soil provides
 - Microorganisms
 - Nutrients

Microbial electrolysis cell (MEC)

- Not an electricity-generating, but electricity-consuming process to produce hydrogen or methane as a fuel
- Hydrogen is produced by reducing protons at the cathode
 - The voltage required to reduce protons is provided by: substrate utilization by microorganisms at the anode + additional voltage supply from an outside source

MFC – pros & cons

- Advantages
 - Generation of energy out of bio-waste / organic matter
 - Direct conversion of substrate energy to electricity
 - No gas treatment required
 - Aeration may not be needed (the cathode may be passively aerated)
- Disadvantages
 - Low power density: losses of electric potential significant
 - High initial cost