Biological wastewater treatment II

- Biological nutrient removal (cont'd)
 - : Conventional strategies to improve P removal efficiency in the secondary treatment
- Biopolymer production

Enhanced biological P removal

- Involves incorporation of P in the biomass produced in the treatment system and subsequent removal of the biomass as waste sludge
- Biomass of heterotrophic bacteria contains ~0.015 g P/g VSS
 - Insufficient to remove P from influent wastewater (only 10~20% of total)
- Use phosphorus accumulating organisms (PAOs) for enhanced biological phosphorus removal (EBPR)
- Reduced chemical costs and less sludge production compared to chemical precipitation

Enhanced biological P removal

EBPR: Process description

- Place an anaerobic tank ahead of the aeration tank
 - Provide <u>selectivity</u> for growth of PAOs
- In the anaerobic tank, PAOs consume energy stored in the form of polyphosphates
 - The energy generated is used to convert volatile fatty acids into carbohydrate storage products (PHA)
- In the aerobic tank, PAOs consume COD & stored PAH for biomass growth
 - Use some of the energy for enhanced P uptake to store polyphosphates
- So:
 - Anaerobic tank: <u>PHA accumulation & P release</u>
 - Aerobic tank: <u>excessive P uptake & PHA utilization</u>
- PAOs form very dense floc with good settleability additional benefit

EBPR: Process description

• Process occurring in the anaerobic zone

- Volatile fatty acids (VFAs) are produced by fermentation
- VFAs are assimilated by PAOs into PHAs by energy available from stored polyphosphates
 - Typical PHAs: poly(3-hydroxybutyrate) (P3HB) & poly(3-hydroxyvalerate) (P3HV)
 - Some glycogen contained in the cell is also used

• Processes occurring in the aerobic/anoxic zone

- Stored PHA is metabolized to provide energy for cell growth
- Some glycogen is produced from PHA metabolism
- Soluble orthophosphate in solution in taken up by PAOs to form polyphosphates in the existing cells and the new cells
- Portion of the biomass is wasted \rightarrow P removal
- The process can occur in the anoxic zone as well $(NO_3^- \text{ or } NO_2^- \text{ as } e^- \text{ acceptors})$

PHAs: A class of biopolymer

Table 3 Comparison of several PHAs biosynthesis processes in recombinant bacteria.

Strain	Cultivation mode	PHAs biosynthesis genes source	Type of PHAs	Carbon sources	Biomass (g/L)	PHA content (%)	PHA yield (g/L)	References
Short-chain-length	Short-chain-length PHAs							
Escherichia coli K24KL	Fed-batch	Cupriavidus necator	P(3HB)	Glycerol	41.9	63	26.4	Nikel et al. (2010)
Escherichia coli K24KP	Aerobic batch	Azotobacter sp. (FA8)	P(3HB)	Glucose	9.43	37.2	3.5	Almeida et al. (2010)
			P(3HB)	Glycerol	4.75	30.1	1.4	
Escherichia coli K24KP	Batch	Azotobacter sp. (FA8)	P(3HB)	Glycerol	12.23	27	3.3	Almeida et al. (2011)
Escherichia coli JM109	Batch	Bacillus megaterium NBRC15308 T Bacillus cereus YB-4	P(3HB)	Glucose	9.3	80	7.4	Tomizawa et al. (2011)
Escherichia coli	Batch	Ralstonia eutropha	P(3HP)	Glucose	5.35	18.41	1.0	Meng et al. (2015)
Medium-chain-leng	th PHAs							
Escherichia coli	Batch	Pseudomonas sp.LDC-5	mcl-PHA	Molasses	4.05	75.5	3.06	Saranya and Shenbagarathai (2011)
Escherichia coli	Batch	Pseudomonas aeruginosa PAO1	mcl-PHA	Glucose	-	15	-	Agnew et al. (2012)
Copolymers								
Escherichia coli IM109	Batch	Comamonas sp. EB172	P(3HB-co-3HV)	Glucose	1.6	46.1	0.7	Yee et al. (2012)
Burkholderia sp. USM (JCM 15050)	Fed-batch	Aeromonas caviae	P(3HB-co-3HHx)	Crude palm kernel oil	1.7	66	1.1	Chee et al. (2012)
Cupriavidus necator	Fed-batch	Burkholderia sp. USM (ICM 15050)	P(3HB-co-4HB)	Crude palm kernel oil	2.4	66	1.6	Lau and Sudesh (2012)
Shimwellia blatae	Two step fed-batch	Ralstonia eutropha	P(3HB-co-3HP)	Glycerol	23.2	30.7	7.1	Sato et al. (2015)
Terpolymers								
Cupriavidus necator	Batch	Aeromonas caviae	P(3HB-co-3HV- co-3HHx)	Palm kernel oil	7.9	79	6.2	Bhubalan et al. (2008)
Cupriavidus necator	Fed-batch	Chromobacterium	P(3HB-co-3HV- co-3HHx)	Sodium valerate	9.4	86	8.1	Bhubalan et al. (2010)
Delftia acidovorans DSM39	Batch	Pseudomonas stutzeri BT3	P(3HB-co-3HV- co-4HB)	Lard	-	39.33	-	Romanelli et al. (2014)

Biopolymer production case study

Deficient condition	Biopolymer accumulation (mg polymer/mg cell dry wt)
NMB (nutrient- sufficient)	0.96±0.11
TP	3.05±0.21
TN	2.40±0.42
NH ₃	2.39±0.17
Mg	2.59±0.09

Deficient condition	Biopolymer accumulation (mg polymer/mg cell wt)
BG11 (nutrient- sufficient)	0.38 ± 0.11
TP	1.88 ± 0.53
TN	2.8 ± 0.80
NH ₃	2.37 ± 0.67
Mg	1.65 ± 0.62

M. parvus MK

Utilizes CH₄