Fundamentals of biological treatment II

Oxygen uptake rate

- How much oxygen is needed for the bacterial growth?
- Electron partitioning

 f_e : fraction of e⁻ donor electron used for energy generation f_s : fraction of e⁻ donor electron used for cell synthesis $f_e + f_s = 1$

Oxygen uptake rate

 COD of a substrate is directly proportional to "how much the carbon is reduced compared to its fully oxidized state (CO₂)"

 $O_2 + 4e^- \rightarrow 2O^{2-}$ 32 g O₂ per 4 moles of electrons electrons are provided by the e⁻ donor

Biomass COD (C₅H₇NO₂ – representative cell formula)

 $C_5H_7NO_2 + 5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O$

 $\frac{5 \times 32 \ g \ COD/mole \ C_5 H_7 NO_2}{113 \ g \ C_5 H_7 NO_2/mole \ C_5 H_7 NO_2} = 1.42 \ g \ COD/g \ C_5 H_7 NO_2$

Oxygen uptake rate

- When substrates are utilized by microorganisms,
 - Some fraction of substrate COD is converted to biomass COD (Some fraction of electrons is transferred to biomass)
 - The other fraction of substrate COD is consumed
 (The other fraction of electrons is donated to e⁻ acceptor)
- So:

(substrate COD utilization rate)

= (biomass COD production rate) + (oxygen consumption rate)

 $r_o = r_{su} - 1.42r_X$

 $r_o = oxygen uptake rate (g O_2/m^3-d)$

 r_{su} = substrate utilization rate (g bsCOD/m³-d)

 r_X = net biomass growth rate (g VSS/m³-d)

Temperature effect

• Recall the modified van't Hoff-Arrhenius relationship:

 $k_T = k_{20} \theta^{(T-20)}$

 θ = temperature correction factor, range from 1.02 to 1.25

Total VSS and active biomass

- Note that total VSS includes not only active biomass but also:
 - Cell debris resulting from endogenous decay
 - Non-biodegradable VSS (nbVSS) in the influent wastewater
- During cell death, some portion dissolves into the liquid for consumption by other bacteria, and the other portion remains as non-biodegradable material
 - 10~15% of original cell weight is converted to nbVSS
 - This is referred to as cell debris
- Rate of production of cell debris

 $r_{X,i} = f_d b X$

 $r_{X,i}$ = rate of cell debris production (g VSS/m³-d) f_d = fraction of biomass that remains as cell debris, 0.10-0.15 g VSS/g biomass VSS depleted by decay

Activated sludge - schematic diagram

- The majority of the settled sludge in the secondary clarifier is returned to the aeration tank to obtain high biomass concentration
- Some portion of the settled sludge (due to net growth of biomass) is removed from the system for steady state operation

Activated sludge - schematic diagram

- General assumptions:
 - Biodegradation of substrate occurs in the aeration tank only, not in the clarifier
 - No active biomass in the influent

Key variable - SRT

- <u>Solids</u> <u>Retention</u> <u>Time</u> (or mean cell residence time)
- The average time the activated sludge solids are in the system
- So SRT can be defined as: (Amount of solids in the system) / (rate of solids exiting the system)

Assuming that the amount of solids in the clarifier is negligible compared to that in the aeration tank,

$$SRT = \frac{VX_{a}}{(Q - Q^{w})X_{a}^{e} + Q^{w}X_{a}^{r}}$$

$$SRT = solids retention time (d)$$

$$V = aeration tank volume (m^{3})$$

$$Q = influent flowrate (m^{3}/d)$$

$$X_{a} = active biomass concentration in the aeration tank (g VSS/m^{3})$$

$$Q^{w} = waste sludge flowrate (m^{3}/d)$$

$$X_{a}^{e} = active biomass concentration in the effluent (g VSS/m^{3})$$

$$X_{a}^{r} = active biomass concentration in the return activated sludge line (g VSS/m^{3})$$

Modeling suspended growth processes

- Use the mass balance technique
- Use the kinetic expressions we have discussed
- We can set mass balance for two substances in the activated sludge system:
 - 1) Biomass mass balance

$$V\frac{dX_{a}}{dt} = 0 - [(Q - Q^{w})X_{a}^{e}] - Q^{w}X_{a}^{r} + r_{X}V$$

2) Substrate mass balance

$$V\frac{dS}{dt} = QS^0 - QS - r_{su}V$$

Modeling suspended growth processes

• Solving the two mass balance equations, we get:

$$X_a = \left(\frac{SRT}{\tau}\right) \left[\frac{Y(S^0 - S)}{1 + b(SRT)}\right]$$

$$S = \frac{K_s[1 + b(SRT)]}{SRT(Yk - b) - 1}$$

- The effluent substrate (=our target!) concentration is a function of SRT and growth kinetic parameters
- SRT is the only controllable variable
- The effluent substrate concentration is **<u>NOT</u>** a function of influent concentration (but S^0 affects X)

Solids production

- Remember:
 - VSS = active biomass + α
 - TSS = active biomass + α + β

• Daily production of total sludge from the system

 At steady state, the mixed liquor can be assumed as a homogeneous mixture of active biomass and other solids (→ same SRT applies to VSS and TSS!)

$$P_{X,VSS} = \frac{X_{VSS}V}{SRT}$$

$$P_{X,VSS} = daily production of total sludge as VSS (g VSS/d)$$

$$X_{VSS} = total MLVSS concentration in aeration tank (g VSS/m^3)$$

$$P_{X,TSS} = \frac{X_{TSS}V}{SRT}$$

$$P_{X,TSS} = daily production of total sludge as TSS (g TSS/d)$$

 X_{TSS} = total MLSS concentration in aeration tank (g TSS/m³)

Modeling solids production

Total MLVSS in the aeration tank, X_{vss}

 $X_{VSS} = X_a + X_i$ $X_i = nbVSS$ concentration in aeration tank (g VSS/m³)

 \rightarrow Additional mass balance needed for nbVSS

$$V\frac{dX_i}{dt} = QX_i^{\ 0} - \frac{X_iV}{SRT} + r_{X,i}V$$

 X_i^0 = nbVSS concentration in influent (g VSS/m³) $r_{X,i}$ = rate of nbVSS production from cell debris (g/m³-d)

At steady state:

$$X_i = \frac{X_i^0(SRT)}{\tau} + (f_d)(b)(X_a)(SRT)$$

Modeling solids production

Therefore,

$$X_{VSS} = \left(\frac{SRT}{\tau}\right) \left[\frac{Y(S^0 - S)}{1 + b(SRT)}\right] + (f_d)(b)(X_a)(SRT) + \frac{X_i^0(SRT)}{\tau}$$
Active biomass Cell debris nbVSS in influent

The daily total VSS production (=wasted) rate, $P_{X,VSS}$ (g VSS/d):

$$P_{X,VSS} = \frac{QY(S^0 - S)}{1 + b(SRT)} + \frac{(f_d)(b)YQ(S^0 - S)SRT}{1 + b(SRT)} + QX_i^0$$
(A)
(B)
(C)

Effect of SRT on bsCOD, biomass, and MLVSS

Modeling solids production

• The daily MLSS (total dry solids) wasted

Note: TSS = VSS + FSS (inorganics)

- Inorganic solids originate from influent and the biomass
- Biomass contains 10-15% inorganic solids by dry weight
- Use a VSS/TSS ratio of 0.85 for a typical biomass

$$P_{X,TSS} = \frac{(A)}{0.85} + \frac{(B)}{0.85} + C + Q(X_{TSS}^{0} - X_{VSS}^{0})$$

 $P_{X,TSS}$ = daily MLSSS produced per day (g TSS/d) X_{TSS}^{0} = influent wastewater TSS concentration (g/m³) X_{VSS}^{0} = influent wastewater VSS concentration (g/m³)

Oxygen requirements

- Additional matter of interest: **how much oxygen should be provided** to support the aerobic biodegradation?
- Recall that by degradation of substrates:
 - some portion of the biodegradable COD (bCOD) is combined with O₂ to be mineralized or converted to oxidized organic compounds
- Some O₂ is also consumed for endogenous respiration
- Consider the COD mass balance of the system:
 Oxygen used = (bCOD removed) (COD of waste sludge)

 $R_o = Q(S_o - S) - 1.42P_{X,bio}$

 R_o = daily oxygen requirement (g/d) $P_{X,bio}$ = biomass as VSS wasted per day, (A) + (B) (g/d)

Example question

Q: A complete-mix suspended growth activated sludge process with recycle is used to treat municipal wastewater after primary sedimentation. The characteristics of the primary effluent are: flow = 1000 m³/d, bsCOD = 192 g/m³, nbVSS = 30 g/m³, and inert inorganics = 10 g/m³. The aeration tank MLVSS is 2500 g/m³. Using these data and the kinetics coefficients given below, design a system with a 6-d SRT and determine the following:

- 1) The effluent bsCOD concentration
- 2) Hydraulic retention time required
- 3) Daily sludge production (in kg/d as VSS and TSS)
- 4) Fraction of active biomass in the MLVSS
- 5) Oxygen requirement (in kg/d)

 $k = 12.5 \ g \ COD/g \ VSS - d$ $Y = 0.40 \ g \ VSS/g \ COD$ $b = 0.10 \ /d$ $K_s = 10 \ g \ COD/m^3$ $f_d = 0.15$ $Biomass \ VSS/TSS = 0.85$

Design & operating parameters

- SRT: key variable
 - When kinetic coefficients are fixed, the effluent concentration is solely a function of SRT
- Effluent concentration as a function of SRT

Design & operating parameters

- The minimum solids retention residence time, SRT_{min}
 - The SRT at which the cells are washed out from the system faster than they can reproduce

$$\frac{1}{SRT_{min}} = \frac{YkS^0}{K_s + S^0} - b$$

– In many situations, $K_s \ll S^0$, so:

$$\frac{1}{SRT_{min}} \approx Yk - b = \mu_m - b$$

Process safety factor, SF

$$SF = \frac{SRT_{des}}{SRT_{min}}$$
 $SRT_{des} = design SRT (d)$

Design & operating parameters

• F/M ratio (food to microorganism ratio)

$$F/M = \frac{QS^0}{VX} = \frac{S^0}{\tau X}$$

F/*M* = food to microorganism ratio (g bsCOD/g VSS-d)

- High F/M \Rightarrow low steady-state SRT

• Volumetric organic loading rate

- The amount of BOD or COD applied to the aeration tank volume per day

$$L_{org} = \frac{QS^0}{V \cdot (10^3 \, g/kg)}$$

L_{org} = volumetric organic loading rate (kg bsCOD/m³-d)