Activated sludge process

- A biological wastewater treatment technique using suspended microorganisms (dispersed growth)
- Aeration tank: a mixture of wastewater and microorganisms is agitated and aerated
- Wastewater BOD is removed by active microorganisms

Activated sludge process

- Secondary clarifier: the microorganisms (also called biosolids or sludge) are separated from water by gravity
- Most of the settled sludge is returned to the aeration tank (Why? - We need a high population of microorganisms)
- A fraction of the settled sludge is wasted (Why? microorganisms grow!)

Solids retention time (SRT)

- Recall hydraulic retention time
 t₀ = the time that fluid elements stay in the system
 = V/Q
- Solids retention time (or mean cell residence time) θ_c = the time that <u>microorganisms</u> stay in the system
- t₀ ≠ θ_c if sludge is returned to the aeration tank (Why??)

Suspended solids in "mixed liquor"

- Let's analyze the activated sludge process using two basic knowledge:
 - Monod kinetics (the reaction)
 - The system configuration (mass balance)
- We have two substances to analyze:
 - BOD (=substrate=food): the performance of the activated sludge process to treat wastewater
 - Microorganisms (=MLVSS): those that consume BOD; also related to sludge production

 X, X_e, X_r : MLVSS concentrations in aeration tank, effluent, and return sludge

Assumption:

- i) Steady-state
- ii) The aeration tank is a CMFR
- iii) All reactions occur in the aeration tank

• Mass balance for substrate:

$$QS_0 - V \frac{\mu_m SX}{Y(K_s + S)} = (Q - Q_w)S + Q_w S$$

• Mass balance for microorganisms:

$$QX_0 + V\left(\frac{\mu_m SX}{K_s + S} - k_d X\right) = (Q - Q_w)X_e + Q_w X_r$$

<u>Additional assumption</u>: The influent and effluent MLVSS is negligible

• Mass balance for microorganisms

$$QX_0 + V\left(\frac{\mu_m SX}{(K_s + S)} - k_d X\right) = (Q - Q_w)X_e + Q_w X_r$$

With some math, we get:

$$\frac{Q_w X_r}{VX} = \frac{Q}{V} \frac{Y}{X} (S_0 - S) - k_d$$

When the effluent MLVSS is negligible, we find:

$$\theta_c = \frac{MLVSS \text{ in the aeration tank}}{MLVSS \text{ mass flow out of the system}} = \frac{VX}{Q_w X_r}$$

Solutions:

$$S = \frac{K_s(1 + k_d\theta_c)}{\theta_c(\mu_m - k_d) - 1} \qquad \qquad X = \frac{\theta_c Y(S_0 - S)}{t_0(1 + k_d\theta_c)}$$

- SRT (θ_c) is a key design and operation parameter
- The effluent substrate concentration, S, is independent of the influent substrate concentration, S₀
- Higher $S_0 \rightarrow$ higher MLVSS in the aeration tank \rightarrow more substrate biodegradation \rightarrow same S

Sludge return

- Goal: to maintain a sufficient concentration of activated sludge (=microorganisms) in the aeration tank
- Mass balance for MLSS in the secondary clarifier (neglect effluent MLSS)

X', X_r' : **MLSS** concentrations in aeration tank and return sludge

Sludge return

• The return sludge flow rate, Q_r, to achieve the MLSS concentration in the aeration tank, X':

$$Q_r = \frac{QX' - Q_w X_r'}{X_r' - X'}$$

The return sludge MLSS can be estimated prior to process operation by a settling test (called "SVI test")

This solution is under assumption that the <u>effluent MLSS is</u> <u>negligible</u>

(We will keep this assumption for this class, but it is not always true!)

Q1: A completely mixed activated sludge process receives a primary effluent at a flowrate of 0.150 m³/s with a BOD₅ of 84.0 mg/L. Calculate the solids retention time required to meet a secondary effluent standard of 10.0 mg/L BOD₅.

Following microbial growth parameters apply:

 $K_s = 100 \text{ mg/L BOD}_5$ $\mu_m = 2.5 \text{ day}^{-1}$ $k_d = 0.050 \text{ day}^{-1}$ $Y = 0.50 \text{ mg VSS/mg BOD}_5$

Q2: For the given activated sludge process, calculate the volume of the aeration tank to maintain MLVSS concentration of 2000 mg/L in the aeration tank.

Q3: Calculate the required return sludge pumping rate. Use following data.

 $MLSS = 1.43 \times MLVSS$ Return sludge concentration (X'_r) = 10000 mg/L Effluent SS is negligible **Reading assignment**

Textbook Ch 11 p. 538-546

Tertiary (advanced) treatment

- Goal: to improve the quality of the secondary treatment effluent
- Many of the Korean wastewater treatment plants now have advanced treatment process
- Further BOD and SS removal, nutrient removal, TDS removal, or the removal of refractory organic compounds
- Different processes can be used depending on the major target

Tertiary (advanced) treatment

- Available advanced treatment processes
 - Granular filtration
 - Additional removal of SS (including microorganisms)
 - Similar to water treatment
 - Membrane filtration
 - Additional removal of SS
 - Microfiltration is mostly commonly used for advanced treatment of wastewater

Carbon adsorption

- Removal of non-biodegradable organic compounds (contributes to COD, but not to BOD)
- Activated carbon is most commonly used as an adsorbent

Tertiary (advanced) treatment

- Available advanced treatment processes
 - Chemical phosphorus removal
 - Use chemical precipitants such as ferric chloride (FeCl₃), alum (Al₂(SO₄)₃), lime (Ca(OH)₂)

Chlorine disinfection

- Removal of pathogens
- Required process in the U.S. → considered as a conventional process, but often categorized as tertiary treatment

Sludge treatment

- Sources of solid waste from wastewater treatment
 - Bar racks & grit chamber
 - Inert, water can be easily removed
 - Generally not called as "sludge"
 - Truck directly to landfill after water removal
 - Primary and secondary treatment
 - Produces waste called "sludge"
 - High organic content \rightarrow rapidly becomes anaerobic and putrefies
 - 3-8% solids for primary sludge & 0.5-2% solids for secondary sludge
 - Tertiary treatment: variable characteristics

Sludge treatment processes

- **Thickening**: separating as much as water possible from the raw sludge by gravity or flotation
- **Stabilization**: converting the organic solids to more inert forms
- **Conditioning**: treating the sludge with chemicals or heat so that the water can be readily separated
- **Dewatering**: separating water by vacuum, pressure, or drying
- **Reduction**: further reducing the solids and water when needed (ex: incineration)

Sludge treatment processes

• Organize the processes as needed

Sludge disposal

- Land spreading: can use nutrients and water in the sludge, but pathogen & heavy metal problem
- Ocean disposal: simple & easy, but not environmentally-friendly, now prohibited in Korea
- Landfilling: simple & easy, but takes a lot of landfill space
- **Composting**: use sludge as a valuable resource but not well accepted by consumers

Wastewater as a resource

- A new paradigm: wastewater is not a WASTE, but a valuable RESOURCE
- Wastewater = water + nutrients + carbon (energy)
- Water reuse
 - Non-potable reuse: cooling water, irrigation, recreational use
 - Potable reuse: direct/indirect; can produce effluent with drinking water quality by reverse osmosis + UV disinfection
- Wastewater as a nutrient source
 - Irrigation of primary effluent
 - Use processed sludge as soil amendment
 - Precipitate nutrients to produce fertilizers

Wastewater as a resource

- Wastewater as an energy source
 - Wastewater treatment is a high energy process: accounts for 2-5% of the national energy consumption
 - Make the process "energy positive" \rightarrow lots of energy savings!
 - Several ways to use energy in wastewater
 - CH_4 gas production from wastewater \rightarrow heat / electricity generation
 - Electricity generation directly from wastewater (microbial fuel cells)
 - Using heat value of wastewater

Reading assignment

Textbook Ch 11 p. 562-571