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Introduction to Data Mining

Lecture #18: Recommendation 2 -
Latent Factor Model

U Kang
Seoul National University
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In This Lecture

m Learn the weight learning approach for
collaborative filtering

m Understand the main idea of latent factor model

m Learn the advanced techniques for latent factor
model, including regularization and bias
extension

U Kang
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The Netflix Prize

m Training data
2 100 million ratings, 480,000 users, 17,770 movies
0 6 years of data: 2000-2005

m Test data

o Last few ratings of each user (2.8 million)
o Evaluation criterion: Root Mean Square Error (RMSE) =

|R|\/Z(lx)ER(TXl TXL)Z

0 Netflix’s system RMSE: 0.9514

m Competition
o 2,700+ teams

o $1 million prize for 10% improvement on Netflix
U Kang 4




The Netflix Utility Matrix R

480,000 users

< >

Matrix R

17,700
movies

U Kang



Utility Matrix R: Evaluation

480,000 users

Matrix R

17,700
movies

Training Data Set

\

RMSE = —
IR] \

Test Data Set (hidden)

/

True rating of
user x on item |

Z(i,x)ER (fxi o ;xi)z

U Kang Predicted rating 6
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BellKor Recommender System

m The winner of the Netflix Challenge!

m Multi-scale modeling of the data:

| " Global effects

Combine top level, “regiona
modeling of the data, with
a refined, local view:
o Global:

m Overall deviations of users/movies

o Factorization:
m Addressing “regional” effects

o Collaborative filtering:
m Extract local patterns

I”

~——\ Factorization

Collaborative
filtering

U Kang 7
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) Modeling Local & Global Effects

m Global:
o Mean movie rating: 3.7 stars THe it S

0 The Sixth Sense is 0.5 stars above avg.

0 Joe rates 0.2 stars below avg.
—> Baseline estimation:
Joe will rate The Sixth Sense 4 stars

m Local neighborhood (CF/NN):
0 Joe didn’t like related movie Signs

0 = Final estimate:
Joe will rate The Sixth Sense 3.8 stars

U Kang 8
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& Recap: Collaborative Filtering (CF)

K&

m Earliest and most popular collaborative filtering
method

2 Infer unknown ratings from those of “similar” movies (it
em-item variant)

0 Define similarity measure s;; of items i and j
0 Select k-nearest neighbors, compute the rating

m  N(i; x): items most similar to i that were rated by x

_ S..-T.
A ZJEN(I;X) X e
V. = s;;... similarity of items i and |
X E : S r---rating of user x on item |
- - ij N(i;X)... set of items similar to
JeN (1x) item i that were rated by x
U Kang 9




= Modellng Local & Global Effects

m In practice we get better estimates if we model

deviations:
ZJEN(I x)S (r _bXJ)

/r;i = bxi
ZjeN(i;x) Sij

baseline estimate for r,;

b, =p+b,+b, Problems/Issues:
xt x l 1) Similarity measures are “arbitrary”
2) Taking a weighted average can be

overall mean rating

K- restricting

by = rating deviation of user x Solution: Instead of s;; use w; that
= (avg. rating of user x) — u ij ij

b, = (avg. rating of movie i) — u we learn from data

U Kang 10



Idea: Interpolation Weights w;;

m Use a weighted sum rather than weighted avg.:

Txi = by + z wij(7yj — byj)
JEN(i;x)
m A few notes:

0 N(I;x) ... set of movies rated by user x that are similar
to movie i

0 wij is the interpolation weight (some real number)
m We allow: ZjEN(i,x) Wi]' *+ 1

0 w;j models interaction between pairs of movies
(it does not depend on user x)

U Kang 11



Idea: Interpolation Weights w;;

O fx\l — bxi + ZjEN(i,x) Wij (ij o bxj)

m How to set w,-j?

| A
0 Remember, error metric is: ﬁ\/z(i,x)ER(rxi — Ty )2 ore

quivalently SSE: Y. ; ycp(Fxi — 7xi)”
0 Find w;; that minimize SSE on training data!
m Models relationships between item i and its neighbors j

0 wj can be learned/estimated based on x and
all other users that rated i

Why iIs this a good idea?

U Kang 12
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¥W@Recommendations via Optimization

-

m Goal: Make good recommendations

o Quantify goodness using RMSE:
Lower RMSE = better recommendations

0 Want to make good recommendations on items
that user has not yet seen. Very difficult task!

o Let’s build a system such that it works well
on known (user, item) ratings
And hope the system will also predict well the unknown
ratings

U Kang 13
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#Recommendations via Optimization

m |ldea: Let’s set values w such that they work well
on known (user, item) ratings

m How to find such values w?

m |dea: Define an objective function
and solve the optimization problem

m Find w;; that minimize SSE on training dataI

s =3 [ost 3wl - o) =)

JEN(i;x)
Predicted rating
m Think of w as a vector of numbers

U Kang 14
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Detour: Minimizing a function

m A simple way to minimize a function f(x):
0 Take a gradient Vf
0 Start at some point y and evaluate Vf(y)
o Make a step in the reverse direction of the gradient:

y=y-Vf)
o Repeat until converged
f f+Vf)

I
I
I
l
U Kang/ y 15
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Interpolation Weights

= We have the optimization J(W>=Z<

bxi + Z Wik (rxk - bxk)] - rxi)
problem, now what?

keN(i;x)

m Gradient decent:

o Iterate until convergence:w « w —nV,J 7 ... learning rate
a where V,,J is the gradient:

0] (w)
Vw/] = l P = 22( byi + z Wik(rxk - bxk)] - Txi) (ij - bxj)
Wi - 4
X,1 keN(i;x)
forj e {N(i;x),Vi,Vx}
0
else 2™ = ¢
aWij
o Note: We fix movie i, go over all r,;, for every movie j €
. i) ' - :
N(i; x), we compute J(w) while |_Wnew Wyl > &
ow;; Word = Whew

UKang Whew = Woig = 77 Wvold 16
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i Interpolation Weights

m So far: Txi = bxi + ZjEN(i;x) Wij(ij — bx])
. Global effects
0 Weights w;; learned based

on their role; no use of an
arbitrary similarity measure
(w;#s;)

~—Factorization

o Explicitly account for
interrelationships among
the neighboring movies

m Next: Latent factor model

0 Extract “regional” correlations

U Kang 17



Global average: 1.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94
CF+Biases+learned weights: 0.91

(Collaborative filtering ++)
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Latent Factor Models (e.g., SVD)

Seriou:IF Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Sensibilit :
Geared Y Dcean’s 11 g Geared
towards” NS " towards
females ¥ males
- The Lion King
The Princess Independence o=
Diaries Day =
v Dumb and
Funny Dumber

U Kang
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Latent Factor Models

m SVD” on Netflix data: R=Q - PT

users
1 3 5 4
5| 4 4 AR
n
=12 a 1| 2 3 3| 5
Q
R ol 4 5 4 2
4| 3| 4 2 2
1 3 3 2 4

m For now let’s assume we can approximate the
rating matrix R as a product of “thin” Q - PT

0 R has missing entries but let’s ignore that for now!
m Basically, we will want the reconstruction error to be small on known

items 0

Q

ratings and we don’t care about the values on the missing ones

U Kang

factors

1 -4 2

516 |5 users

213 |5 1.1 5 |-2 5 |8 |-4 14 | 2.4

11 21 3 -.8 1.4 3 1 14 2.9 1.2 -1
2.1 -, 1.7 2.4 9 -.3 4 g -.6

-7 2.1 -2

PP pPT

21
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Ratings as Products of Factors

m How to estimate the missing rating of
user x for item j?

users
1 3 5 5 4
5 4 4 2| 1| 3 q p
” 2 if " Pxf
& 2|4 1|2 3 4| 3|5 ~
()] ~
= 2| 4 5 4 2
al 3|42 2| s =rowiof Q
1 3 2 4 pX = column x of PT
1 4 |2
users
I I S nl11 |-2 |3 5 2 |-5 |8 |-4 |3 14 |24 |-9
& 2 3 5 o
E ' ' .BI -8 7 5 1.4 3 -1 1.4 | 29 -7 1.2 -1 1.3
O 21 |3 %
== ' ' u—l 21 | -4 | 6 17 |24 | .9 3 | 4 8 7 6 |
7 |21 |2 :
1 7 3 PT

factors Q U Kang s
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m How to estimate the missing rating of
user x for item j?

Ratings as Products of Factors

users
1 3 5 5 4
» 5 4 4 1|3 q p
E 124 12| |3 4 5 ~ lf xf
@ ~
= 2| 4 5 4 2
41 3| 4| 2 2|5 = row | Of Q
1l 3] |3 2 4 pX = column x of PT
1 -4 |2
N w11 |-2 |3 5 -4 14 |24 |-9
=l-2 |3 5 )
S -8 |7 |5 |14 2.9 12 | -1 |13
=11 [21 |3 ® s
= u—l 21 | -4 |6 1.7 4 7 |-6 |1
7 |21 | -2
1 7 3
factors Q UKang -
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Ratings as Products of Factors

m How to estimate the missing rating of
user x for item j?

z qlf pr

=row i of Q
pX = column x of PT

users
1 3 5 5 4
5| 4 4 1] 3
0
& 12|14 |1]2] |3] |4]|3]5 —~
q_) _~
e 2| 4 5 4 2
al 3l a2 2| 5
1 3 3 2 4
A -4 2
-5 .6 5
0 _ &’l 1.1 5
cl2 |3 5 o
o Ol -8 1.4
=11 [21 |3 ®®
ol 21 1.7
-7 2.1 -2
-1 T 3
f factors

-4 3 1.4 2.4 -9

2.9 -7 1.2 -1 1.3

4 .8 7 -.6 A
24




Latent Factor Models

Seriou:IF Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Sensibilit ,
Geared Y Dcean’s 11 Factor 15€ared
towards™® *towards
females males
The Lion King
(Q\|
The Princess 2| Independence
Diaries < Day
ol Dumb and
Funny Dumber

U Kang 25



Seriou$ Braveheart
The Color Amadeus
Purple a
AP
@ Lethal
Sense and Weapon
Geared sensibility Dcean’s 11 m Factor 1G€ared
towards & G *towards
females II males
o The Lion King
(Q\|
The Princess S Independence o=
Diaries 3 Da =
LL y
v Dumb and
26
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Smgular Value Decomposition(SVD)

m SVD: r A\ (

0 A: Input data matrix
a U: Left singular vecs Ty, A |~y

2 V: Right singular vecs

o 2: Singular values

m So in our case:
“SVD” on Netflix data: R=Q - P’
A=R Q=U P =2V
=q;i " Px

U Kang 27



SVD: More good stuff

m SVD gives minimum reconstruction error (Sum of S
quared Errors):

2
Y a0
ijEA
m Note two things:
o SSE and RMSE are monotonically related:
= RMSE = %\/SST Great news: SVD is minimizing RMSE

0 Complication: The sum in SVD error term is over
all entries (no-rating is interpreted as zero-rating).
But our R has missing entries!

U Kang 28
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Latent Factor Models

lem

users factors
5 4 A -4 2
z 4 4 B 5|6 |5 users
1| 2 3 3] 5 -2 | .3 5 1.1 | -2 5 -2 8 -4 14 | 24 | -9
4l |s 4 > 11|21 3 -8 |7 14 13 14 |29 12 | -1 |13
nENE » g'j 15 21 | -4 1.7 | 24 -3 ._4;_ 7 |-6 |1
3 3 .2 4 g .-1 7 |3 Q . .P .
m SVD isn’t defined when entries are missing!
m Use specialized methods to find P, Q
2
- mlnz(l x)ER(rxl " Px ) Tyi = qi " Py

o Note:

We don’t require cols of P, Q to be orthogonal/unit length
P, Q map users/movies to a latent space
The most popular model among Netflix contestants

U Kang
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Latent Factor Models

m Our goal is to find P and Q such tat:

z (Txi —qi - Px )2

min

P,Q

(i,x)ER

users factors
5| 4 4 N 5|6 |5 users
—
2| 4 1] 2 3 3| 5 -2 |3 |5 11 | -2 5 -2 8 -4 14 (24 | -9 %
U) N/ _ . :_'_
&l 24| |5 4 S I~laaf21 |3 8 |7 14 | .3 14 | 29 12 | -1 |13 S
Q N 21 | -4 1.7 | 24 -3 | 4 7 -6 |1 |
= 4| 3| 4|2 2| s -7 21 -2
1 3 3 2 al D27 |3 N
- ~
U Kang 31



Back to Our Problem

m Want to minimize SSE for unseen test data

m Idea: Minimize SSE on training data

o Want large k (# of factors) to capture all the
signals

o But, SSE on test data begins to rise for k > 2

m This is a classical example of overfitting:

2 With too much freedom (too many free
parameters) the model starts fitting noise

m Thatis it fits too well the training data and thus not
generalizing well to unseen test data

U Kang 32



Dealing with Missing Entries

m To solve overfitting we introduce
regularization:
o Allow rich model where there are sufficient data

0 Shrink aggressively where data are scarce

min > (6 =ap) | A2 [p [+ 2 X ]al

tralnlng

7 |\
Y " '
error “lengthn

Ay, A, ... user set regularization parameters (= 0)

Note: We do not care about the “raw” value of the objective function,

but we care in P,Q that achieve the minimum of the objective
U Kang 33



The Effect of Regularization
seriousT Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * > towards
females Factor 1 males
The Princess The Lion King Dumb and
Diaries
~ Dumber
S| Independence
min T(.-ap)+4 Tlef Sl §| bay

MiNg, o €rror’ + A “length”

(Han

34
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The Effect of Regularization

seriousT Braveheart
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * v " towards
females \\\ T males
> ~
\
N\
The Princess The Lion King S Dumb and
Diaries

P.Q training

MiN;, o5 €rror” + A “length”

min T(.-ap)+4 Tlef Sl

Day

Factor 2

v

(Han

Independence

S Dumber
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== The Effect of Regularization

seriousT Braveheart
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * A " towards
Factor 1
females \\\ males
~
~
N\
> \
The Princess The Lion King Dumb and
Diaries Dumber
o
S Independen;
min >, -q pX)ZM{ZIIpXIIZ +Z||qi||2} g v

MiNg, o €rror’ + A “length”

(Han 36



The Effect of Regularization
seriousT Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * v > towards
females N Factor 1 males
The Princess Dumb and
1anes ~ Dumber
S| Independence
min T(.-ap)+4 Tlef Sl §| bay

MiNg, o €rror’ + A “length”

Han 37



Factor vector 2

I
=
LM

1.5

1.0

0.5

=
=

-1.0

=15

B 3 o
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RV A
B N & LB o5
R
@,"b
] | | ! | !
-1.5 -1.0 —0.5 0.0 0.5 1.0

Factor vector 1 Koren, Bell, Volinksy, IEEE Computer, 2009
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¥] Regularization for LF
®» [] Bias Extension for LF

[J Netflix Challenge
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user bias

movie bias

Modeling Biases and Interactions

user-movie interaction

I

Baseline predictor
= Separates users and movies
= Benefits from insights into user’s

behavior

“ Among the main practical
contributions of the competition

M = overall mean rating
b, = bias of user x
b, = bias of movie i

User-Movie interaction

Characterizes the matching between

users and movies

Attracts most research in the field

Benefits from algorithmic and
mathematical innovations

40




Baseline Predictor

m We have expectations on the rating by
user x of movie i, even without estimating x’s
attitude towards movies like i

— Rating scale of user x

— Values of other ratings user
gave recently

U Kang

— (Recent) popularity of movie i

41



Putting It All Together

vi =1 + by + by + q;- by

Overall Bias for Bias for User-Movie
mean rating user x movie i interaction
Example:

o Mean rating: u=3.7

0 You are a critical reviewer: your ratings are 1 star lower
than the mean: b, = -1

o Star Wars gets a mean rating of 0.5 higher than average
movie: b;=+0.5

o Predicted rating for you on Star Wars (w/o interaction):
=3.7-1+ 0.5 =3.2

U Kang 42
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== Fitting the New Model
m Solve:
n Z( —(u+b, +b;+q px))2
(x,1)eR goodness of fit

(AZlal + 20 A Zbf -2 T

regularization
AdS selected via Cross-

validation
m Stochastic gradient decent to find parameters
o Note: Both biases b,, b; as well as interactions g;, p, are t
reated as parameters (we estimate them)

U Kang 43



Global average: 1.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91
Latent factors: 0.90

Latent factors+Biases: 0.89



m Sudden rise in the
average movie rating
(early 2004)

0 Improvements in Netflix
o GUI improvements
0 Meaning of rating changed

m Movie age
o Older movies receive higher
ratings than newer ones

Y. Koren, Collaborative filtering with

temporal dynamics, KDD '09
U Kang

Mean scora

39
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= Temporal Biases Of Users

Rating by date

o

38

34

32

o)

movie age (days) 45
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== Temporal Biases & Factors

m Original model:
= p b, + b+ 0Py

m Add time dependence to biases:
Ii=H +bx(t)+ bi(t) +Q; - Py
o Make parameters b, and b; to depend on time

a (1) Parameterize time-dependence by linear trends
(2) Each bin corresponds to 10 consecutive weeks

bi(t) = bi + b; Bin(e)
m Add temporal dependence to factors
a p,(t)... user preference vector on day t

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
U Kang 46



Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91
Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Global average: 1.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514
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Netflix Prize; Weight Learning in CF
_atent Factor Mode
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Regularization for L

] Bias Extension for L
®» [ Netflix Challenge
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e Final Solution

m Many solutions proposed

Baseline

Basic collaborative filtering

Basic collaborative filtering w/ weight learning
Latent factor model

Latent factor w/ time bias

C O 0O O 0O O

m ‘Blending’ the solutions leads to the best
performance

a Linear combination of N (= 500) predictors

0 T = LN_1W; - predg(x, i) pred,: k th predictor

U Kang 49



All developed CF models

SBRAMFE
BRISMF  SVD-Tims Split REM ﬁfgﬂﬂ

Mavie KNN V. E%Sg}gﬁ DREMSVD++ysyD2  GTE

KNN+Ime, /b1 Integrated M. RBM

SVD-AUF Movie KNN  CTD/MTD SYDNN
User KM Classif. ModelKNN 1.5 Asym. 1/2/3

YYYy ey

L atent User and
= Movie Features

Probe

Blending - BIFl;rl?t?i?lg
PYIYYVIVIVY  Yv¥vyy

approx. 500 predictors

200 blends 30 blends

Linear Blend  10.09 % improvement

Michael Jahrer / Andreas Toscher — Team BigChaos — September 21, 2009



Standing on June 26" 2009
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Home Rules Leaderboard Register Update Submit  Download

Leaderb oa rd Display top 20 leaders,

Rank Team Name Best Score % Improvement Last Submit Time
1 BaliKors Pragmatfic Chags | 0.8558 10.05 2009-08-26 18:42:37

Grand Prize - RMSE <= 0.8563

2 PragmaticThaory ‘ 03582 : .80 2009-06-25 22:15:51
3 Bellkor in BiaChaos ' 0.8580 9.71 2009-05-13 08:14:09
4 Grand Prize Team ‘ 0.8593 9.68 2009-06-12 08:20:24
5 Dace 0.3604 9.56 © 2009-04-22 055703
] HigChaos 08613 ‘ .47 2009-05-23 23:06:52
| Progress Prize 2008 - RMSE = 0.8616 - Winning Team: BellKor in BigChaos. i
7 Bellkor 08620 9.40 2009-06-24 07:16:02
] Gravity 0.8634 925 2009-04-22 18:31:32
] Cparg Solutions 08638 921 2009-06-26 23:18:13
10 BruceDengDaoCiYTYou 08638 ! 9.21 2009-06-27 D0:55:55
11 pengoengzhou 0.8638 9.2 2009-06-27 01:06:43
12 xlvecior i 0.8639 a.20 2009-06-26 13:48:04

13 Kianglia!'lg D.2639 9.20 2009-06-26 07:47:34

June 26" submlssmn trlggers 30 -day “Iast call”



NETELIX

Netfilix UWE@

Leaderboard pdate

CONPLETED

Home Rules Download

Showing Test Score. Click here to show quiz score

Leaderboard

Display top | 20 % | leaders.

Team Name Best Test Score % Improvement Best Submit Time

F I I N N B N N .
BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 16:16:28 I

The Ensemble 0.8567 10.06 2008-07-26 18:38:22
Grand Prize Team E; I BN N B R, el

;
2
3
4
a
G
7
&

e N 1+ ]
[ T

Opera Solutions and Vandelay United

0.B5686

Vandelay Industries |
PragmaticTheory
Bellkor in BigChaos
Dace

Feeds2

BigChaos

Dpera Solutions
BellKor

Xiangliang

Gravity

Ces

Invisible Ideas

Justa guy in a garage

J Dennis Su

Craig Carmichael
acmehill

0.6591
0.6594
0.8601
0.6612
0.Bg22
0.8623
0.8623
0.6624

9.64
9.81
8.7
8.70
8.59
§.48
g.47
g.47
§.46

2009-07-100112:31
2009-07-10 00:32:20
2009-06-24 12:06:56
2009-05-13 068:14:08
2009-07-24 17:16:43
2009-07-12 13:111:51
2009-04-07 12:33:59
2009-07-24 00:34:07
2009-07-26 171911

2009-07-15 14:53:22
2009-04-22 18:31:32
2009-06-21 19:24:53
2009-07-15 15:53:04
2009-05-24 10:02:54
2009-03-07 171617
2009-07-25 16:00:54
2009-03-21 16:20:50
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Million $ Awarded Sept 215t 2009
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Questions?

U Kang
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