Air pollution

Air pollution

- Units for air pollutants
- Types of air pollution problems and air pollutants
- Air pollution problems
 - Indoor air pollution
 - Acid rain
 - Ozone depletion
 - Global warming
- Atmospheric distribution of air pollutants
- Air pollution control methods

Units of measurement

- volume/volume units (for gas phase pollutants)
 - ppm = parts per million
 - ppb = parts per billion
 - ppt = parts per trillion
- mass/volume (for gas & particle phase pollutants)
 - usually $\mu g/m^3$

Unit conversion

Consider a pollutant "i" Ideal gas law: PV = nRT $\frac{n_{air}}{V_{air}} = \frac{P_{air}}{RT} = \frac{mole_{air}}{m^3_{air}}$ R = ideal gas constant = 8.21 x 10⁻⁵ m³-atm/K-mole $ppm_i = \frac{moles \ of \ pollutant \ i}{moles \ of \ air} \times 10^6 = \frac{\mu mole_i}{mole_{air}}$ So, $\frac{\mu g_i}{m_{ain}^3} = ppm_i \times MW_i \times \frac{P_{air}}{RT}$

Q: Convert 10 ppb of SO₂ to μ g/m³ at 20°C, 1 atm.

- Classification of air pollution problems
 - Microscale: less than the size of a house or slightly bigger
 - Mesoscale: a few hectares to the size of a city or slightly bigger
 - Macroscale: size of a county to a country and to the globe

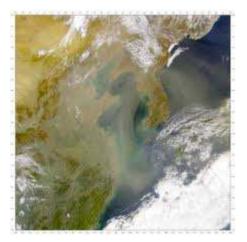
- Microscale air pollution problems
 - Indoor air pollution: pollutants from burners, ovens, heaters, cigarette smoke, and underground
 - Cigarette smoke on streets

http://www.compacappliance.net

http://www.odamindia.org

http://www.edaily.co.kr

- Mesoscale air pollution problems
 - Vehicle exhaust
 - Smoke from power plants, factories, etc.
 - Smog



http://www.bbc.com

- Macroscale air pollution problems
 - Acid rain
 - Yellow dust
 - Ozone depletion
 - Global warming

http://en.wikipedia.com

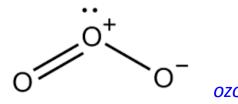
http://breitbart.com

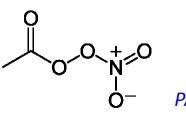
• Carbon monoxide (CO)

- Generated by incomplete combustion of carbon
- Natural sources: oxidation of methane (CH₄) in the atmosphere
- Anthropogenic sources: motor vehicles, fossil fuel burning, solid waste disposal, burning of plant materials
- Reacts with hemoglobin in the blood to form carboxyhemoglobin (CoHb)
- Carbon monoxide poisoning: lots of deaths in 1950s-1980s in Korea caused by indoor briquette burning

• Lead (Pb)

- A cumulative poison
- Usually occurs in the atmosphere as a particulate
- Natural sources: volcanic activity and airborne soil
- Anthropogenic sources: smelters and refining processes, and incineration of lead-containing wastes
- In the past, lead used to be added to gasoline → significant air pollution problems → lead addition currently prohibited


Nitrogen oxides


- NO, NO₂, N₂O, NO₃, N₂O₃, N₂O₄, N₂O₅
- NO2 itself has adverse effects on respiratory tract
- NO and NO₂ are involved in the formation of photochemical smog and acid rain
- $NO_x = NO + NO_2$
- Anthropogenic sources: combustion processes in motor vehicles, power plants, and the industry
- N₂ is an inert gas, but reacts with oxygen at high temperature (>1600 K):

 $N_2 + O_2 \rightarrow 2NO$

Photochemical oxidants

- Chemicals produced by reaction in the atmosphere in the presence of sunlight
- Classified as secondary pollutants
- O₃ (major), peroxyacetyl nitrate (PAN), acrolein, peroxybenzoyl nitrates (PBzN), aldehydes, nitrogen oxides
- Toxic effects because of their oxidizing ability: cause eye, nose, and throat irritation, and affect lung function
- Major pollutants in photochemical smog

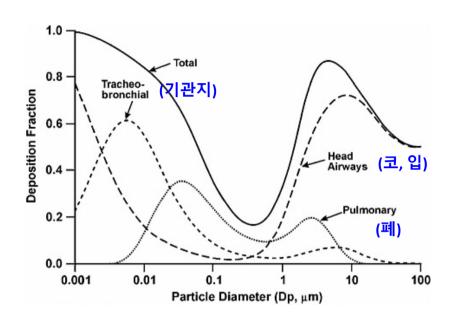
Primary vs. secondary pollutants

• Primary pollutants

 Pollutants that are emitted directly from sources

Secondary pollutants

 Pollutants that are formed in the atmosphere by chemical reactions between primary pollutants and chemical species normally found in the atmosphere


eq. 1 NO₂ + hv
$$\rightarrow$$
 NO + O
eq. 2 O + O₂ + M \rightarrow O₃ + M
eq. 3 NO + O₃ \rightarrow NO₂ + O₂ Ozone
eq. 4 O* + H₂O \rightarrow 2 OH*
eq. 5 $\begin{bmatrix} RH + OH^{\bullet} \rightarrow H_{2}O + R^{\bullet} \\ R^{\bullet} + O_{2} \rightarrow RO_{2}^{\bullet} \text{ very fast} \end{bmatrix}$
eq. 6 $\begin{bmatrix} RO_{2}^{\bullet} + NO \rightarrow NO_{2} + RO^{\bullet} \\ RO^{\bullet} + O_{2} \rightarrow R'CHO + HO^{\bullet}_{2} \text{ very fast} \end{bmatrix}$
eq. 7 $\begin{bmatrix} R'CHO + OH^{\bullet} \rightarrow R'CO^{\bullet} + H_{2}O \\ R'CO^{\bullet} + O_{2} \rightarrow R'C(O)O_{2}^{\bullet} \text{ very fast} \end{bmatrix}$
eq. 8 $R'C(O)O_{2}^{\bullet} + NO_{2} \rightarrow R'C(O)_{2}NO_{2} \rightarrow PAN$

- Sulfur oxides
 - SO₂, SO₃, SO₄²⁻
 - Called SO_x
 - Sources
 - Direct emission of SO_x from power plants, industry, volcanoes, and the oceans (as a primary pollutant)
 - Oxidation of H₂S produced by natural biological processes or the industry (as a secondary pollutant)
 - Involved in "London smog" and acid rain

• Particulates

- Particles suspended in the air
- Natural sources: sea salt, soil dust, volcanic particles, smoke from forest fires
- Anthropogenic sources: fossil fuel burning, industrial processes
- Damage respiratory organs

- Particulates
 - Large particles are trapped at the upper respiratory system, but small particles go deeper
 → small particles are more significant!
 - Korean government regulate "PM₁₀" and "PM_{2.5}"

Deposition of inhaled particles in the human Raabe (1994) Internal Radiation Dosimetry

- PM_{10} : particulate matter less than 10 μ m size
- $PM_{2.5}$: particulate matter less than 2.5 μ m size

• Other hazardous air pollutants

- Toxic organic compounds, heavy metals, arsenic, etc.
- Korean government regulates 35 hazardous air pollutants
- Some examples: cadmium, mercury, asbestos, dioxin, benzene

Reading assignment

Textbook Ch 12 p. 587-605