Fundamentals of biological treatment II

Modeling bacterial growth

- As bacteria consume the substrate, some (specific) portion is used for energy and the other is used to produce new biomass > new growth of cells is directly proportional to the substrate utilized
- So, the bacteria growth rate from substrate utilization is expressed as:

$$r_g = \left(\frac{dX_a}{dt}\right)_{growth} = \frac{\mu_m X_a S}{K_s + S}$$

$$r_g = bacteria growth rate from substrate utilization (g/m³-d)$$

$$r_g = bacteria growth rate from substrate utilization (g/m³-d)$$

$$r_g = bacteria growth rate from substrate utilization (g/m³-d)$$

 μ_m = maximum specific bacteria growth rate (1/d)

with
$$r_q = Y r_{su}$$
 and $\mu_m = k Y$

Y = true yield (q biomass/q substrate utilized) This is the biomass yield we studied!

Modeling bacterial growth

The substrate utilization rate can be written as:

$$r_{su} = \frac{\mu_m X_a S}{Y(K_s + S)}$$

Another form of Monod equation:

$$\mu = \frac{1}{X_a} \cdot \left(\frac{dX_a}{dt}\right)_{growth} = \frac{\mu_m S}{K_s + S}$$

 μ = <u>specific</u> bacteria growth rate (1/d)

Biomass decay

- Microorganism concentration <u>decrease</u> when the substrate is depleted
- This is true in the presence of substrates as well!
- Decay (or endogenous decay endogenous respiration)
 - Cell maintenance energy needs
 - Cell lysis due to death or stress from environmental factors
 - Predation (protozoa, etc.)
 - Generally assumed to be proportional to cell concentration:

$$\left(\frac{dX_a}{dt}\right)_{decay} = -bX_a \qquad X_a = active \ biomass \ concentration \ [\text{M/L}^3]$$

$$b = decay \ coefficient \ [\text{T}^{-1}]$$

- *b* in the range of 0.05 $^{\sim}$ 0.20 d⁻¹

Modeling bacterial growth

- Net biomass growth rate
 - (net biomass growth)
 - = (biomass growth according to substrate utilization) (biomass decay)

$$r_X = Yr_{Su} - bX_a$$

$$= Y\frac{kX_aS}{K_S + S} - bX_a$$

$$r_X = \text{net biomass growth rate (g VSS/m³-d)}$$

Net specific biomass growth rate

$$\mu_{net} = \frac{r_X}{X_a} = Y \frac{kS}{K_S + S} - b$$
 $\mu_{net} = \text{net specific biomass growth rate (1/d)}$

Microbial growth kinetics

- Actually, the Monod kinetics can be applied for any growth-limiting substrates
 - Substrates can be e⁻ donor, e⁻ acceptor, nutrients, etc.
 - Quite often the e⁻ donor is limiting while others are available in excess for growth kinetics, the term substrate generally refers to e⁻ donor

Generalized equation

If factors other than e⁻ donor can be limiting, include those as well!

Microbial growth kinetics

ex) for aerobic, heterotrophic bacteria; if bsCOD, DO, and ammonia-N are limiting:

$$r_{su} = \left[\frac{\mu_{H,max}S_s}{Y_H(K_s + S_s)}\right] \left(\frac{S_o}{K_o + S_o}\right) \left(\frac{S_{NH}}{K_{NH} + S_{NH}}\right) X_{a,H}$$

 $\mu_{H,max}$ = maximum specific growth rate of heterotrophic bacteria (1/d)

 Y_H = heterotrophic bacteria synthesis yield coefficient (g VSS/g COD used)

 $X_{q,H}$ = active heterotrophic bacteria concentration (g VSS/m³)

 S_i = concentration for variable i (i = substrate, DO, ammonia-nitrogen) (g/m³)

 K_i = half-velocity constant for variable i (g/m³)

here, the term "substrate" is used for bsCOD (the e-donor)

Microbial growth kinetics

Typical range/values of kinetic coefficients for activated sludge process

Coefficient	Unit	V alue ^a	
		Range	Typical
k	g bsCOD/g VSS-d	4-12	6
K_s	mg/L BOD	20-60	30
	mg/L bsCOD	5-30	15
Υ	mg VSS/mg BOD	0.4-0.8	0.6
	mg VSS/mg COD	0.4-0.6	0.45
b	1/d	0.06-0.15	0.10

^aAt 20^oC, from Metcalf & Eddy / Aecom

Oxygen uptake rate & temperature effect

- Rate of oxygen uptake
 - Recall that the COD of biomass was:
 - 1.42 g COD/g VSS for $C_5H_7O_2N$

$$r_o = r_{su} - 1.42r_X$$

 r_0 = oxygen uptake rate (g O_2/m^3 -d) r_{Su} = substrate utilization rate (g bsCOD/ m^3 -d) r_X = net biomass growth rate (g VSS/ m^3 -d)

- Effect of temperature
 - Recall the modified van't Hoff-Arrhenius relationship:

$$k_T = k_{20}\theta^{(T-20)}$$

 θ = temperature correction factor, range from 1.02 to 1.25

- Note that total VSS includes not only active biomass but also:
 - Cell debris resulting from endogenous decay
 - Non-biodegradable VSS (nbVSS) in the influent wastewater
- During cell death, some portion dissolves into the liquid for consumption by other bacteria, and the other portion remains as non-biodegradable material
 - 10~15% of original cell weight is converted to nbVSS
 - This is referred to as cell debris
- Rate of production of cell debris

$$r_{X,i} = f_d b X$$

 $r_{X,i}$ = rate of cell debris production (g VSS/m³-d) f_d = fraction of biomass that remains as cell debris, 0.10-0.15 g VSS/g biomass VSS depleted by decay

 The total VSS production rate in the aeration tank of an activated sludge process

$$r_{X,VSS} = Yr_{Su} - bX_a + f_d bX_a + QX_i^o/V$$

net biomass nbVSS from nbVSS in vSS from cells influent bsCOD

 $r_{X,VSS} = total \ VSS \ production \ rate \ (g/m^3-d)$
 $Q = influent \ flowrate \ (m^3/d)$
 $X_i^o = influent \ nbVSS \ concentration \ (g/m^3)$
 $V = volume \ of \ aeration \ tank \ (m^3)$

The active fraction of biomass

$$F_{X,act} = (Yr_{su} - bX_a)/r_{X,VSS}$$

 $F_{X,act}$ = active fraction of biomass in MLVSS, g VSS/g VSS

Net biomass yield

The ratio of the net biomass growth rate and the substrate utilization rate

$$Y_{bio} = r_X/r_{su}$$

 Y_{bio} = net biomass yield, g biomass/g substrate used

Observed yield

 The ratio of the actual solids production rate and the substrate utilization rate for a system

$$Y_{obs} = r_{X,VSS}/r_{su}$$

 Y_{obs} = observed yield, g VSS produced/g substrate removed

Q: An aerobic complete-mix treatment process is used to treat wastewater. The amount of bsCOD in the influent wastewater is 300 g/m^3 and the influent nbVSS concentration is 50 g/m^3 . The influent flowrate is $1000 \text{ m}^3/\text{d}$, the aerobic tank biomass concentration is 2000 g/m^3 , the reactor bsCOD concentration is 2.4 g/m^3 , and the reactor volume is 335 m^3 . If the cell debris fraction (f_d) is 0.10, determine: i) the net biomass yield, ii) the observed VSS yield, and iii) the active biomass fraction in the MLVSS. Use the following kinetic parameters.

k = 6 g bsCOD/g VSS-d K_S = 15 g bsCOD/L Y = 0.45 mg VSS/mg bsCOD b = 0.10 g VSS/g VSS-d

Suspended growth processes

- The majority of the settled sludge in the secondary clarifier is returned to the aeration tank to obtain high biomass concentration
- Some portion of the settled sludge (due to net growth of biomass) is removed from the system for steady state operation

Suspended growth processes

- General assumptions:
 - Biodegradation of substrate occurs in the aeration tank only, not in the clarifier
 - No active biomass in the influent

Key variable - SRT

- Solids Retention Time (or mean cell residence time)
- The average time the activated sludge solids are in the system
- So SRT can be defined as:
 (Amount of solids in the system) / (rate of solids exiting the system)

Assuming that the amount of solids in the clarifier is negligible compared to that in the aeration tank,

$$SRT = \frac{VX_a}{(Q - Q^w)X_a^e + Q^wX_a^r}$$

$$SRT = \text{solids retention time (d)}$$

$$V = \text{aeration tank volume (m³)}$$

$$Q = \text{influent flowrate (m³/d)}$$

V = aeration tank volume (m^3) Q = influent flowrate (m^3 /d) X_a = active biomass concentration in the aeration tank (g VSS/ m^3) Q^w = waste sludge flowrate (m^3 /d) X_a^e = active biomass concentration in the effluent (g VSS/ m^3) X_a^r = active biomass concentration in the return activated sludge