Biological nutrient removal

1

Today's class

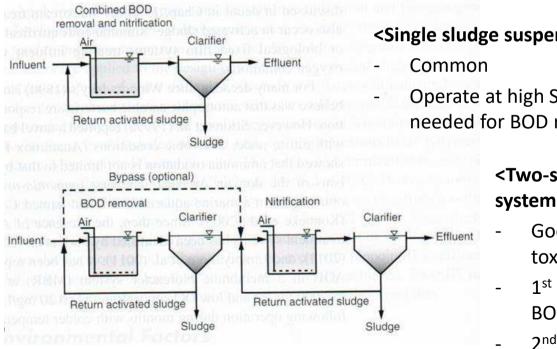
- Oxidation of ammonia (NH₄⁺/NH₃): **nitrification**
- Reduction of nitrate (NO₃⁻): **denitrification**
- Enhanced biological P removal

Biological oxidation of nitrogen

- Necessity for NH₄-N & NO₂-N oxidation
 - The effect of ammonia on receiving water with respect to DO concentrations and fish toxicity
 - The need to provide nitrogen removal to control eutrophication
 - The need to provide nitrogen control for water-reuse applications

• Nitrification

- − Two-step biological process: NH_4 -N → NO_2 -N & NO_2 -N → NO_3 -N
- − The first step [NH₄-N \rightarrow NO₂-N] is termed as "nitritation"
- Different type of microorganisms are involved for each step


• Anammox process

- <u>Anaerobic</u> <u>Amm</u>onia <u>Ox</u>idation
- Some bacteria can oxidize ammonia with nitrite under anaerobic conditions:

 $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$

Nitrification processes

- Both suspended & attached growth applicable ٠
- Suspended growth nitrification processes ${}^{\bullet}$
 - Note nitrifying bacteria are less competent than aerobic heterotrophs \rightarrow need maintaining low BOD concentration to activate them!

<Single sludge suspended growth system>

Operate at high SRT than what's needed for BOD removal

<Two-sludge suspended growth system>

- Good for wastewater containing toxic substances
- 1st unit operated at short SRT for BOD removal (+toxic removal)
- 2nd unit for nitrification at low BOD

Microbiology of nitrification

- Ammonia-oxidizing bacteria (AOB) & nitrite-oxidizing bacteria (NOB)
- Aerobic chemoautotrophs
- Major AOB: *Nitrosomonas* (+*Nitrosospira*)
- Major NOB: *Nitrobacter* (+*Nitrococcus, Nitrospina, Nitrospira*)

Stoichiometry of nitrification

AOB (nitration):	$2NH_4^{+} + 3O_2^{-} \rightarrow 2NO_2^{-} + 4H^+ + 2H_2O$	
NOB:	$2NO_2^- + O_2^- \rightarrow 2NO_3^-$	
Overall:	$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O_3^-$	sto cor

Note: This is stoichiometry **NOT** considering biomass production

- Oxygen requirement: 2 mole $O_2/1$ mole NH_4^+ = 4.57 g O_2/g NH_4 -N oxidized
- Alkalinity consumption: 2 eq alkalinity/1 mole NH_4^+ = 7.14 g Alk as $CaCO_3/g NH_4$ -N oxidized
- Nitrification cell yield: 0.10~0.15 for AOB & 0.04~0.07 for NOB
- Considering biomass production, the O₂ requirements and alkalinity consumption is slightly less than the calculated values above (<u>why??</u>)

Stoichiometry of nitrification

ex) Assuming Y=0.12 g VSS/g NH_4 -N for AOB and Y=0.04 g VSS/g NO_2 -N for NOB, the overall stoichiometry is:

 $NH_4(HCO_3) + 0.9852Na(HCO_3) + 0.0991CO_2 + 1.8675O_2 \rightarrow$

 $0.01982C_5H_7O_2N + 0.9852NaNO_3 + 2.9232H_2O + 1.9852CO_2$

→ 1.8675 mole $O_2/1$ mole NH_4^+ 1.9852 eq Alk/1 mole NH_4^+

Nitrification kinetics

- Monod equation applicable
- AOBs & NOBs are more sensitive to DO than heterotrophs
 - In most cases DO should be treated as one of the major limiting substrate

$$\mu_{AOB} = \mu_{max,AOB} \left(\frac{S_{NH}}{S_{NH} + K_{NH}} \right) \left(\frac{S_o}{S_o + K_{o,AOB}} \right) - b_{AOB}$$
$$\mu_{NOB} = \mu_{max,NOB} \left(\frac{S_{NO}}{S_{NO} + K_{NO}} \right) \left(\frac{S_o}{S_o + K_{o,NOB}} \right) - b_{NOB}$$

 $\begin{array}{l} \mu_{AOB} = \text{specific growth rate of AOB, 1/d} \\ \mu_{NOB} = \text{specific growth rate of NOB, 1/d} \\ \mu_{max,AOB} = maximum \text{specific growth rate of AOB, 1/d} \\ \mu_{max,NOB} = maximum \text{specific growth rate of NOB, 1/d} \\ b_{AOB} = \text{decay coefficient of AOB, 1/d} \\ b_{NOB} = \text{decay coefficient of NOB, 1/d} \end{array}$

- $S_{NH} = NH_4$ -N concentration, mg/L $K_{NH} = half$ -velocity constant for NH₄-N, mg/L $S_o = DO$ concentration, mg/L $K_{o,AOB} = half$ -velocity constant for DO for AOB, mg/L $K_{NH} = half$ -velocity constant for NH₄-N, mg/L $S_{NO} = NO_2$ -N concentration, mg/L $K_{NO} = half$ -velocity constant for NO₂-N, mg/L $K_{O NOB} = half$ -velocity constant for DO for NOB, mg/L
- NOBs are more sensitive to DO than AOBs
 - $K_{o,NOB} \approx (2 \sim 3) \times K_{o,AOB}$
 - Elevated NO₂-N concentration at low DO

Environmental factors affecting nitrification

- Dissolved oxygen (DO)
- pH
 - Optimum at pH of 7.5~8.0
 - Ammonia oxidation rate reduces significantly at pH<7.0
 - Possibly due to the reduction of free ammonia (NH₃) concentration
 - Sufficient alkalinity is needed!
 - For wastewater with high NH₄⁺ concentrations and low alkalinity, addition of alkalinity may be needed (lime, soda ash, NaHCO₃, ...)
- Toxicity
 - AOB is sensitive to a wide range of organic & inorganic compounds
 - Show significantly reduced ammonia oxidation rate in the presence of toxic substances
- Free ammonia & nitrous acid inhibition
 - NH₃-N & HNO₂
 - − High pH: NH_3 -N ↑ / low pH: HNO₂ ↑

Requirements for denitrification

- By nitrification, NO₃⁻ is produced
- Denitrification $(NO_3^- \rightarrow N_2)$ should follow to complete the biological nitrogen removal process
 - To complete the biological nitrogen removal process
 - Otherwise, <u>accumulation of NO₃-N</u>: health threats!
 - "Blue baby syndrome"
 - Korean regulation: $< 10 \text{ mg NO}_3$ -N/L

Typical nitrate (NO₃⁻) removal mechanisms

• Assimilatory nitrate reduction

- Reduction of NO₃-N to NH₄-N for use in cell synthesis when NH₄-N is not available
- Independent of DO concentration

• Dissimilatory nitrate reduction

- Nitrate/nitrite serves as an electron acceptor
- When DO is absent or limited
- Nitrate reduction proceeds through a series of intermediate products:

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

Denitrifying microorganisms

- Wastewater denitrification process is usually performed by heterotrophic bacteria
- Wide range of heterotrophs are facultative aerobes
 - Switch their e^{-} acceptor from O_2 to NO_3^{-} or NO_2^{-} at **anoxic** conditions
 - NO₃⁻ & NO₂⁻ are quite good e⁻ acceptors; utilizes good e⁻ donors (organics)
 - Allows high energy gain for bacteria \rightarrow high Y
- Some autotrophs are capable of nitrate/nitrite reduction
 - Use Fe⁰, Fe²⁺, S²⁻, S⁰, ..., or NH₄⁺ (Anammox will discuss later)

Denitrification processes

• Preanoxic denitrification

- Electron donor provided by influent
- MLE (Modified Ludzak-Ettinger) process: most common for biological nitrogen removal in municipal wastewater treatment

- Postanoxic denitrification
 - BOD not available in anoxic reactor: denitrification by endogenous decay
 - Much slower rate than preanoxic
 - Often external carbon source is added (e.g. methanol, acetate)

Stoichiometry

Wastewater:	$C_{10}H_{19}O_3N + 10NO_3^- \rightarrow 5N_2 + 10CO_2 + 3H_2O + NH_3 + 10OH^-$
Methanol:	$5CH_3OH + 6NO_3^- \rightarrow 3N_2 + 5CO_2 + 7H_2O + 6OH^-$
Acetic acid:	$5CH_3COOH + 8NO_3^- \rightarrow 4N_2 + 10CO_2 + 6H_2O + 8OH^-$

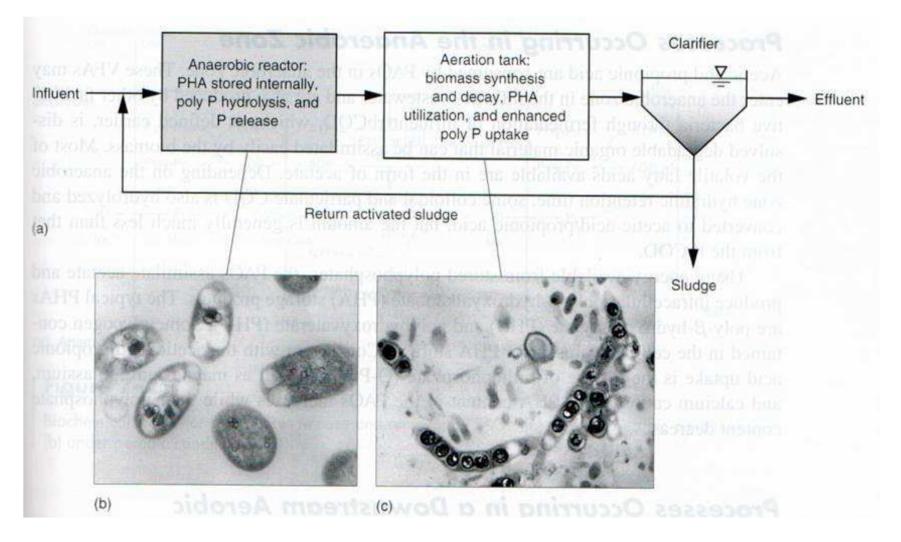
Production of alkalinity

- 3.57 g Alk as CaCO₃ produced per g NO₃-N (or NO₂-N) reduced
- 50% of alkalinity consumed by nitrification can be recovered

Organic substrate requirements

- A sufficient amount of organic substrate (e⁻ donor) should be available
 - bsCOD or BOD as an important design parameter
 - Sources of e⁻ donor for denitrification
 - 1) bsCOD in the influent
 - 2) bsCOD produced during biological hydrolysis
 - 3) bsCOD produced during endogenous decay
 - 4) External source such as methanol or acetate
 - ~4 g BOD required per g NO_3 -N reduced
 - actual requirement depending on operating conditions and the type of e⁻ donor
 - Especially important to determine the BOD requirements when external carbon source is provided

Simultaneous nitrification and denitrification


- In activated sludge floc (suspended growth) or biofilm (attached growth)
- Local conditions in the floc or biofilm may be different from bulk liquid
- High DO at the exterior and low DO inside → conditions for nitrification and denitrification may develop in a single floc or biofilm
- Can be significant if optimal conditions are developed

GHG from biological N removal

• Nitrous oxide (N₂O)

- A potent greenhouse gas (GHG): 300 times greater potency than CO_2
- Agriculture is the major source of N₂O emission
- N₂O emissions by wastewater treatment
 - Contributes 3% of total global emissions
 - N₂O emissions greater in the aerobic zones than the anoxic zones
 - From heterotrophic denitrification
 - Not produced significantly at steady-state operations, but can be significant at transient state
 - From ammonia oxidation (AOBs)
 - By hydroxylamine oxidation: $NH_2OH \rightarrow NOH \rightarrow NO \rightarrow N_2O$
 - By nitrite reduction: AOBs can use hydroxylamine, H₂, and NH₄⁺ as e⁻ donors for NO₂⁻ reduction

- Involves incorporation of P in the biomass produced in the treatment system and subsequent removal of the biomass as waste sludge
- Biomass of heterotrophic bacteria contains ~0.015 g P/g VSS
 - Insufficient to remove P from influent wastewater (only 10~20% of total)
- Use phosphorus accumulating organisms (PAOs) for enhanced biological phosphorus removal (EBPR)
- Reduced chemical costs and less sludge production compared to chemical precipitation

• Process description

- Place an anaerobic tank ahead of the aeration tank
 - Provide <u>selectivity</u> for growth of PAOs
- In the anaerobic tank, PAOs consume energy stored in the form of polyphosphates
 - The energy generated is used to convert volatile fatty acids into carbohydrate storage products (PHA)
- In the aerobic tank, PAOs consume COD & stored PAH for biomass growth
 - Use some of the energy for enhanced P uptake to store polyphosphates
- So:
 - Anaerobic tank: <u>PHA accumulation & P release</u>
 - Aerobic tank: <u>excessive P uptake & PHA utilization</u>
- PAOs form very dense floc with good settleability additional benefit

• Process occurring in the anaerobic zone

- Volatile fatty acids (VFAs) are produced by fermentation
- VFAs are assimilated by PAOs into PHAs by energy available from stored polyphosphates
 - Typical PHAs: poly-β-hydroxybutyrate (PHB) & polyhydroxyvalerate (PHV)
 - Some glycogen contained in the cell is also used

• Processes occurring in the aerobic/anoxic zone

- Stored PHA is metabolized to provide energy for cell growth
- Some glycogen is produced from PHA metabolism
- Soluble orthophosphate in solution in taken up by PAOs to form polyphosphates in the existing cells and the new cells
- Portion of the biomass is wasted \rightarrow P removal
- The process can occur in the anoxic zone as well $(NO_3^- \text{ or } NO_2^- \text{ as } e^- \text{ acceptors})$

• Environmental factors

- Competition with GAOs
- Glycogen accumulating organism (GAO): glycogen storage under aerobic condition & VFA uptake in the anaerobic tank to store PHA under anaerobic condition
- Higher GAO population results in reduced P removal efficiency
- Factors affecting the competition between PAOs & GAOs
 - pH > 7.0 favorable for PAO growth over GAOs (pH~7.5 optimum)
 - PAOs dominate GAOs below 15°C & above 30°C
 - Low aerobic tank SRT favorable for PAOs
 - Alternating VFA feed between acetate and propionate can eliminate GAOs

Key references

• Textbook sec 7-9, 7-10, 7-12, 7-13

Next class

- Practical applications of biological treatment (secondary wastewater treatment)
 - Secondary clarifier settling problems
 - Suspended growth processes for BOD removal & nitrification
 - Suspended growth processes for N & P removal
 - Attached growth processes, hybrid processes