Fundamentals of biological treatment III

Modeling suspended growth processes

- Use the mass balance technique
- Use the kinetic expressions that we have discussed
- We can set mass balance for two substances in the activated sludge system:
 - 1) Biomass mass balance

$$V\frac{dX_a}{dt} = 0 - [(Q - Q^w)X_a^e] - Q^wX_a^r + r_XV$$

2) Substrate mass balance

$$V\frac{dS}{dt} = QS^0 - QS + r_{su}V$$

Modeling suspended growth processes

Solving the two mass balance equations, we get:

$$X_a = \left(\frac{SRT}{\tau}\right) \left[\frac{Y(S^0 - S)}{1 + b(SRT)}\right]$$

$$S = \frac{K_s[1 + b(SRT)]}{SRT(Yk - b) - 1}$$

- The effluent substrate (=our target!) concentration is a function of SRT and growth kinetic parameters
- SRT is the only controllable variable
- The effluent substrate concentration is \underline{NOT} a function of influent concentration (but S^0 affects X)

Solids production

- Remember:
 - VSS = active biomass + α
 - TSS = active biomass + α + β
- Daily production of total sludge from the system
 - At steady state, the mixed liquor can be assumed as a homogeneous mixture of active biomass and other solids (→ same SRT applies to VSS and TSS!)

$$P_{X,VSS} = \frac{X_{VSS}V}{SRT}$$

$$P_{X,VSS} = \text{daily production of total sludge as VSS (g VSS/d)}$$

$$X_{VSS} = \text{total MLVSS concentration in aeration tank (g VSS/m}^3)$$

$$P_{X,TSS} = \frac{X_{TSS}V}{SRT}$$
 $P_{X,TSS} = daily production of total sludge as TSS (g TSS/d)$
 $X_{TSS} = total MLSS concentration in aeration tank (g TSS/m³)$

Modeling solids production

• Total MLVSS in the aeration tank, X_{VSS}

$$X_{VSS} = X_a + X_i$$

 $X_i = nbVSS$ concentration in aeration tank (g VSS/m³)

→ Additional mass balance needed for nbVSS

$$V\frac{dX_i}{dt} = QX_i^0 - \frac{X_iV}{SRT} + r_{X,i}V$$

 ${X_i}^0$ = nbVSS concentration in influent (g VSS/m³) $r_{X,i}$ = rate of nbVSS production from cell debris (g/m³-d)

At steady state:

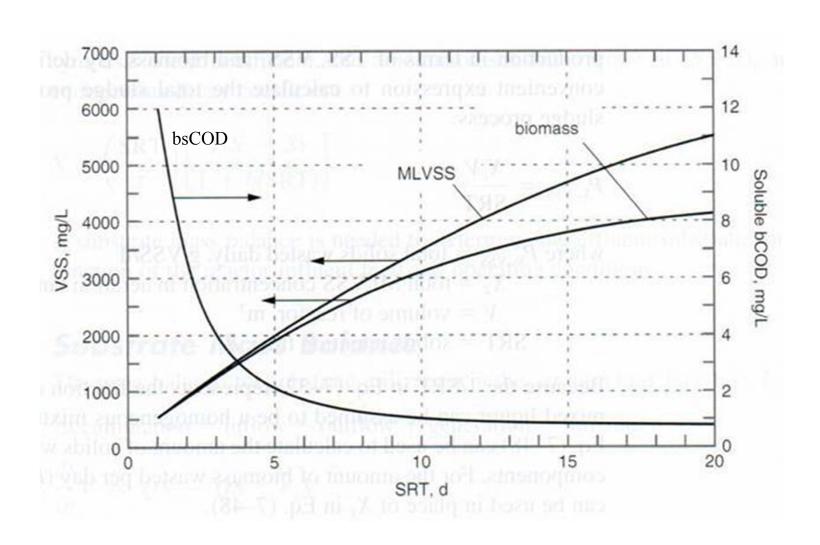
$$X_i = \frac{X_i^0(SRT)}{\tau} + (f_d)(b)(X_a)(SRT)$$

Modeling solids production

Therefore,

$$X_{VSS} = \left(\frac{SRT}{\tau}\right) \left[\frac{Y(S^0 - S)}{1 + b(SRT)}\right] + (f_d)(b)(X_a)(SRT) + \frac{X_i^0(SRT)}{\tau}$$

Active biomass


Cell debris

nbVSS in influent

The daily total VSS production (=wasted) rate, $P_{X,VSS}$ (g VSS/d):

$$P_{X,VSS} = \frac{QY(S^0 - S)}{1 + b(SRT)} + \frac{(f_d)(b)YQ(S^0 - S)SRT}{1 + b(SRT)} + QX_i^0$$
(A) (B) (C)

Effect of SRT on bsCOD, biomass, and MLVSS

Modeling solids production

The daily MLSS (total dry solids) wasted

Note: TSS = VSS + FSS (inorganics)

- Inorganic solids originate from influent and the biomass
- Biomass contains 10-15% inorganic solids by dry weight
- Use a VSS/TSS ratio of 0.85 for a typical biomass

$$P_{X,TSS} = \frac{(A)}{0.85} + \frac{(B)}{0.85} + C + Q(X_{TSS}^{0} - X_{VSS}^{0})$$

 $P_{X,TSS}$ = daily MLSSS produced per day (g TSS/d)

 X_{TSS}^{0} = influent wastewater TSS concentration (g/m³)

 X_{VSS}^{0} = influent wastewater VSS concentration (g/m³)

Observed yield in the system

Recall that the observed yield is:
 (Amount of solids produced) / (Amount of substrates removed)

Therefore, for the observed yield of MLVSS,

$$Y_{obs} = \frac{P_{X,VSS}}{Q(S^0 - S)} = \frac{Y}{1 + b(SRT)} + \frac{(f_d)(b)(Y)SRT}{1 + b(SRT)} + \frac{X_i^0}{(S^0 - S)}$$

Oxygen requirements

- Additional matter of interest: how much oxygen is needed (→ should be provided) to support the aerobic biodegradation?
- Recall that by degradation of substrates:
 - some portion of the biodegradable COD (bCOD) is combined with O₂ to be mineralized or converted to oxidized organic compounds
- Some O₂ is also consumed for endogenous respiration
- Consider the COD mass balance of the system:

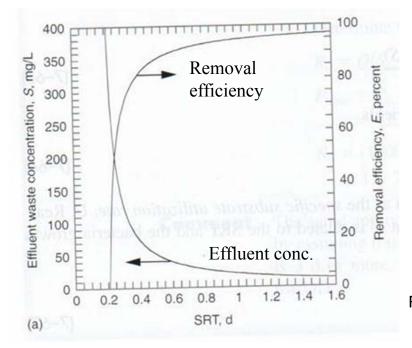
Oxygen used = (bCOD removed) - (COD of waste sludge)

$$R_o = Q(S_o - S) - 1.42P_{X,bio}$$

 R_o = daily oxygen requirement (g/d)

 $P_{X,bio}$ = biomass as VSS wasted per day, (A) + (B) (g/d)

Example question


Q: A complete-mix suspended growth activated sludge process with recycle is used to treat municipal wastewater after primary sedimentation. The characteristics of the primary effluent are: flow = $1000 \text{ m}^3/\text{d}$, bsCOD = 192 g/m^3 , nbVSS = 30 g/m^3 , and inert inorganics = 10 g/m^3 . The aeration tank MLVSS is 2500 g/m^3 . Using these data and the kinetics coefficients given below, design a system with a 6-d SRT and determine the following:

- 1) The effluent bsCOD concentration
- 2) Hydraulic retention time required
- Daily sludge production (in kg/d as VSS and TSS)
- Fraction of active biomass in the MLVSS
- 5) Observed solids yield (in g VSS/g bsCOD and g TSS/g bsCOD)
- 6) Oxygen requirement (in kg/d)

$$k = 12.5 g COD/g VSS - d$$
 $K_S = 10 g COD/m^3$ $Y = 0.40 g VSS/g COD$ $f_d = 0.15$ $b = 0.10 /d$ $Biomass VSS/TSS = 0.85$

Design & operating parameters

- SRT: key variable
 - When kinetic coefficients are fixed, the effluent concentration is solely a function of SRT
- Effluent concentration as a function of SRT

For CSTR with recycle

Design & operating parameters

- The minimum solids retention residence time, SRT_{min}
 - The SRT at which the cells are washed out from the system faster than they can reproduce

$$\frac{1}{SRT_{min}} = \frac{YkS^0}{K_S + S^0} - b$$

- In many situations, $K_s \ll S^0$, so:

$$\frac{1}{SRT_{min}} \approx Yk - b = \mu_m - b$$

Process safety factor, SF

$$SF = \frac{SRT_{des}}{SRT_{min}}$$
 $SRT_{des} = design SRT (d)$

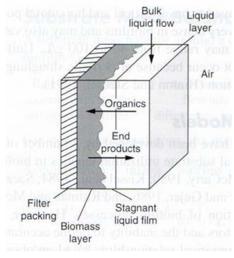
Design & operating parameters

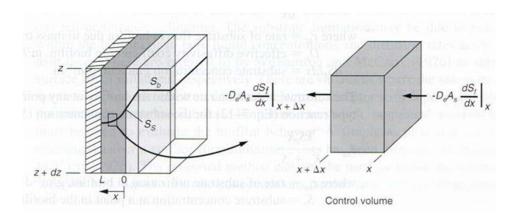
F/M ratio (food to microorganism ratio)

$$F/M = \frac{QS^0}{VX} = \frac{S^0}{\tau X}$$

F/M = food to microorganism ratio (g bsCOD/g VSS-d)

- High F/M \Rightarrow low steady-state SRT
- Volumetric organic loading rate
 - The amount of BOD or COD applied to the aeration tank volume per day


$$L_{org} = \frac{QS^0}{V \cdot (10^3 \, g/kg)}$$


 L_{org} = volumetric organic loading rate (kg bsCOD/m³-d)

Modeling attached growth processes

An additional process: diffusion

- Diffusion of:
 - Substrates, O₂, nutrients (from bulk liquid to biofilm)
 - Biodegradation products (from biofilm to bulk liquid)
- For modeling, assume stagnant liquid film on the biofilm surface (recall film theory!)
- Analysis quite complicated, still not fully developed

<Analysis of substrate concentration in idealized biofilm>

Aerobic oxidation – operation issues

- Major issue: settling at the secondary clarifier
 - Sludge bulking
 - Bulking sludge: sludge with poor settling characteristics
 - Bulking sludge development depends on aeration tank configuration, environmental factors, operating conditions, etc.
 - Sludge volume index (SVI): the volume occupied per g of settled sludge after 30 min of settling (SVI > 150 mL/g is considered as bulking sludge)

Foaming

 Related to the development of bacteria with hydrophobic cell surfaces that attach to air bubbles

Foam caused by Gordonia amarae accumulated on the surface of an aeration tank 16

Aerobic oxidation – operation issues

Environmental factors

- pH should be near neutral (pH ~ 6.0-9.0 OK)
- DO concentration of \sim 2.0 mg/L (generally OK if DO > 0.5 mg/L)
- Availability of nutrients for industrial wastewater
- Presence of toxic substances
 - Generally, heterotrophic, aerobic bacteria are better at tolerating toxic substances than microorganisms used for nitrification or methanogenesis