Sludge treatment and disposal

Sludge treatment

- Sources of solid waste from wastewater treatment
 - Bar racks & grit chamber
 - Inert, water can be easily removed
 - Generally not called as "sludge"
 - Truck directly to landfill after water removal
 - Primary and secondary treatment
 - Produces waste called "sludge"
 - High organic content → rapidly becomes anaerobic and putrefies
 - 3-8% solids for primary sludge & 0.5-2% solids for secondary sludge
 - Tertiary treatment: variable characteristics

Sludge treatment processes

- **Thickening**: separating as much as water possible from the raw sludge by gravity or flotation
- Stabilization: converting the organic solids to more inert forms
- Conditioning: treating the sludge with chemicals or heat so that the water can be readily separated
- Dewatering: separating water by vacuum, pressure, or drying
- Reduction: further reducing the solids and water when needed (ex: incineration)

Sludge treatment processes

Organize the processes as needed

Sludge disposal

- Land spreading: can use nutrients and water in the sludge, but pathogen & heavy metal problem
- Ocean disposal: simple & easy, but not environmentally-friendly, now prohibited in Korea
- Landfilling: simple & easy, but takes a lot of landfill space
- Composting: use sludge as a valuable resource but not well accepted by consumers

Anaerobic fermentation & oxidation

Anaerobic fermentation & oxidation

Applications

- Stabilization of waste sludge
- Treatment of high-strength organic wastes
- Pretreatment step for conventional biological treatment

Advantage

- Low biomass yield
- Energy production in the form of methane (of recent interest!)
 - WWTP -- ~2% of total energy cost in USA
 - Target on energy positive treatment of wastewater

Disadvantage

Effluent quality usually not as good as aerobic treatment

Anaerobic reactors

Pathway of anaerobic conversion of wastes

Steps of anaerobic conversion (1)

Hydrolysis

- Particulates ---- → Soluble molecules ---- → Monomers
- By extracellular enzymes

Acidogenesis (fermentation)

- Use: sugars, amino acids, fatty acids (both e- donor & acceptor)
- Produce: VFAs, CO₂, H₂

Acetogenesis

- Use: VFAs other than acetate
- Produce: acetate, H₂, CO₂

Steps of anaerobic conversion (2)

Methanogenesis

- By methanogens (belongs to domain <u>Archaea</u>)
- Two groups of methanogens
 - aceticlastic methanogens: <u>acetate → CH₄ + CO₂</u>
 - hydrogenotrophic methanogens: <u>H₂ + CO₂ → CH₄</u>
- In anaerobic digestion process, ~72% methane from acetic acid & ~28% from H₂ (→ gas production of ~65% CH₄ & ~35% CO₂)

Syntrophic relationship

- Methanogens acidogens & acetogens
 - Acidogens & acetogens: produce H₂, acetate, etc.
 - Methanogens: cleans up the acido/acetogenesis end products
 - Acetogens require relatively low H₂ partial pressure
- Often called as "Interspecies hydrogen transfer"

COD balance for anaerobic process

(COD utilized) = (Biomass COD) + (Methane COD)

- No e⁻ acceptor consumed!
- COD of methane = 64 g COD/mole CH_4 = 2.86 g COD/L CH_4 (@ 0°C, 1 atm)

COD balance for anaerobic process

Q: An anaerobic reactor, operated at 35°C, is used to process a wastewater stream with a flow of 3000 m³/d and a bCOD concentration of 5000 g/m³. At 95% bCOD removal and a net biomass yield of 0.04 g VSS/g COD, what is the amount of methane produced in m³/d?

Process kinetics

- Low yield coefficients
 - Low energy gain by chemical transformation
 - Fermentation: Y \sim 0.06 g VSS/g COD; b \sim 0.02 d⁻¹
 - Methanogenesis: Y ~ 0.03 g VSS/g COD; b ~ 0.008 d⁻¹
- Consider two steps:
 - Hydrolysis
 - Soluble substrate utilization for fermentation and methanogenesis
 - Methanogenesis the rate-limiting step
- High SRT is needed (around 40 d) due to slow degradation rate

Process stability

- Kinetics of VFA production is faster than utilization (methanogenesis)
- At steady state, sufficient methanogen population is established to maintain low VFA concentration (<200 g/m³) & pH≥7.0
- Unstable digester operation may develop under transient loading conditions (VFA production > utilization): VFA accumulation & pH drop
- Low pH leads to decline in methanogenic activity: process failure
- Methanogenic inhibition can also occur by acetate accumulation (acetate conc. $> 3000 \text{ g/m}^3$)

Microbial fuel cells

Fuel cell

- A device that converts the chemical energy from a fuel into electricity through an electrochemical reaction of hydrogen with oxygen or another oxidizing agent
- Each half reaction of the overall redox reaction occurs separately at each electrode
 - Oxidation half reaction (Anode)

ex)
$$\frac{1}{2}H_2 \rightarrow H^+ + e^-$$

Reduction half reaction (Cathode)

ex)
$$\frac{1}{4}O_2 + H^+ + e^- \rightarrow 2H_2O$$

- Electrons move through the electric circuit (electricity generated)
- H⁺ move through the electrolyte

Microbial Fuel Cell (MFC)

- A device that converts the chemical energy to electrical energy by the action of microorganisms
- The redox reaction is catalyzed by microorganisms

MFC – Anode compartment

Anode

- Should be conductive, biocompatible, chemically stable with substrate
- Stainless steel mesh, graphite plates or rods
- Bacteria live in the anode compartment and oxidize the substrate provided
- Anode compartment should be kept low in DO
- Substrates: usually organics carbohydrates, protein, VFAs, cellulose, and wastewater

MFC – Cathode compartment / EM

Cathode compartment

- Usually oxygen is used as an oxidizing agent
- Catalysts used for the oxygen reduction reaction: Pt most common

Exchange membrane

 Allows proton (H⁺) to flow from the anode compartment to cathode compartment

Soil-based MFCs

- Soil serves as
 - Anode compartment
 - Proton exchange membrane
- And soil provides
 - Microorganisms
 - Nutrients

Microbial electrolysis cell (MEC)

- Not an electricity-generating, but electricity-consuming process to produce hydrogen or methane as a fuel
- Hydrogen is produced by reducing protons at the cathode
 - The voltage required to reduce protons is provided by: substrate utilization by microorganisms at the anode + additional voltage supply from an outside source

MFC – pros & cons

Advantages

- Generation of energy out of bio-waste / organic matter
- Direct conversion of substrate energy to electricity
- No gas treatment required
- Aeration may not be needed (the cathode may be passively aerated)

Disadvantages

- Low power density: losses of electric potential significant
- High initial cost