
U Kang 1

Advanced Deep Learning

Deep Feedforward Networks

U Kang
Seoul National University

U Kang 2

In This Lecture

 Overview of deep feedforward networks

 Cost function

 Output units

 Hidden units

 Architecture design

U Kang 3

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models

 Also called feedforward neural networks or multi-layer
perceptrons (MLP)

 Goal: approximate some function f*

 E.g., a classifier y = f*(x) maps an input x to a category y

 A feedforward network defines a mapping 𝑦 =
𝑓(𝑥; 𝜃) and learns the value of 𝜃

U Kang 4

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models

 These models are called feedforward because
information flows through the function from x to f to
output y

 These models are called networks because they are
typically represented by composing together many
different functions

 E.g., three functions 𝑓(1), 𝑓(2), 𝑓(3) connected in a chain to

form 𝑓 𝑥 = 𝑓 3 (𝑓 2 (𝑓 1 (𝑥)))

output

layer
first

layer

second

layer

input

layer

U Kang 5

Learning XOR

 XOR function: an operation on two binary values
 XOR outputs 1 only when exactly one of the two values is 1

U Kang 6

Learning XOR

 Our model provides 𝑦 = 𝑓(𝑥; 𝜃), and our learning algorithm
learns 𝜃 such that 𝑓 outputs the same value as the target XOR
function 𝑓*
 Evaluation will be performed on four points: X={(0,0), (0,1), (1,0), (1,1)}

 MSE loss function: 𝐽 𝜃 =
1

4
σ𝑥∈𝑋(𝑓

∗ 𝑥 − 𝑓 𝑥;𝜃)2

 First model: 𝑓 𝑥;𝑤, 𝑏 = 𝑥𝑇𝑤 + 𝑏
 Solving the normal equation, we obtain w = 0 and b = ½

 That is, it outputs 0.5 everywhere

 Linear models always fail for XOR!

U Kang 7

Feedforward Network for XOR

 Feedforward network with one hidden layer with two hidden
units

 The vector of hidden units are computed by 𝒉 = 𝑓(1) 𝒙;𝑾, 𝒄

 The output unit is computed by 𝑦 = 𝑓(2) 𝒉;𝒘, 𝒃

 The complete model is 𝑓 𝒙;𝑾, 𝒄,𝒘, 𝒃 = 𝑓 2 (𝑓 1 𝒙)

U Kang 8

Feedforward Network for XOR

 Assume we use linear regression model for 𝑓(2)

 I.e., 𝑓 2 𝒉 = 𝒉𝑻𝒘

 What function should 𝑓(1) compute?

 What if 𝑓(1) is linear?

U Kang 9

Feedforward Network for XOR

 We need a non-linear function to describe features

 Most neural networks do so using an affine transformation by
a fixed, nonlinear function called an activation function
 𝒉 = 𝑔(𝑾𝑇𝒙 + 𝒄)

 𝑔 is typically chosen to be a function applied elementwise with
ℎ𝑖 = 𝑔(𝒙𝑇𝑾:,𝑖 + 𝑐𝑖)

 The default activation function is rectified linear unit or ReLU:
g(z) = max{0,z}

U Kang 10

Feedforward Network for XOR

 Feedforward network with ReLU
 𝑓 𝒙;𝑾, 𝒄,𝒘, 𝒃 = 𝒘𝑇max 0,𝑾𝑇𝒙 + 𝒄 + 𝑏

 Solution to the XOR problem

 𝑊 =
1 1
1 1

, 𝑐 = [0 − 1]𝑇 , 𝑤 = [1 − 2]𝑇 , 𝑏 = 0

 From input to output

 𝑿 =

0
0

0
1

1
1

0
1

, 𝑿𝑾 =

0
1

0
1

1
2

1
2

, adding 𝒄 →

0
1

−1
0

1
2

0
1

 Applying ReLU →

0
1

0
0

1
2

0
1

, multiplying by the weight vector 𝒘 →

0
1
1
0

U Kang 11

Solving XOR

U Kang 12

Gradient-Based Learning

 Neural networks are trained by using iterative,
gradient-based optimizers
 The objective function is non-convex

 These optimizers find a sufficiently low value, rather than
global minimum

 Two important components in gradient-based
learning
 Cost functions

 Output units

U Kang 13

Cost Functions

 In most cases, our model defines 𝑝(𝑦|𝑥; 𝜃) and we use
the principle of maximum likelihood

 I.e., minimize cross-entropy between the training data and the
model’s prediction

 𝐽 𝜃 = − 𝐸𝑥,𝑦~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥

 If 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥 = 𝑁(𝑦; 𝑓 𝑥; 𝜃 , 𝐼), then we recover the mean

squared error cost: 𝐽 𝜃 =
1

2
𝐸𝑥,𝑦~ ො𝑝𝑑𝑎𝑡𝑎| 𝑦 − 𝑓 𝑥; 𝜃 |2

 The total cost function often is combined with a regularization
term
 E.g., weight decay parameter for linear regression

U Kang 14

Maximum Likelihood Estimation

 Consider a set of m examples 𝑋 = {𝑥(1), … , 𝑥(𝑚)} drawn from
the true but unknown data generating distribution 𝑝𝑑𝑎𝑡𝑎(𝑥)

 Let 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃) be a parametric family of our model
distribution

 The maximum likelihood estimator for 𝜃 is defined as

 𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑝𝑚𝑜𝑑𝑒𝑙 𝑋; 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ς𝑖=1
𝑚 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥

(𝑖); 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 σ𝑖=1
𝑚 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥

(𝑖); 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝜃

where Ƹ𝑝𝑑𝑎𝑡𝑎 is the empirical distribution defined by the training data

 E.g., estimating mean of a Gaussian

U Kang 15

Maximum Likelihood Estimation

 The maximum likelihood estimator (MLE) for 𝜃 is defined as

 𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝜃

 MLE is equivalent to minimizing the dissimilarity between the
empirical distribution Ƹ𝑝𝑑𝑎𝑡𝑎 and the model distribution in terms
of KL divergence

 𝐷𝐾𝐿(Ƹ𝑝𝑑𝑎𝑡𝑎| 𝑝𝑚𝑜𝑑𝑒𝑙 = 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log Ƹ𝑝𝑑𝑎𝑡𝑎(𝑥) − log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

 Minimizing the above KL divergence by training the model (finding the
best parameters) is equivalent to minimizing −𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

 Note that minimizing DKL(P||Q) with regard to Q is equivalent to
minimizing the cross entropy H(P,Q) with regard to Q
 Thus, minimizing cross entropy is equal to finding MLE

 Maximum likelihood is an attempt to make the model
distribution match the empirical distribution Ƹ𝑝𝑑𝑎𝑡𝑎
 Ideally, we would like to match 𝑝𝑑𝑎𝑡𝑎, but we do not really know it

U Kang 16

Output Units

 In most cases, the cost function is the cross-entropy
between the data distribution and the model
distribution: 𝐽 𝜃 = − 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥

 The choice of how to represent the output then
determines the form of the cross-entropy function

 We assume the feedforward network provides a set of
hidden features defined by ℎ = 𝑓(𝑥; 𝜃)

 Our loss function is interpreted as − log 𝑝(𝑦; ℎ)

 ℎ provides the parameters for distribution of 𝑦

 I.e., our learning algorithm learns 𝜃 so that
𝑝(𝑦; 𝑓 𝑥; 𝜃) is maximized

U Kang 17

Linear Units for Gaussian Output
Distributions

 The output vector 𝒚 contains real numbers of any range

 Given features 𝒉, a layer of linear output units
produces a vector ෝ𝒚 = 𝑾𝑇𝒉 + 𝒃

 Linear output layers are often used to produce the
mean of a conditional Gaussian distribution

 𝑝 𝒚 𝒙 = 𝑁(𝒚; ෝ𝒚, 𝑰)

 Maximizing the log-likelihood is equivalent to minimizing the
mean squared error

U Kang 18

Sigmoid Units for Bernoulli Output
Distributions

 The output value y contains 1 or 0

 Use sigmoid function to output the probability in [0,1]

 Given features 𝒉, a layer of sigmoid output units produces a
number ො𝑦 = 𝜎(𝒘𝑇𝒉 + 𝑏)

 The loss function for maximum likelihood learning of a Bernoulli
parameterized by a sigmoid is

 𝐽 𝜃 = − log𝑃 𝑦 𝑥 = − log𝜎 2𝑦 − 1 𝑧 = 𝜁(1 − 2𝑦 𝑧)

where 𝑧 = 𝒘𝑇𝒉 + 𝑏 and 𝜁 𝑥 = log(1 + exp 𝑥)

 I.e. our learning algorithm learns parameters to maximize

𝑝 𝑦; 𝑓 𝑥; 𝜃 = ቐ
𝜎 𝒘𝑇𝒉 + 𝑏 𝑖𝑓 𝑦 = 1

1 − 𝜎 𝒘𝑇𝒉 + 𝑏 𝑖𝑓 𝑦 = 0

Fact:

1 − 𝜎 𝑥 = 𝜎 −𝑥
log𝜎(𝑥) = −𝜁 −𝑥

U Kang 19

Softmax Units for Multinoulli Output
Distributions

 Useful to represent a categorical distribution (= a probability

distribution over a discrete variable with n possible values)

 The output vector 𝒚 contains n probabilities

 Softmax is a generalization of sigmoid for n possible values:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)
, where 𝒛 ∈ 𝑅𝑛 and 𝑖 ∈ 𝑍𝑛 𝑖𝑛 [0, 𝑛 − 1]

 Given features 𝒉, a layer of softmax output units produces a
vector ෝ𝒚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑇𝒉 + 𝑏)

 The loss function is 𝐽 𝜃 = − log 𝑃 𝑦 𝑥 = − log 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 𝑦

where 𝑧 = 𝑾𝑇𝒉 + 𝑏

U Kang 20

Hidden Units

 How to choose the type of hidden unit to use in the
hidden layers of the model?

 Active area of research; not many theoretical results

 It is usually impossible to predict in advance which
types will work best: the design process consists of
trial and error

U Kang 21

Non-differentiable Hidden Units

 Some hidden units are not actually differentiable at all input
points
 E.g., ReLU function g(z) = max{0, z} is not differentiable at z = 0

 However, gradient descent still performs well enough
 Hidden units that are not differentiable are usually non-differentiable at

only a small number of points

 Neural network training algorithms do not usually arrive at a local
minimum of the cost function, but merely reduce its errors significantly

 We don’t expect training to reach a point where gradient is 0; thus it is
acceptable for the minima of the cost function to correspond to points
with undefined gradients

 Software implementations of neural network training usually return one of
the one-sided derivatives
 Justification: the argument of g(0) of ReLU may not be true 0 but a very small number

rounded to 0

U Kang 22

Hidden Units

 Rectified linear units (ReLU)
 g(z) = max{0,z}

 Advantage: simple and effective (no vanishing gradient problem)

 Disadvantage: cannot learn via gradient-based methods on examples for
which their activation is 0

 ReLU are typically used on top of affine transformation: 𝒉 = 𝑔(𝑾𝑇𝒙 + 𝒃)

 Generalizations of ReLU
 Generalizations using non-zero slope 𝛼𝑖 when 𝑧𝑖 < 0: ℎ𝑖 = max 0, 𝑧𝑖 +

𝛼𝑖min(0, 𝑧𝑖)
 Absolute value rectification: use 𝛼𝑖 = −1 to obtain g(z)=|z|

 Leaky ReLU: fixes 𝛼𝑖 to a small value like 0.01

 PReLU (parametric ReLU) treats 𝛼𝑖 as a learnable parameter

U Kang 23

Hidden Units

 Logistic sigmoid and hyperbolic tangent
 Famous hidden units before the introduction of ReLU

 Sigmoid function 𝜎(𝑧)

 Hyperbolic tangent function tanh 𝑧 = 2𝜎 2𝑧 − 1

 Problems: saturate to a high value when z is very positive, and to a low
value when z is very negative
 Gradient is close to 0 when they saturate: only strongly sensitive to their input when z is

near 0

𝜎(𝑧) 𝑡𝑎𝑛ℎ(𝑧)

U Kang 24

Architecture Design

 Architecture refers to the overall structure of the network: how
many units it should have and how these units should be
connected to each other

U Kang 25

Architecture Design

 Most neural networks are organized into groups of units called
layers; these layers are typically arranged in a chain structure

 The first layer is given by 𝒉(1) = 𝑔 1 (𝑾 1 𝑇𝒙 + 𝒃(1))

 The second layer is given by 𝒉(2) = 𝑔 2 (𝑾 2 𝑇𝒙 + 𝒃(2))

 In these chain-based architectures, the main architectural considerations
are to choose the depth of the network and the width of each layer

 A network with even one hidden layer is sufficient to fit the training set

 Deeper networks often use far fewer units per layer and far fewer
parameters, and often generalize well, but also often harder to optimize

 The ideal network architecture for a task must be found via
experimentation guided by monitoring the validation set error

U Kang 26

Architecture Design

 Universal approximation theorem (Hornik et al. 1989, Cybenko
1989)
 A feedforward network with a linear output layer and at least one hidden

layer with any “squashing” activation function (e.g. logistic sigmoid) can
approximate any continuous function with any desired non-zero amount
of error

 This means that regardless of what function we are trying to learn, a large
MLP will be able to represent this function

 However, we are not guaranteed that the training algorithm will be able
to learn that function
 The optimization algorithm may not be able to find the parameters that correspond to

the desired function

 The training algorithm might choose the wrong function due to overfitting

U Kang 27

Exponential Advantage of Depth

 Piecewise linear networks (which can be obtained from rectifier
nonlinearities) can represent functions with a number of regions
that is exponential in the depth of the network

 Using deeper models can reduce the number of units required to
represent the desired function, and can reduce the
generalization error

 Empirical results for transcribing multi-digit numbers from
photographs of addresses

U Kang 28

Shallow Models Overfit More

U Kang 29

What You Need to Know

 Deep feedforward networks: enable non-linear
mapping inputs to outputs

 Cost function: cross-entropy

 Output units: linear, sigmoid, softmax

 Hidden units: ReLU and its variants

 Architecture design: deep architecture is preferred
despite the universal approximation theorem

U Kang 30

Questions?

