

Advanced Deep Learning

Deep Feedforward Networks

U Kang Seoul National University

U Kang

In This Lecture

- Overview of deep feedforward networks
 - Cost function
 - Output units
 - Hidden units
 - Architecture design

Deep FeedForwad Networks

- Deep feedforward networks are the key deep learning models
 - Also called feedforward neural networks or multi-layer perceptrons (MLP)
 - Goal: approximate some function f*
 - E.g., a classifier y = f*(x) maps an input x to a category y
 - A feedforward network defines a mapping $y = f(x; \theta)$ and learns the value of θ

Deep FeedForwad Networks

- Deep feedforward networks are the key deep learning models
 - These models are called feedforward because information flows through the function from x to f to output y
 - These models are called networks because they are typically represented by composing together many different functions

• E.g., three functions
$$f^{(1)}, f^{(2)}, f^{(3)}$$
 connected in a chain to
form $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 $\checkmark \uparrow \uparrow \uparrow$
output second first input
layer layer layer layer
UKang

Learning XOR

- XOR function: an operation on two binary values
 - □ XOR outputs 1 only when exactly one of the two values is 1

Learning XOR

- Our model provides $y = f(x; \theta)$, and our learning algorithm learns θ such that f outputs the same value as the target XOR function f^*
 - Evaluation will be performed on four points: $X = \{(0,0), (0,1), (1,0), (1,1)\}$
 - MSE loss function: $J(\theta) = \frac{1}{4} \sum_{x \in X} (f^*(x) f(x; \theta))^2$
- First model: $f(x; w, b) = x^T w + b$
 - Solving the normal equation, we obtain w = 0 and $b = \frac{1}{2}$
 - □ That is, it outputs 0.5 everywhere
 - Linear models always fail for XOR!

- Feedforward network with one hidden layer with two hidden units
 - The vector of hidden units are computed by $h = f^{(1)}(x; W, c)$
 - The output unit is computed by $y = f^{(2)}(h; w, b)$
 - The complete model is $f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, \mathbf{b}) = f^{(2)}(f^{(1)}(\mathbf{x}))$

- Assume we use linear regression model for $f^{(2)}$
 - □ I.e., $f^{(2)}(h) = h^T w$
- What function should f⁽¹⁾ compute?
 - What if $f^{(1)}$ is linear?

- We need a non-linear function to describe features
- Most neural networks do so using an affine transformation by a fixed, nonlinear function called an activation function
 h = g(W^Tx + c)
 - □ *g* is typically chosen to be a function applied elementwise with $h_i = g(\mathbf{x}^T \mathbf{W}_{:,i} + c_i)$
 - The default activation function is rectified linear unit or ReLU: g(z) = max{0,z}

Feedforward network with ReLU

 $\Box f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, \boldsymbol{b}) = \boldsymbol{w}^T \max\{0, \boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{c}\} + b$

Solution to the XOR problem

•
$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, c = \begin{bmatrix} 0 & -1 \end{bmatrix}^T, w = \begin{bmatrix} 1 & -2 \end{bmatrix}^T, b = 0$$

From input to output

$$X = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}, XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}, \text{ adding } \mathbf{c} \to \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$$
$$Prior Applying ReLU \to \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}, \text{ multiplying by the weight vector } \mathbf{w} \to \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Solving XOR

Gradient-Based Learning

- Neural networks are trained by using iterative, gradient-based optimizers
 - The objective function is non-convex
 - These optimizers find a sufficiently low value, rather than global minimum

- Two important components in gradient-based learning
 - Cost functions
 - Output units

Cost Functions

- In most cases, our model defines p(y|x; θ) and we use the principle of maximum likelihood
 - I.e., minimize cross-entropy between the training data and the model's prediction

$$\Box \ J(\theta) = -E_{x,y \sim \hat{p}_{data}} \log p_{model}(y|x)$$

- □ If $p_{model}(y|x) = N(y; f(x; \theta), I)$, then we recover the mean squared error cost: $J(\theta) = \frac{1}{2}E_{x,y\sim\hat{p}_{data}}||y f(x; \theta)||^2$
- The total cost function often is combined with a regularization term
 - E.g., weight decay parameter for linear regression

Maximum Likelihood Estimation

- Consider a set of m examples $X = \{x^{(1)}, \dots, x^{(m)}\}$ drawn from the true but unknown data generating distribution $p_{data}(x)$
- Let p_{model}(x; θ) be a parametric family of our model distribution
- The maximum likelihood estimator for θ is defined as

$$\begin{array}{ll} & \theta_{ML} = argmax_{\theta} \ p_{model}(X;\theta) \\ & = argmax_{\theta} \ \prod_{i=1}^{m} p_{model}(x^{(i)};\theta) \\ & = argmax_{\theta} \ \sum_{i=1}^{m} \log p_{model}(x^{(i)};\theta) \\ & = argmax_{\theta} \ E_{x \sim \hat{p}_{data}} \log p_{model}(x;\theta) \end{array}$$

where \hat{p}_{data} is the empirical distribution defined by the training data

E.g., estimating mean of a Gaussian

Maximum Likelihood Estimation

• The maximum likelihood estimator (MLE) for θ is defined as

 $\Box \quad \theta_{ML} = argmax_{\theta} E_{x \sim \hat{p}_{data}} \log p_{model}(x; \theta)$

- MLE is equivalent to minimizing the dissimilarity between the empirical distribution \hat{p}_{data} and the model distribution in terms of KL divergence
 - $\square D_{KL}(\hat{p}_{data}||p_{model}) = E_{x \sim \hat{p}_{data}}[\log \hat{p}_{data}(x) \log p_{model}(x)]$
 - Minimizing the above KL divergence by training the model (finding the best parameters) is equivalent to minimizing $-E_{x\sim \hat{p}_{data}}[\log p_{model}(x)]$
- Note that minimizing D_{KL}(P||Q) with regard to Q is equivalent to minimizing the cross entropy H(P,Q) with regard to Q
 - Thus, minimizing cross entropy is equal to finding MLE
- Maximum likelihood is an attempt to make the model distribution match the empirical distribution \hat{p}_{data}
 - Ideally, we would like to match p_{data} , but we do not really know it

Output Units

- In most cases, the cost function is the cross-entropy between the data distribution and the model distribution: $J(\theta) = -E_{x \sim \hat{p}_{data}} \log p_{model}(y|x)$
- The choice of how to represent the output then determines the form of the cross-entropy function
- We assume the feedforward network provides a set of hidden features defined by $h = f(x; \theta)$
- Our loss function is interpreted as $-\log p(y; h)$
 - \square *h* provides the parameters for distribution of *y*
 - I.e., our learning algorithm learns θ so that
 p(y; f(x; θ)) is maximized

Linear Units for Gaussian Output Distributions

- The output vector y contains real numbers of any range
- Given features *h*, a layer of linear output units produces a vector $\widehat{y} = W^T h + b$
- Linear output layers are often used to produce the mean of a conditional Gaussian distribution
 - $\square p(\boldsymbol{y}|\boldsymbol{x}) = N(\boldsymbol{y}; \boldsymbol{\hat{y}}, \boldsymbol{I})$
 - Maximizing the log-likelihood is equivalent to minimizing the mean squared error

Sigmoid Units for Bernoulli Output Distributions

- The output value y contains 1 or 0
- Use sigmoid function to output the probability in [0,1]
- Given features h, a layer of sigmoid output units produces a number $\hat{y} = \sigma(w^T h + b)$
- The loss function for maximum likelihood learning of a Bernoulli parameterized by a sigmoid is

$$I(\theta) = -\log P(y|x) = -\log \sigma ((2y-1)z) = \zeta ((1-2y)z)$$

where $z = w^T h + b$ and $\zeta(x) = \log(1 + \exp(x))$

I.e. our learning algorithm learns parameters to maximize

$$p(y; f(x; \theta)) = \begin{cases} \sigma(\mathbf{w}^T \mathbf{h} + b) & \text{if } y = 1 \\ 1 - \sigma(\mathbf{w}^T \mathbf{h} + b) & \text{if } y = 0 \end{cases}$$
Fact:
$$1 - \sigma(x) = \sigma(-x)$$

$$\log \sigma(x) = -\zeta(-x)$$

Softmax Units for Multinoulli Output Distributions

- Useful to represent a categorical distribution (= a probability distribution over a discrete variable with n possible values)
- The output vector y contains n probabilities
- Softmax is a generalization of sigmoid for n possible values: $softmax(\mathbf{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$, where $\mathbf{z} \in \mathbb{R}^n$ and $i \in \mathbb{Z}^n$ in [0, n - 1]
- Given features h, a layer of softmax output units produces a vector $\hat{y} = softmax(W^T h + b)$
- The loss function is $J(\theta) = -\log P(y|x) = -\log softmax(z)_y$ where $z = W^T h + b$

Hidden Units

- How to choose the type of hidden unit to use in the hidden layers of the model?
- Active area of research; not many theoretical results
- It is usually impossible to predict in advance which types will work best: the design process consists of trial and error

Non-differentiable Hidden Units

- Some hidden units are not actually differentiable at all input points
 - E.g., ReLU function g(z) = max{0, z} is not differentiable at z = 0
- However, gradient descent still performs well enough
 - Hidden units that are not differentiable are usually non-differentiable at only a small number of points
 - Neural network training algorithms do not usually arrive at a local minimum of the cost function, but merely reduce its errors significantly
 - We don't expect training to reach a point where gradient is 0; thus it is acceptable for the minima of the cost function to correspond to points with undefined gradients
 - Software implementations of neural network training usually return one of the one-sided derivatives
 - Justification: the argument of g(0) of ReLU may not be true 0 but a very small number rounded to 0

Hidden Units

- Rectified linear units (ReLU)
 - $\Box \quad g(z) = \max\{0, z\}$
 - Advantage: simple and effective (no vanishing gradient problem)
 - Disadvantage: cannot learn via gradient-based methods on examples for which their activation is 0
 - ReLU are typically used on top of affine transformation: $h = g(W^T x + b)$
- Generalizations of ReLU
 - Generalizations using non-zero slope α_i when $z_i < 0$: $h_i = \max(0, z_i) + \alpha_i \min(0, z_i)$
 - Absolute value rectification: use $\alpha_i = -1$ to obtain g(z)=|z|
 - Leaky ReLU: fixes α_i to a small value like 0.01
 - PReLU (parametric ReLU) treats α_i as a learnable parameter

Hidden Units

- Logistic sigmoid and hyperbolic tangent
 - Famous hidden units before the introduction of ReLU
 - Sigmoid function $\sigma(z)$
 - Hyperbolic tangent function $tanh(z) = 2\sigma(2z) 1$

- Problems: saturate to a high value when z is very positive, and to a low value when z is very negative
 - Gradient is close to 0 when they saturate: only strongly sensitive to their input when z is near 0

Architecture Design

 Architecture refers to the overall structure of the network: how many units it should have and how these units should be connected to each other

24

Architecture Design

- Most neural networks are organized into groups of units called layers; these layers are typically arranged in a chain structure
 - The first layer is given by $\boldsymbol{h}^{(1)} = g^{(1)} (\boldsymbol{W}^{(1)T} \boldsymbol{x} + \boldsymbol{b}^{(1)})$
 - The second layer is given by $\boldsymbol{h}^{(2)} = g^{(2)} (\boldsymbol{W}^{(2)T} \boldsymbol{x} + \boldsymbol{b}^{(2)})$
 - In these chain-based architectures, the main architectural considerations are to choose the depth of the network and the width of each layer
 - A network with even one hidden layer is sufficient to fit the training set
 - Deeper networks often use far fewer units per layer and far fewer parameters, and often generalize well, but also often harder to optimize
 - The ideal network architecture for a task must be found via experimentation guided by monitoring the validation set error

Architecture Design

- Universal approximation theorem (Hornik et al. 1989, Cybenko 1989)
 - A feedforward network with a linear output layer and at least one hidden layer with any "squashing" activation function (e.g. logistic sigmoid) can approximate any continuous function with any desired non-zero amount of error
 - This means that regardless of what function we are trying to learn, a large MLP will be able to **represent** this function
 - However, we are not guaranteed that the training algorithm will be able to learn that function
 - The optimization algorithm may not be able to find the parameters that correspond to the desired function
 - The training algorithm might choose the wrong function due to overfitting

Exponential Advantage of Depth

- Piecewise linear networks (which can be obtained from rectifier nonlinearities) can represent functions with a number of regions that is exponential in the depth of the network
- Using deeper models can reduce the number of units required to represent the desired function, and can reduce the generalization error
- Empirical results for transcribing multi-digit numbers from photographs of addresses

Shallow Models Overfit More

What You Need to Know

- Deep feedforward networks: enable non-linear mapping inputs to outputs
 - Cost function: cross-entropy
 - Output units: linear, sigmoid, softmax
 - Hidden units: ReLU and its variants
 - Architecture design: deep architecture is preferred despite the universal approximation theorem

Questions?