
U Kang 1

Advanced Deep Learning

Deep Feedforward Networks

U Kang
Seoul National University

U Kang 2

In This Lecture

 Overview of deep feedforward networks

 Cost function

 Output units

 Hidden units

 Architecture design

U Kang 3

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models

 Also called feedforward neural networks or multi-layer
perceptrons (MLP)

 Goal: approximate some function f*

 E.g., a classifier y = f*(x) maps an input x to a category y

 A feedforward network defines a mapping 𝑦 =
𝑓(𝑥; 𝜃) and learns the value of 𝜃

U Kang 4

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models

 These models are called feedforward because
information flows through the function from x to f to
output y

 These models are called networks because they are
typically represented by composing together many
different functions

 E.g., three functions 𝑓(1), 𝑓(2), 𝑓(3) connected in a chain to

form 𝑓 𝑥 = 𝑓 3 (𝑓 2 (𝑓 1 (𝑥)))

output

layer
first

layer

second

layer

input

layer

U Kang 5

Learning XOR

 XOR function: an operation on two binary values
 XOR outputs 1 only when exactly one of the two values is 1

U Kang 6

Learning XOR

 Our model provides 𝑦 = 𝑓(𝑥; 𝜃), and our learning algorithm
learns 𝜃 such that 𝑓 outputs the same value as the target XOR
function 𝑓*
 Evaluation will be performed on four points: X={(0,0), (0,1), (1,0), (1,1)}

 MSE loss function: 𝐽 𝜃 =
1

4
σ𝑥∈𝑋(𝑓

∗ 𝑥 − 𝑓 𝑥;𝜃)2

 First model: 𝑓 𝑥;𝑤, 𝑏 = 𝑥𝑇𝑤 + 𝑏
 Solving the normal equation, we obtain w = 0 and b = ½

 That is, it outputs 0.5 everywhere

 Linear models always fail for XOR!

U Kang 7

Feedforward Network for XOR

 Feedforward network with one hidden layer with two hidden
units

 The vector of hidden units are computed by 𝒉 = 𝑓(1) 𝒙;𝑾, 𝒄

 The output unit is computed by 𝑦 = 𝑓(2) 𝒉;𝒘, 𝒃

 The complete model is 𝑓 𝒙;𝑾, 𝒄,𝒘, 𝒃 = 𝑓 2 (𝑓 1 𝒙)

U Kang 8

Feedforward Network for XOR

 Assume we use linear regression model for 𝑓(2)

 I.e., 𝑓 2 𝒉 = 𝒉𝑻𝒘

 What function should 𝑓(1) compute?

 What if 𝑓(1) is linear?

U Kang 9

Feedforward Network for XOR

 We need a non-linear function to describe features

 Most neural networks do so using an affine transformation by
a fixed, nonlinear function called an activation function
 𝒉 = 𝑔(𝑾𝑇𝒙 + 𝒄)

 𝑔 is typically chosen to be a function applied elementwise with
ℎ𝑖 = 𝑔(𝒙𝑇𝑾:,𝑖 + 𝑐𝑖)

 The default activation function is rectified linear unit or ReLU:
g(z) = max{0,z}

U Kang 10

Feedforward Network for XOR

 Feedforward network with ReLU
 𝑓 𝒙;𝑾, 𝒄,𝒘, 𝒃 = 𝒘𝑇max 0,𝑾𝑇𝒙 + 𝒄 + 𝑏

 Solution to the XOR problem

 𝑊 =
1 1
1 1

, 𝑐 = [0 − 1]𝑇 , 𝑤 = [1 − 2]𝑇 , 𝑏 = 0

 From input to output

 𝑿 =

0
0

0
1

1
1

0
1

, 𝑿𝑾 =

0
1

0
1

1
2

1
2

, adding 𝒄 →

0
1

−1
0

1
2

0
1

 Applying ReLU →

0
1

0
0

1
2

0
1

, multiplying by the weight vector 𝒘 →

0
1
1
0

U Kang 11

Solving XOR

U Kang 12

Gradient-Based Learning

 Neural networks are trained by using iterative,
gradient-based optimizers
 The objective function is non-convex

 These optimizers find a sufficiently low value, rather than
global minimum

 Two important components in gradient-based
learning
 Cost functions

 Output units

U Kang 13

Cost Functions

 In most cases, our model defines 𝑝(𝑦|𝑥; 𝜃) and we use
the principle of maximum likelihood

 I.e., minimize cross-entropy between the training data and the
model’s prediction

 𝐽 𝜃 = − 𝐸𝑥,𝑦~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥

 If 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥 = 𝑁(𝑦; 𝑓 𝑥; 𝜃 , 𝐼), then we recover the mean

squared error cost: 𝐽 𝜃 =
1

2
𝐸𝑥,𝑦~ ො𝑝𝑑𝑎𝑡𝑎| 𝑦 − 𝑓 𝑥; 𝜃 |2

 The total cost function often is combined with a regularization
term
 E.g., weight decay parameter for linear regression

U Kang 14

Maximum Likelihood Estimation

 Consider a set of m examples 𝑋 = {𝑥(1), … , 𝑥(𝑚)} drawn from
the true but unknown data generating distribution 𝑝𝑑𝑎𝑡𝑎(𝑥)

 Let 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃) be a parametric family of our model
distribution

 The maximum likelihood estimator for 𝜃 is defined as

 𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑝𝑚𝑜𝑑𝑒𝑙 𝑋; 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ς𝑖=1
𝑚 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥

(𝑖); 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 σ𝑖=1
𝑚 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥

(𝑖); 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝜃

where Ƹ𝑝𝑑𝑎𝑡𝑎 is the empirical distribution defined by the training data

 E.g., estimating mean of a Gaussian

U Kang 15

Maximum Likelihood Estimation

 The maximum likelihood estimator (MLE) for 𝜃 is defined as

 𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝜃

 MLE is equivalent to minimizing the dissimilarity between the
empirical distribution Ƹ𝑝𝑑𝑎𝑡𝑎 and the model distribution in terms
of KL divergence

 𝐷𝐾𝐿(Ƹ𝑝𝑑𝑎𝑡𝑎| 𝑝𝑚𝑜𝑑𝑒𝑙 = 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log Ƹ𝑝𝑑𝑎𝑡𝑎(𝑥) − log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

 Minimizing the above KL divergence by training the model (finding the
best parameters) is equivalent to minimizing −𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

 Note that minimizing DKL(P||Q) with regard to Q is equivalent to
minimizing the cross entropy H(P,Q) with regard to Q
 Thus, minimizing cross entropy is equal to finding MLE

 Maximum likelihood is an attempt to make the model
distribution match the empirical distribution Ƹ𝑝𝑑𝑎𝑡𝑎
 Ideally, we would like to match 𝑝𝑑𝑎𝑡𝑎, but we do not really know it

U Kang 16

Output Units

 In most cases, the cost function is the cross-entropy
between the data distribution and the model
distribution: 𝐽 𝜃 = − 𝐸𝑥~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥

 The choice of how to represent the output then
determines the form of the cross-entropy function

 We assume the feedforward network provides a set of
hidden features defined by ℎ = 𝑓(𝑥; 𝜃)

 Our loss function is interpreted as − log 𝑝(𝑦; ℎ)

 ℎ provides the parameters for distribution of 𝑦

 I.e., our learning algorithm learns 𝜃 so that
𝑝(𝑦; 𝑓 𝑥; 𝜃) is maximized

U Kang 17

Linear Units for Gaussian Output
Distributions

 The output vector 𝒚 contains real numbers of any range

 Given features 𝒉, a layer of linear output units
produces a vector ෝ𝒚 = 𝑾𝑇𝒉 + 𝒃

 Linear output layers are often used to produce the
mean of a conditional Gaussian distribution

 𝑝 𝒚 𝒙 = 𝑁(𝒚; ෝ𝒚, 𝑰)

 Maximizing the log-likelihood is equivalent to minimizing the
mean squared error

U Kang 18

Sigmoid Units for Bernoulli Output
Distributions

 The output value y contains 1 or 0

 Use sigmoid function to output the probability in [0,1]

 Given features 𝒉, a layer of sigmoid output units produces a
number ො𝑦 = 𝜎(𝒘𝑇𝒉 + 𝑏)

 The loss function for maximum likelihood learning of a Bernoulli
parameterized by a sigmoid is

 𝐽 𝜃 = − log𝑃 𝑦 𝑥 = − log𝜎 2𝑦 − 1 𝑧 = 𝜁(1 − 2𝑦 𝑧)

where 𝑧 = 𝒘𝑇𝒉 + 𝑏 and 𝜁 𝑥 = log(1 + exp 𝑥)

 I.e. our learning algorithm learns parameters to maximize

𝑝 𝑦; 𝑓 𝑥; 𝜃 = ቐ
𝜎 𝒘𝑇𝒉 + 𝑏 𝑖𝑓 𝑦 = 1

1 − 𝜎 𝒘𝑇𝒉 + 𝑏 𝑖𝑓 𝑦 = 0

Fact:

1 − 𝜎 𝑥 = 𝜎 −𝑥
log𝜎(𝑥) = −𝜁 −𝑥

U Kang 19

Softmax Units for Multinoulli Output
Distributions

 Useful to represent a categorical distribution (= a probability

distribution over a discrete variable with n possible values)

 The output vector 𝒚 contains n probabilities

 Softmax is a generalization of sigmoid for n possible values:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)
, where 𝒛 ∈ 𝑅𝑛 and 𝑖 ∈ 𝑍𝑛 𝑖𝑛 [0, 𝑛 − 1]

 Given features 𝒉, a layer of softmax output units produces a
vector ෝ𝒚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑇𝒉 + 𝑏)

 The loss function is 𝐽 𝜃 = − log 𝑃 𝑦 𝑥 = − log 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 𝑦

where 𝑧 = 𝑾𝑇𝒉 + 𝑏

U Kang 20

Hidden Units

 How to choose the type of hidden unit to use in the
hidden layers of the model?

 Active area of research; not many theoretical results

 It is usually impossible to predict in advance which
types will work best: the design process consists of
trial and error

U Kang 21

Non-differentiable Hidden Units

 Some hidden units are not actually differentiable at all input
points
 E.g., ReLU function g(z) = max{0, z} is not differentiable at z = 0

 However, gradient descent still performs well enough
 Hidden units that are not differentiable are usually non-differentiable at

only a small number of points

 Neural network training algorithms do not usually arrive at a local
minimum of the cost function, but merely reduce its errors significantly

 We don’t expect training to reach a point where gradient is 0; thus it is
acceptable for the minima of the cost function to correspond to points
with undefined gradients

 Software implementations of neural network training usually return one of
the one-sided derivatives
 Justification: the argument of g(0) of ReLU may not be true 0 but a very small number

rounded to 0

U Kang 22

Hidden Units

 Rectified linear units (ReLU)
 g(z) = max{0,z}

 Advantage: simple and effective (no vanishing gradient problem)

 Disadvantage: cannot learn via gradient-based methods on examples for
which their activation is 0

 ReLU are typically used on top of affine transformation: 𝒉 = 𝑔(𝑾𝑇𝒙 + 𝒃)

 Generalizations of ReLU
 Generalizations using non-zero slope 𝛼𝑖 when 𝑧𝑖 < 0: ℎ𝑖 = max 0, 𝑧𝑖 +

𝛼𝑖min(0, 𝑧𝑖)
 Absolute value rectification: use 𝛼𝑖 = −1 to obtain g(z)=|z|

 Leaky ReLU: fixes 𝛼𝑖 to a small value like 0.01

 PReLU (parametric ReLU) treats 𝛼𝑖 as a learnable parameter

U Kang 23

Hidden Units

 Logistic sigmoid and hyperbolic tangent
 Famous hidden units before the introduction of ReLU

 Sigmoid function 𝜎(𝑧)

 Hyperbolic tangent function tanh 𝑧 = 2𝜎 2𝑧 − 1

 Problems: saturate to a high value when z is very positive, and to a low
value when z is very negative
 Gradient is close to 0 when they saturate: only strongly sensitive to their input when z is

near 0

𝜎(𝑧) 𝑡𝑎𝑛ℎ(𝑧)

U Kang 24

Architecture Design

 Architecture refers to the overall structure of the network: how
many units it should have and how these units should be
connected to each other

U Kang 25

Architecture Design

 Most neural networks are organized into groups of units called
layers; these layers are typically arranged in a chain structure

 The first layer is given by 𝒉(1) = 𝑔 1 (𝑾 1 𝑇𝒙 + 𝒃(1))

 The second layer is given by 𝒉(2) = 𝑔 2 (𝑾 2 𝑇𝒙 + 𝒃(2))

 In these chain-based architectures, the main architectural considerations
are to choose the depth of the network and the width of each layer

 A network with even one hidden layer is sufficient to fit the training set

 Deeper networks often use far fewer units per layer and far fewer
parameters, and often generalize well, but also often harder to optimize

 The ideal network architecture for a task must be found via
experimentation guided by monitoring the validation set error

U Kang 26

Architecture Design

 Universal approximation theorem (Hornik et al. 1989, Cybenko
1989)
 A feedforward network with a linear output layer and at least one hidden

layer with any “squashing” activation function (e.g. logistic sigmoid) can
approximate any continuous function with any desired non-zero amount
of error

 This means that regardless of what function we are trying to learn, a large
MLP will be able to represent this function

 However, we are not guaranteed that the training algorithm will be able
to learn that function
 The optimization algorithm may not be able to find the parameters that correspond to

the desired function

 The training algorithm might choose the wrong function due to overfitting

U Kang 27

Exponential Advantage of Depth

 Piecewise linear networks (which can be obtained from rectifier
nonlinearities) can represent functions with a number of regions
that is exponential in the depth of the network

 Using deeper models can reduce the number of units required to
represent the desired function, and can reduce the
generalization error

 Empirical results for transcribing multi-digit numbers from
photographs of addresses

U Kang 28

Shallow Models Overfit More

U Kang 29

What You Need to Know

 Deep feedforward networks: enable non-linear
mapping inputs to outputs

 Cost function: cross-entropy

 Output units: linear, sigmoid, softmax

 Hidden units: ReLU and its variants

 Architecture design: deep architecture is preferred
despite the universal approximation theorem

U Kang 30

Questions?

