# Resource and energy recovery from wastewater

# Resource & energy recovery

```
Water
+ Nutrients (N & P)
+ Organic matter
(= reduced carbon = chemical energy)
```

### **Wastewater reuse**



### **Wastewater reuse**

- Non-potable commercial, industrial, or agricultural use
- Recreational use
- Irrigation
- Seawater intrusion barrier
- Potable use
  - Indirect potable use
  - Direct potable use (not yet common)



"Purple pipe" system in the U.S.

# Example use: Japanese Garden, LA, USA









# **Example use: LA District, USA**



### Wastewater reuse: adv. & disadv.

#### Advantages

- Reliability (in quantity): produced year round
- High quality: good for industrial use
- Cost
  - Generally cheaper capital & operation costs than desalination cost
  - Cost getting comparable to drinking water supply in some dry regions of the world
- In many cases in dry regions, use less energy than importing water

#### Disadvantages

- Safety/reliability (in quality) concerns
- Cost for distribution
  - Need to install separate distribution system
- The "ick" factor: public opposition

# **Thought experiment - 1**



# **Thought experiment - 2**





# **Thought experiment - 3**





# Thought experiment – 3 (2)



Photo © Mary Ellen Mark



### **Nutrient recovery & resource production**

- Recovering nutrients
  - By composting / sludge application
    - As soil amendment / fertilizer
    - Potential health threats: pathogens, toxic & recalcitrant pollutants, etc.
  - By chemical precipitation
     ex) struvite; MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O
- Producing valuable materials
  - ex) Bioplastics: PHB (polyhydroxybutyrate)
    - Can be made to high quality plastic products
    - Some microorganisms produce PHB in nutrient-deficient conditions

## **Energy recovery**

- Shoot for energy positive wastewater treatment
- Anaerobic processes (CH<sub>4</sub> production)
  - Either from sludge or directly from wastewater
- Production of bio-oil, bio-ethanol, etc.
- Microbial fuel cells (MFCs)
  - Generate electricity directly from wastes & wastewater

### **Anaerobic Fluidized Bed Membrane Bioreactor**



# Microbial Fuel Cell (MFC)

- A device that converts the chemical energy to electrical energy by the action of microorganisms
- The redox reaction is catalyzed by microorganisms



# MFC – Anode compartment

#### Anode

- Should be conductive, biocompatible, chemically stable with substrate
- Stainless steel mesh, graphite plates or rods
- Bacteria live in the anode compartment and oxidize the substrate provided
- Anode compartment should be kept low in DO
- Substrates: usually organics carbohydrates, protein, VFAs, cellulose, and wastewater



# MFC – Cathode compartment / EM

- Cathode compartment
  - Usually oxygen is used as an oxidizing agent
  - Catalysts used for the oxygen reduction reaction: Pt most common
- Exchange membrane
  - Allows proton (H<sup>+</sup>) to flow from the anode compartment to cathode compartment



# MFC – pros & cons

#### Advantages

- Generation of energy out of bio-waste / organic matter
- Direct conversion of substrate energy to electricity
- No gas treatment required
- Aeration may not be needed (the cathode may be passively aerated)

### Disadvantages

- Low power density: losses of electric potential significant
- High initial cost