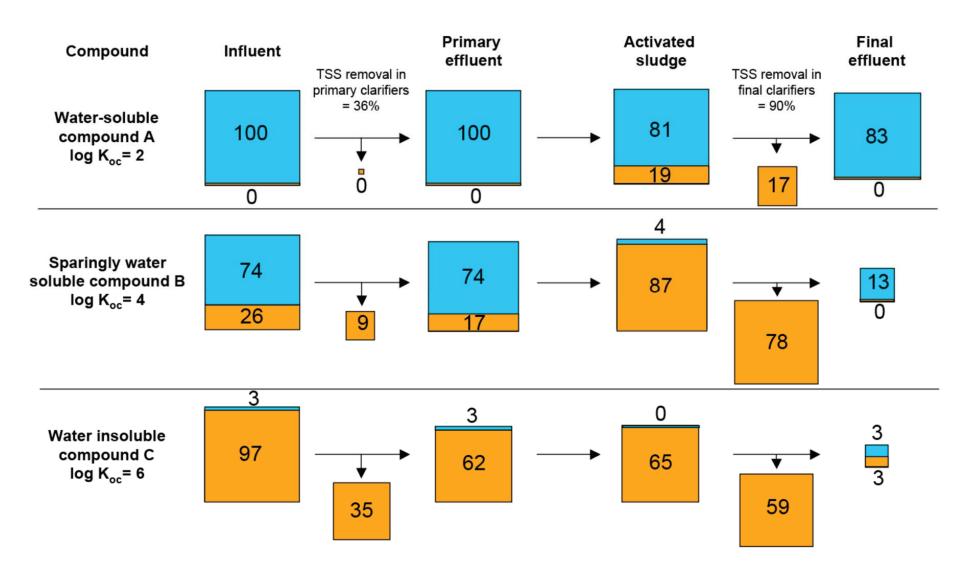
# Toxic and recalcitrant compound removal

#### Toxic & recalcitrant organic compounds


- Xenobiotic compounds: man-made
  - Many are resistant to biodegradation and have potential toxicity to ecosystem & human health
- Refractory, recalcitrant not easily biodegradable
- Some <u>specific</u> microorganisms may have the ability to degrade toxic and recalcitrant compounds

# **Examples of toxic & recalcitrant organics**

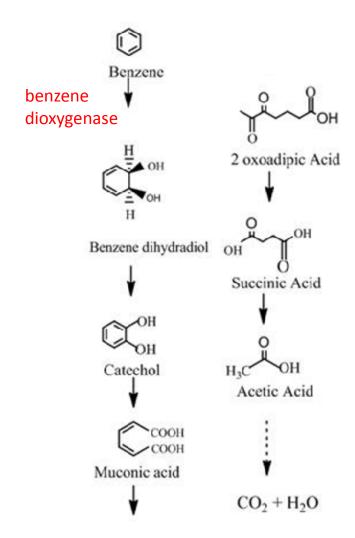
| Type of waste                        | Types of organic compounds                                                                                                                                                                         |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Petroleum                            | alkanes; alkenes; polyaromatic hydrocarbons; monocyclic aromatics – benzene, toluene, ethylbenzene, xylenes; naphthenes                                                                            |
| Non-halogenated solvents             | alcohols; ketones; esters; ethers; aromatic and aliphatic hydrocarbons; glycols; amines                                                                                                            |
| Halogenated solvents                 | chlorinated methanes – methylene chloride, chloroform, carbon tetrachloride; chlorinated ethenes – tetrachloroethene, trichloroethene; chlorinated ethanes – trichloroethane; chlorinated benzenes |
| Insecticides, herbicides, fungicides | organochloride compounds; organophosphate compounds; carbamate esters; phenyl ethers; creosotes; chlorinated phenols                                                                               |
| Munitions and explosives             | nitroaromatics – trinitrotoluene; nitramines; nitrate esters                                                                                                                                       |
| Industrial intermediates             | phthalate esters; benzene; phenol; chlorobenzenes; chlorophenols; xylenes                                                                                                                          |
| Transformer and hydraulic fluids     | polychlorinated biphenyls                                                                                                                                                                          |
| Production byproducts                | dioxin, furans                                                                                                                                                                                     |

#### **Abiotic losses in WWTP**

- May be significant for many toxic & recalcitrant compounds
- Adsorption to biomass in secondary treatment
  - Removed from wastewater as sludge
  - Issues with sludge application and disposal
- Volatilization: released to the atmosphere



Fate of non-biodegradable and non-volatile organic compounds during conventional wastewater treatment Heidler & Halden (2008) ES&T 42:6324-6332.


## Biodegradation pathways (1)

#### Compound serving as a growth substrate

- Complete mineralization or transformation to a different compound (hopefully less or non-toxic)
- Aerobic degradation usually more significant than anaerobic
- Aerobic degradation works for many non-halogenated organic compounds, but not often for halogenated compounds

## Aerobic biodegradation of aromatics

- Aromatic rings are relatively stable
  - Ring cleavage is often the major challenge
- Some specific enzymes are able to insert oxygen into the aromatic ring to initiate the degradation

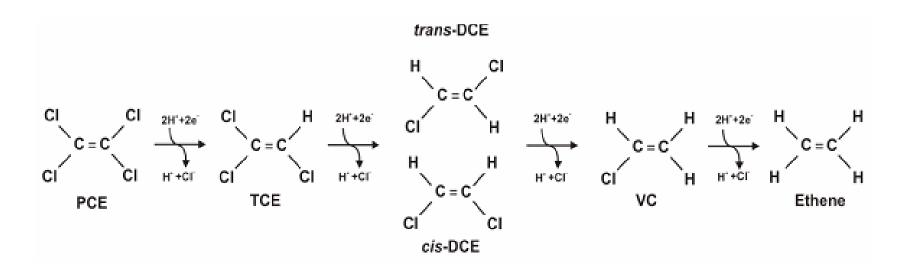


7

# Aerobic biodegradation of aromatics

Proposed biodegradation pathway of phenanthrene by consortium PHMM

(Mnif et al., 2017, Health Advance)


## Biodegradation pathways (2)

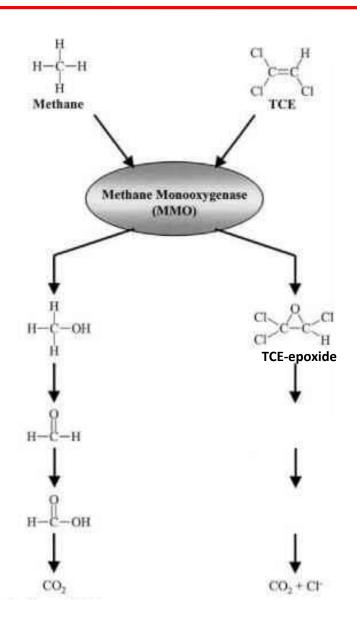
#### • Compound as an e<sup>-</sup> acceptor

#### [reductive dehalogenation]

- Under sulfidogenic/methanogenic condition (highly reduced condition)
- Uses H<sub>2</sub> as an e<sup>-</sup> donor substitution of a halogen (Cl, F, ..) with H in the organic molecule
- Reductive dechlorination extensively studied
  - PCE, TCE, PCP, PCBs, etc.

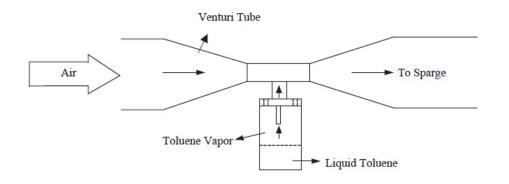
## PCE dechlorination pathway




- Ethene can be easily mineralized by other microorganisms
- Dechlorination more challenging for DCE/VC than PCE/TCE
  - Only a very limited number of species can completely reduce PCE to ethene
  - VC is more toxic than PCE/TCE possibility of increased toxicity by biotransformation
  - So should confirm that the species capable of complete PCE/TCE reduction to ethene are present at the site for bioremediation

## Biodegradation pathways (3)

#### Cometabolism


- Transformation of a compound by a microorganism that is unable to use the compound as a carbon or energy source
- No microorganism growth by cometabolism
- Degradation pathway for chlorinated organic compounds under aerobic condition
- By bacteria producing nonspecific mono-oxygenase or dioxygenase enzymes
- Example organisms: methanotrophic bacteria, phenol/toluene oxidizers

#### Methanotroph transforming TCE by cometabolism



- Methane is a growth substrate
- MMO catalyzes methane oxidation to methanol
- The MMO produced is also capable of catalyzing TCE oxidation to TCE-epoxide
- In pure culture, TCE-epoxide accumulates, but in the environment, it may be further degraded by other microorganisms to be mineralized

#### Toluene injection for treatment of TCE in GW



Kuo et al., 2004, Water Res.

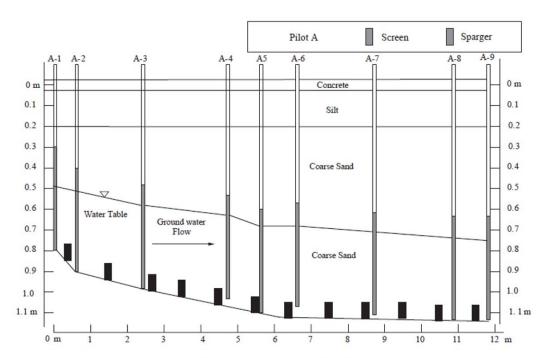



Fig. 1. Schematic diagrams of Pilot A and venturi tube used for toluene-vapor injection.

- Toluene & O<sub>2</sub> injection to promote growth of toluene-oxidizing bacteria
- TCE biodegradation by cometabolism
- >90% TCE removal observed
- Constraint of adding a pollutant to remove another

13