Interphase mass transfer

Interphase mass transfer

What we will do

- Focus on the air-water interphase
- Discuss factors that affect mass transfer rates
- Consider the interfacial region
- Consider models that attempt to predict mass transfer rates
 - Some background
 - Some examples

Considerable empiricism involved

- Difficult/impossible to directly measure certain parameters of interest
 - · Employ models with a fundamental underpinning
 - · Get constants from correlations

Mass transfer is:

- Net change in a compound's mass, concentration, and/or fugacity within a specific volume, compartment, phase
 - Non-equilibrium process
 - Movement is from high to low fugacity
 - Within a single phase, this means from high to low concentration
- A consequence of random behavior, motion

Molecular diffusion

- Moles of drunks meandering through space
 - Random walk

- Consider the (ground level) atmosphere
 - Molecules
 - Take up ~0.1% of available space
 - Zip around at ~450 m/sec (average)
 - Have ~2 x 10¹⁰ collisions/sec
 - Mean free path (mfp) $^{\sim}20$ nm (2 x 10^{-8} m); characteristic travel distance is:
 - » ~6 mm in one second
 - » ~5 cm in one minute
 - » ~40 cm in one hour

Molecular diffusivity D_i & Flux J_{x,i}

$$D_i = \frac{\bar{x}^2}{2t} \qquad [L^2/T]$$

Specific flux (J): net mass (or molecules) crossing unit area of boundary per unit time

$$J_{x,i} = -D_i \frac{dC_i}{dx}$$
 [M/L²/T] or [mole/L²/T]

Rough estimates of diffusivities in air and water @ $20\,^{\circ}$ C

		D_i , m ² /s	
	MW	Water	Air
Oxygen	32	2×10 ⁻⁹	2×10 ⁻⁵
Phenol	94	1×10 ⁻⁹	1×10 ⁻⁵
TCE	131	1×10 ⁻⁹	1×10 ⁻⁵
Lindane	291	6×10 ⁻¹⁰	6×10 ⁻⁶

$$D_i \propto \frac{1}{m^x}$$
 or $\frac{1}{V^y}$

m: molecular weight; *V*: molecular volume *x*, *y* in the range of 0.6 to 0.8

Molecule transport owing to diffusion only

Source: Thibodeaux et al., 1996

 CO_2 mole fraction (x_{CO_2}) change in <u>stagnant</u> air mass^a

Time	Penetration distance, z (cm)				
(t)	0.001	0.01	0.10	1.00	10.0
1 s	0.0657	0.0654	0.0606	0.0326	0.0300
1 min	0.0658	0.0657	0.0651	0.0592	0.0307
1 h	0.0658	0.0658	0.0657	0.0649	0.0574

^a <u>Simulation</u> results; used D_{CO_2} (air) = 0.153 cm²/s @ 20 °C, 1 atm.

O_2 concentration (C_{O_2} ; in mg/L) change in <u>stagnant</u> water^b

Time	Penetration distance, z (cm)				
(t)	0.001	0.01	0.10	1.00	10.0
5 min	0.069	0.70	6.1	9.17	9.17
10 h	<0.001	0.064	0.64	0.0592	9.17
2 d	<0.001	0.028	0.29	0.0649	9.17

 $C_{O_2} = 0.00 \text{ mg/L } @ z=0, t \ge 0$ z=0 $C_{O_2} = 9.17 \text{ mg/L}$ @ t=0, z>0

 $^{^{\}rm b}$ Simulation results; used D_{O_2} (water) = 1.80×10 $^{\rm -5}$ cm²/s @ 20 $^{\rm o}$ C.

Interphase mass transfer – D_i is not enough

- Observed air/water transfer rates are too fast to be explained by molecular diffusion across a flat interphase from/into a quiescent phase
 - Regions where diffusion controls are very thin
 - Because of turbulence
 - Actual interfacial areas may be >> than nominal
 - Difficult to measure

Air/water interface: smooth

8

Air/water interface: rough

Molecular diffusion – example 1

Let's consider model systems with:

- 1-dimensional movement $J_{x,i} = -D_i \frac{dC_i}{dx}$
- At t = 0 s
 - For 0 cm < x < 25 cm; Concentration (C_i) = 0 μ mol/cm³
- At any t
 - For x = 0 cm; $C_i = 1000 \mu mol/cm^3$
 - For x = 25 cm; $C_i = 0 \mu mol/cm^3$
 - At boundaries there is continuous replenishment/scavenging
- For any time step
 - Chemical A: $D_A = 0.5 \text{ cm}^2/\text{s}$
 - Chemical B: $D_B = 1 \text{ cm}^2/\text{s}$

Concentration vs. Distance (1)

Concentration vs. Distance (2)

Flux (@ x = 0 cm) vs. Time

Flux ratios $(J_B/J_A, @ x = 0 cm)$

Molecular diffusion – example 2

50% of molecules shift position in time δt Equal probability of shifting right or left

If this represents a unit area, then flux, $J = 1/\delta t$

For this case we are at steady state:

$$\left(\frac{\partial N}{\partial t}\right)_{x} = 0 \qquad \left(\frac{\partial N}{\partial x}\right)_{t} = \frac{12}{\Delta x}$$

Model system results

Initially

- Concentration profile changes rapidly
- Flux out changes rapidly
- System with high D → concentration gradient decreases faster at the outlet

$$J_{in} \neq J_{out}$$

$$\frac{J_B}{J_A} = \sqrt{\frac{D_B}{D_A}}$$

After a long time

Linear concentration profile

$$J_{in} = J_{out} \qquad \qquad \frac{J_B}{J_A} = \frac{D_B}{D_A}$$

Gas/liquid interfaces: film theory

Transport is from high fugacity to low fugacity

Assumptions

- $C_{int}^{G} = H_{cc} \cdot C_{int}^{L}$ (equilibrium at the interface)
- $|J_G| = |J_L|$ (No accumulation at the interface)
- "Permanent" films developed
- Sufficient time for linear conc. gradients to develop in each film
- Changes in C_{bulk} are slow compared to gradient response rates

Gas/liquid interfaces: film theory

Gas/liquid interfaces: film theory

Flux in the films for phase *i*:

$$J_{i} = \frac{D_{i}}{\delta_{i}} \left(C_{bulk}{}^{i} - C_{int}{}^{i} \right) = k_{i} \left(C_{bulk}{}^{i} - C_{int}{}^{i} \right)$$

$$(+) flux when bulk \rightarrow interface$$

$$k_{i} = D_{i}/\delta_{i}, mass transfer$$

$$coefficient [L/T]$$

Since $|J_G| = |J_L|$,

$$J_{tot} = k_L (C_{bulk}{}^L - C_{int}{}^L) = -k_G (C_{bulk}{}^G - C_{int}{}^G)$$

$$set (+) flux when liquid \rightarrow gas = k_G (H_{cc}C_{int}{}^L - C_{bulk}{}^G)$$

 $k_L = D_L/\delta_L$, mass transfer coefficient at the liquid film [L/T] $k_G = D_G/\delta_G$, mass transfer coefficient at the gas film [L/T]

K_I – overall mass transfer coefficient

"As Is": the current bulk liquid phase concentration

"To Be": the liquid phase concentration that would be in equilibrium with the current bulk gas phase concentration

K_I – overall mass transfer coefficient

$$J_{tot} = K_L \left(C_{bulk}^{\ L} - \frac{C_{bulk}^{\ G}}{H_{cc}} \right)$$

$$= K_L \left\{ \left(C_{bulk}^{\ L} - C_{int}^{\ L} \right) + \frac{1}{H_{cc}} \left(C_{int}^{\ G} - C_{bulk}^{\ G} \right) \right\}$$

$$\frac{1}{K_L} = \frac{k_L + k_G H_{cc}}{k_L k_G H_{cc}} = \frac{1}{k_L} + \frac{1}{k_G H_{cc}} = R_L + R_G = R_{tot}$$

The behavior is exactly analogous to having 2 resistors in series in an electric circuit

$$K_L = \frac{k_L k_G H_{cc}}{k_L + k_G H_{cc}}$$

Controlling resistance

$$R_{tot} = R_L + R_G = \frac{1}{k_L} + \frac{1}{k_G H_{cc}}$$

If $k_L \ll k_G H_{cc}$ then $R_L \gg R_G$; liquid phase boundary layer controls flux

Typically: $1 < \frac{k_G}{k_L} < 300$

Gas phase $D \gg \text{liquid (by } \sim 10^4)$

Film thickness: $\delta_G > \delta_L$

If assume 95+% resistance equals phase control, & k_G/k_L = 100, then:

 H_{cc} > 19: liquid phase control

 $0.06 < H_{cc} \le 19$: maybe liquid phase control

 H_{cc} < 0.0002: gas phase control

 $0.0002 < H_{cc} < 0.005$: maybe gas phase control

 $0.005 < H_{cc} < 5$: probably affected by both phases

Controlling resistance

Compound	H _{cc}	R _L /R _G	Controlling resistance
O ₂	30	3000	Water
TCE	0.38	38	Water
Arochlor 1212	0.027	2.7	Intermediate
Lindane	1.4×10^{-4}	0.014	Gas
Phenol	3 × 10 ⁻⁵	0.03	Gas
H ₂ O	2.2 × 10 ⁻⁵	N/A	Gas

Assume $k_G/k_L = 100$ for general estimation

Film theory, summary, limitations

- Assumes fully developed, time invariant interfacial regions
 - Linear concentration gradient within the boundary layer
- If resistance in one phase dominates, overall mass transfer resistance then
 - $-K_L \propto D_i$, i = phase of dominant resistance
- Experimental studies have shown
 - $-K_L \propto D_i^a$
 - $0.5 \le a \le 1$
 - Film theory not always consistent with experimental data

Surface renewal theory

- Suppose turbulence goes all the way to the interface.
 Assume:
 - Some fraction "s" of the N_0 surface "chunks" of water are replaced every unit of time, $\Delta t = 1$
 - The replacement of surface "chunks" is random

$$\frac{dN}{dt} = -sN \qquad \qquad N_1 = N_0 e^{-st_1}$$

• N_1 represents the number of surface chunks not replaced at $0 \le t \le t_1$

Surface renewal: random replacement

Applying surface renewal theory

Flux equations still hold:

$$J_{tot} = \pm J_i = \pm k_i \left(C_{bulk}^i - C_{int}^i \right)$$

$$J_{tot} = K_L \left(C_{bulk}^L - \frac{C_{bulk}^G}{H_{cc}} \right) = K_L \left(C_{bulk}^L - C_{bulk}^{L*} \right)$$

$$\frac{1}{K_L} = \frac{k_L + k_G H_{cc}}{k_L k_G H_{cc}} = \frac{1}{k_L} + \frac{1}{k_G H_{cc}} = R_L + R_G = R_{tot}$$

• But
$$k_i = (D_i s_i)^{0.5}$$
 $s_i = surface \ renewal \ rate, \ [T^{-1}]$

cf. Film theory: $k_i \propto D_i$

Boundary layer theory

The Sherwood number:

$$(Sh)_i = \frac{k_i d}{D_i} = a_1 + a_2 (Re)^{a_3} (Sc)_i^{a_4}$$

 D_i = molecular diffusion [L²/T]

 k_i = mass transfer coefficient [L/T]

d = characteristic length (particle diameter, stream depth, etc.)

 a_i = constants, often empirical

Dimensionless numbers:

Re = Reynolds #, ratio of inertial force to viscous forces

Sc = Schmidt #, ratio of momentum diffusivity to mass diffusivity

Sh = Sherwood #, ratio of mass transport to mass diffusivity

- Mathematical form analogous to momentum and heat transfer models
- Incorporates effects of mixing on mass transfer

Dimensionless numbers

- Used in fluid mechanics to predict system behavior
 - Re: Reynolds #, ratio of inertial force to viscous force

$$Re = rac{d imes u}{v} = rac{d imes u imes
ho}{\mu}$$
 velocity x density = inertial force $u = characteristic length$ $u = velocity [L/T]$ $v = kinematic viscosity [M/L-T]$

- Low Re: laminar flow; High Re: turbulent flow
- For pipe flow

-
$$Re_{2d} = Re_d$$
 if $u_d = 2u_{2d}$

Boundary layer theory: coefficients

$$\frac{k_i d}{D_i} = (Sh)_i = a_1 + a_2 (Re)^{a_3} (Sc)_i^{a_4}$$

$$Re = \frac{d \times u}{v} = \frac{d \times u \times \rho}{\mu}$$
$$(Sc)_i = \frac{v}{D_i} = \frac{\mu}{D_i \rho}$$

If $a_1 = 0$, then:

$$k_i = \frac{(Sh)_i D_i}{d} = \frac{a_2 (Re)^{a_3} (v)^{a_4} D_i^{1-a_4}}{d} = a_2 d^{(a_3-1)} u^{a_3} v^{(a_4-a_3)} D_i^{(1-a_4)}$$

*a*₂: 0.01 to 1.0

a₃: 0.33 (laminar flow) to 0.8 (turbulent flow)

*a*₄: 0 to 0.5 (~0.33 is common)

$$a_3 = 0.33; a_4 = 0.5$$
 $k_i = a_2 d^{-0.67} u^{0.33} v^{0.17} D_i^{0.5}$

$$a_3 = 0.8; a_4 = 0.33$$
 $k_i = a_2 d^{-0.2} u^{0.8} v^{-0.47} D_i^{0.67}$

Flux to concentration change (in water)

$$J_{tot} = -K_L (C_{bulk}^L - C_{bulk}^{L*})$$
 Flux rate per unit area

$$A \cdot J_{tot} = -K_L \cdot A(C_{bulk}^L - C_{bulk}^{L*})$$
 Total flux (A is area of air-water interface)

$$\frac{dC_{bulk}^{L}}{dt} = \left(\frac{A}{V}\right)J_{tot} = -K_{L}\left(\frac{A}{V}\right)\left(C_{bulk}^{L} - C_{bulk}^{L*}\right) = -K_{L}a\left(C_{bulk}^{L} - C_{bulk}^{L*}\right)$$

This is the rate of change in concentration in water

a = interfacial area for mass transfer per unit volume, A/V [L-1]

V = volume in which concentration is changing [L³]

 $K_L a = volumetric mass transfer coefficient [T^{-1}]$

Mass transfer example: change in stream DO

Studies of <u>oxygen reaeration in streams</u> have been reasonably fit by the following: (O'Connor & Dobbins, 1958)

$$K_L = \left(\frac{D_L u}{H}\right)^{0.5} = k_L$$

$$K_L a = \frac{(D_L u)^{0.5}}{H^{1.5}}$$

 $u = stream \ velocity, \ m/s$ $H = 1/a = average \ stream \ depth, \ m$ $D_L = liquid \ phase \ diffusivity, \ m^2/s$

Mass transfer example: change in stream DO

- Applying surface renewal model:
 - O'Connor and Dobbins hypothesized that

$$s_L = \frac{Avg.vertical\ velocity\ by\ turbulence}{Avg.mixing\ length} = \frac{0.1u}{0.1H} = \frac{u}{H}$$

- Therefore,

$$K_L \approx k_L = (D_L s_L)^{1/2} = \left(\frac{D_L u}{H}\right)^{1/2}$$

Mass transfer example: change in stream DO

Applying boundary layer theory:

$$k_L = \frac{(Sh)_L D_L}{d} = \frac{a_2 (Re)^{a_3} (v)^{a_4} D_L^{1-a_4}}{d} = a_2 d^{(a_3-1)} u^{a_3} v^{(a_4-a_3)} D_L^{(1-a_4)}$$

If
$$a_2 = 1.0$$
; $a_3 \& a_4 = 0.5$:

$$K_L \approx k_L = \left(\frac{D_L u}{d}\right)^{0.5}$$

Boundary layer theory: applications

Transfer to particle surface in stagnant fluid:

$$\frac{k_L d}{D_L} (Sh)_L = a_1 + a_2 (Re)^{a_3} (Sc)_L^{a_4}$$

$$Re = \frac{d \times u}{v} = \frac{d \times u \times \rho}{\mu}$$
$$(Sc)_L^{a_4} = \frac{v}{D_L} = \frac{\mu}{D_L \rho}$$

Here,
$$a_1 = 2$$

$$k_L = rac{2D_L}{d_p} = rac{D_L}{r_p} pprox rac{1 imes 10^{-9}}{r_p} \ m/sec$$
 $a = rac{area}{volume} = rac{6}{d_p} \ m^{-1}$

If resistance is dominant at liquid phase,

$$K_L a \approx k_L a \approx \frac{10^{-8}}{d_p^2} sec^{-1}$$

Equilibration time can be characterized by $1/k_ia$

Wind effects on mass transfer

Mass transfer summary

- Molecular diffusion important over short lengths
 - Thin, stagnant regions at interphases
 - Turbulence critical at macroscopic levels
 - Mixing within phase
 - Generating interfacial surfaces
- Three models
 - Differing versions of the interfacial region
 - Difficult/impossible to directly measure region
 - Infer interfacial region properties from experimental data
 - Models differ in molecular diffusion's impact on overall mass transfer
- For many compounds mass transfer resistance in one phase controls overall mass transfer rate