Anaerobic processes Toxic & recalcitrant organic compound removal

Applications

- Treatment of waste sludge & high-strength organic wastes
- Pretreatment step for conventional biological treatment

Advantage

- Low biomass yield
- Energy production in the form of methane (of recent interest!)
 - WWTP -- ~3% of total energy cost in USA
 - Target on energy positive treatment of wastewater

Disadvantage

Effluent quality usually not as good as aerobic treatment

Hydrolysis

- Particulates ---- → Soluble molecules ---- → Monomers
- By extracellular enzymes

Acidogenesis (fermentation)

- Use: sugars, amino acids, fatty acids
 (both e- donor & acceptor)
- Produce: VFAs, CO₂, H₂

Acetogenesis

- Use: VFAs other than acetate
- Produce: acetate, H₂, CO₂

Methanogenesis

- By methanogens (belongs to domain <u>Archaea</u>)
- Two groups of methanogens
 - aceticlastic methanogens: <u>acetate → CH₄ + CO₂</u>
 - hydrogenotrophic methanogens: <u>H₂ + CO₂ → CH₄</u>
- − In anaerobic digestion process, ~72% methane from acetic acid & ~28% from H_2 (→ gas production of ~65% CH_4 & ~35% CO_2)

Syntrophic relationship

- Methanogens acidogens & acetogens
 - Acidogens & acetogens: produce H₂, acetate, etc.
 - Methanogens: cleans up the acido/acetogenesis end products
- "Interspecies hydrogen transfer"

COD balance for anaerobic process

(COD utilized) = (Biomass COD) + (Methane COD)

- No e⁻ acceptor consumed!
- COD of methane = 2.86 g COD/L CH_4 (@ 0°C, 1 atm)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Q: An anaerobic reactor, operated at 35°C, is used to process a wastewater stream with a flow of 3000 m³/d and a bCOD concentration of 5000 g/m³. At 95% bCOD removal and a net biomass yield of 0.04 g VSS/g COD, what is the amount of methane produced in m³/d?

Process kinetics

- Low yield coefficients
 - Low energy gain by chemical transformation
 - Fermentation: Y \sim 0.06 g VSS/g COD; b \sim 0.02 d⁻¹
 - Methanogenesis: Y ~ 0.03 g VSS/g COD; b ~ 0.008 d⁻¹
- Consider two steps:
 - Hydrolysis
 - Soluble substrate utilization for fermentation and methanogenesis
 - Methanogenesis the rate-limiting step
- High SRT is needed (around 40 d) due to slow degradation rate

Process stability

- Kinetics of VFA production is faster than utilization (methanogenesis)
- At steady state, sufficient methanogen population is established to maintain low VFA concentration (<200 g/m³) & pH≥7.0
- Unstable digester operation may develop under transient loading conditions (VFA production > utilization): VFA accumulation & pH drop
- Low pH leads to decline in methanogenic activity: process failure
- Methanogenic inhibition can also occur by acetate accumulation (acetate conc. $> 3000 \text{ g/m}^3$)

Toxic & recalcitrant organic cmpd removal

- Xenobiotic compounds: man-made
 - Many are resistant to biodegradation and have potential toxicity to ecosystem & human health
- Refractory, recalcitrant not easily biodegradable
- Some <u>specific</u> microorganisms may have the ability to degrade toxic and recalcitrant compounds

Examples of toxic & recalcitrant organics

Type of waste	Types of organic compounds
Petroleum	alkanes; alkenes; polyaromatic hydrocarbons; monocyclic aromatics – benzene, toluene, ethylbenzene, xylenes; naphthenes
Non-halogenated solvents	alcohols; ketones; esters; ethers; aromatic and aliphatic hydrocarbons; glycols; amines
Halogenated solvents	chlorinated methanes – methylene chloride, chloroform, carbon tetrachloride; chlorinated ethenes – tetrachloroethene, trichloroethene; chlorinated ethanes – trichloroethane; chlorinated benzenes
Insecticides, herbicides, fungicides	organochloride compounds; organophosphate compounds; carbamate esters; phenyl ethers; creosotes; chlorinated phenols
Munitions and explosives	nitroaromatics – trinitrotoluene; nitramines; nitrate esters
Industrial intermediates	phthalate esters; benzene; phenol; chlorobenzenes; chlorophenols; xylenes
Transformer and hydraulic fluids	polychlorinated biphenyls
Production byproducts	dioxin, furans

Biodegradation pathways

Compound serving as a growth substrate

- Complete mineralization or transformation to a different compound (hopefully less or non-toxic)
- Aerobic degradation usually more significant than anaerobic
- Aerobic degradation works for many non-halogenated organic compounds, but not often for halogenated compounds

Compound as an e⁻ acceptor

- Reductive dechlorination
 - Under anaerobic condition
 - Uses H₂ as an e⁻ donor substitution of Cl with H in the organic molecule
 - PCE, TCE, PCP, etc.

Biodegradation pathways

Cometabolism

- Degradation pathway for chlorinated organic compounds under aerobic condition
- By bacteria producing nonspecific mono-oxygenase or dioxygenase enzymes
- Example organisms:
 methanotrophic bacteria,
 phenol/toluene oxidizers

http://microbewiki.kenyon.edu

Abiotic losses

- May be significant for many toxic & recalcitrant compounds
- Adsorption to biomass in secondary treatment
 - Removed from wastewater as sludge
 - Issues with sludge application and disposal
- Volatilization: released to the atmosphere

Fate of non-biodegradable and non-volatile organic compounds during conventional wastewater treatment

Heidler & Halden (2008) ES&T 42:6324-6332.