Hazardous waste management

Hazardous waste management

- Introduction to hazardous wastes
- Hazardous waste regulation in the US
- Soil and groundwater remediation techniques
 - In-situ and ex-situ technologies
 - Physical, chemical, and biological processes

Hazardous waste

- Any waste or combination of wastes that poses a substantial danger, now or in the future, to human, plant, or animal life
- Must be handled or disposed of with special precautions

Hazardous waste

Consequences of failure to manage hazardous wastes

Dioxins

- Refers to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), or to the family of a chemical group called polychlorinated dibenzo-p-dioxins (PCDDs)
- By-product that may be generated during the manufacture and burning of chlorophenols, 2,4,5-T, etc.

5

Dioxins

- 2,3,7,8-TCDD is probably the most poisonous of all synthetic chemicals
- 2,3,7,8-TCDD is a "known" human carcinogen, and other dioxins are "likely" human carcinogens

Table. Approximate acute LD_{50} s of some chemical agents

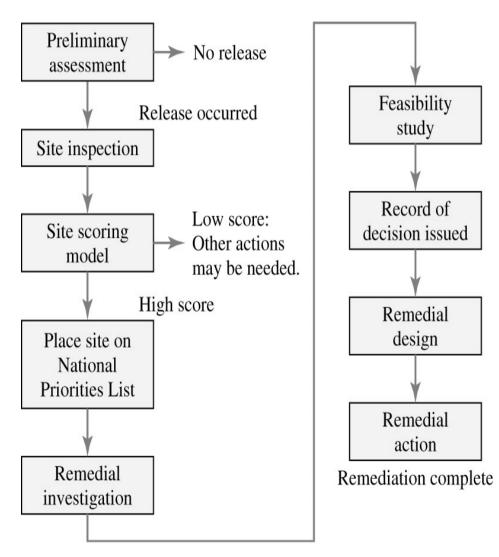
Agent	LD ₅₀ (mg/kg)	Agent	LD ₅₀ (mg/kg)
Ethyl alcohol	10000	Hemicholinium-3	0.2
Sodium chloride	4000	Tetrodotoxin	0.1
Morphine sulfate	1500	2,3,7,8-TCDD	0.001
Nicotine	1	Botulinum toxin	0.00001

- Polychlorinated biphenyls
 - A class of organic chemicals produced by the chlorination of a biphenyl molecule
 - 209 "congeners" exist

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Examples of PCBs

- Polychlorinated biphenyls
 - Used as coolants, lubricants, and coating materials until the 1970s
 - PCB manufacture and use were banned in the 1970s in developed countries
 - Chronic exposure could result in hazards to human health and the environment (PCBs are "likely" human carcinogen and endocrine disrupting compound)

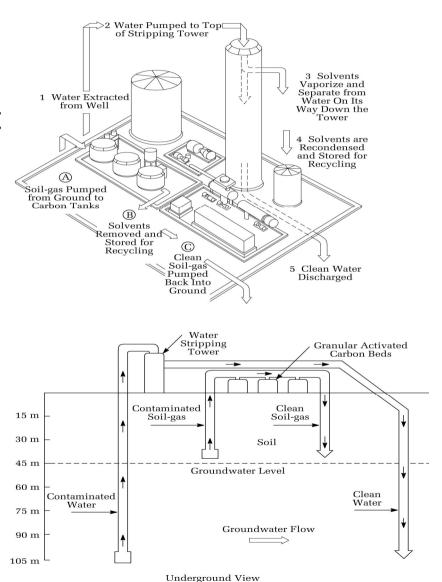

- Resource Conservation and Recovery Act (RCRA)
 - Passed Congress in 1976
 - Amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA)
 - A cradle-to-grave system for the management of hazardous waste: tracks whole life cycle (generation, transportation, treatment, storage, and disposal)
 - Requires permits for the treatment, storage, or disposal
 - Applies mainly to active facilities but not for abandoned or closed waste disposal sites or spills

- Comprehensive Environmental Response,
 Compensation, and Liability Act (1980)
 - Enacted in 1980
 - Commonly referred to as "Superfund" act
 - Addresses inactive or abandoned hazardous waste disposal sites
 - Extended in 1986 by the Superfund Amendments and Reauthorization Act (SARA)

- Comprehensive Environmental Response,
 Compensation, and Liability Act (1980)
 - Major provisions
 - Generate a fund (the "Superfund") to pay for investigations and remediation at sites where the responsive people cannot be found or will not voluntarily pay
 - A priority list of abandoned or inactive hazardous waste sites for cleanup ("the National Priority List")
 - The mechanism for action at abandoned or inactive sites (the "National Contingency Plan")
 - Liability for those responsible for cleaning up

- Comprehensive Environmental Response,
 Compensation, and Liability Act (1980)
 - National Priority List (NPL)
 - Identify sites that appear to present a significant risk to public health or the environment
 - To wisely use the Superfund money
 - Use "Hazard Ranking System (HRS)" to estimate the potential hazard to a score (added to the list if HRS score ≥ 28.50)
 - Updated three times a year: new sites are added to the list and sites are deleted from the list when remediation is completed
 - 1322 sites in the list in October 2014

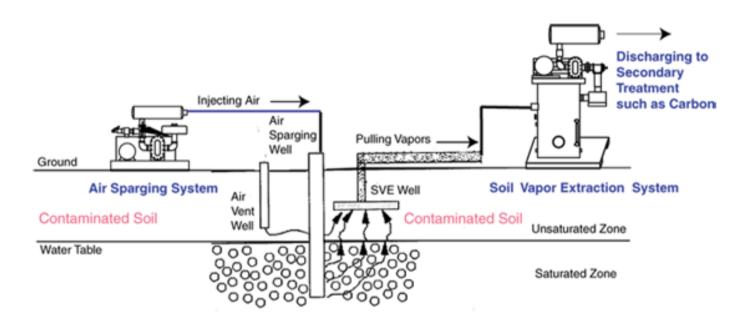
Superfund cleanup processSummary


Reading assignment

Textbook Ch 14 p. 692-705

- In-situ vs. ex-situ
 - In-situ: does not involve soil excavation; soil is treated at the site of contamination
 - Advantage: generally lower cost, ground surface may be utilized during remediation, treated soil maintains its function at the site after remediation
 - Disadvantage: relatively complicated, monitoring is not easy, efficiency may be limited by material transport and mass transfer
 - Ex-situ: involves soil excavation; excavated soil is treated on the ground at the site of contamination or transported to treatment facilities
 - Advantage: Simpler, people see that contaminants are removed from the site, monitoring is easy, generally better efficiency
 - Disadvantage: generally higher cost, completely changes the soil environment, need to find ways to dispose or recycle the treated soil, ground surface cannot be utilized during remediation

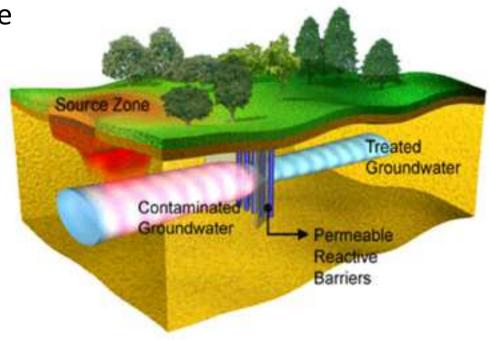
- Pump-and-treat systems
 - 1) pump contaminated groundwater to the surface
 - 2) remove the contaminants
 - 3) either recharge the treated water back into the ground or discharge it to a surface water body or municipal wastewater treatment plant


 Example of pump-and-treat systems

- Soil vapor extraction (unsaturated zone)
 - 1) Install vertical extraction wells or horizontal extraction pipes at the contaminated site
 - 2) Apply vacuum
 - 3) Collect volatilized contaminants
 - 4) Treat the air containing contaminants above ground

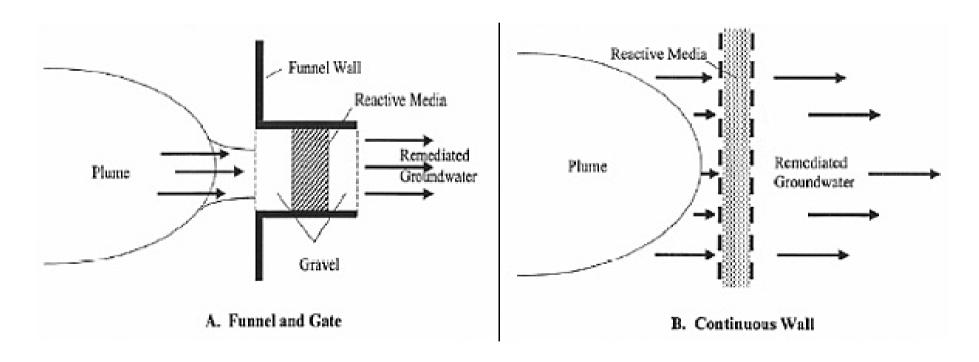
- Air sparging (saturated zone)
 - Usually applied together with soil vapor extraction technique
 - Inject contaminant-free air into the saturated zone to convert dissolved contaminants into vapors
 - The contaminant vapor moved to the unsaturated zone is collected by the vapor extraction system
- Limitations of soil vapor extraction and air sparging: applicable to volatile compounds in highpermeability zones

Soil vapor extraction and air sparging



http://www.precisionenvironmentalny.com

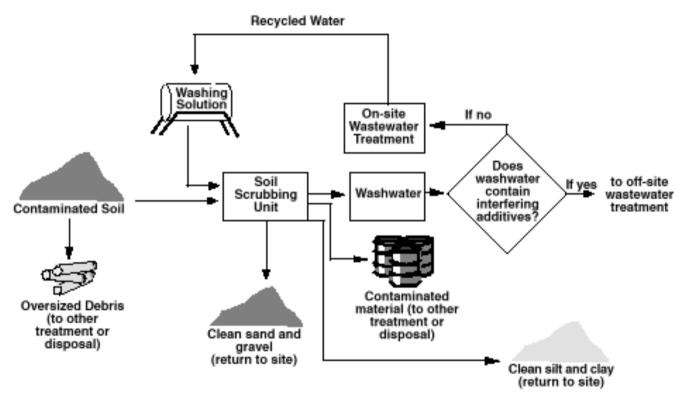
Permeable reactive barrier (PRB)


 Place reactive materials in the subsurface at the pathway of contaminated groundwater

The contaminants in groundwater are transformed into environmentally acceptable forms

- Permeable reactive barrier (PRB)
 - Reactive materials
 - Zero-valent iron (ZVI): works for PCE, TCE, NO₃-, and Cr⁶⁺
 - Zeolite: works for NH₄⁺ and heavy metals
 - Advantages
 - No maintenance cost → cost-effective
 - No equipment necessary on the ground → the site can be used during remediation
 - Disadvantages
 - Cannot eliminate the contaminant source
 - Do not work if the groundwater flow changes

Permeable reactive barrier (PRB)



http://www.geoengineer.org

Soil washing

- A mechanical process that uses liquids, usually water, to remove pollutants from soils
- The pollutants are usually attached to small particles such as silt and clay
- Pollutants are removed by i) separating silt and clay from sand or gravel and ii) transfer of contaminants from soil to water
- The wastewater should be treated; the silt and clay should be treated if contaminants are not sufficiently removed

Soil washing

http://infohouse.p2ric.org

Soil washing

- Advantages
 - Simple technique
 - The unit can be made transportable (a soil washing truck)
 - Can make sure that soil is being cleaned
- Disadvantages
 - High excavation cost
 - Additional treatment may be required for wastewater, and silt & clay

Thermal desorption

- Utilizes heat to increase the volatility of contaminants such that they can be removed from soil
- The produced gas is collected and treated
- Advantages
 - Effective for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs)
 - Relatively fast
 - Can make sure that soil is being cleaned
- Disadvantages
 - High cost for excavation and treatment
 - Intensive use of energy

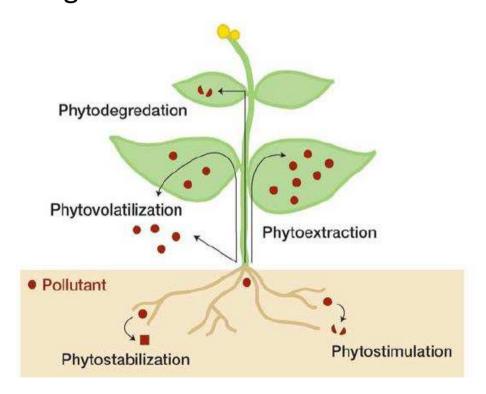
http://www.epa.gov/

Landfarming

- A type of a bioremediation treatment process
- Contaminated soils are excavated, spread on the ground, and periodically turned over (tilled) for aeration
- Good for petroleum-contaminated soils

Landfarming

- Advantages
 - Relatively simple design and operation
 - Relatively rapid and inexpensive
- Disadvantages
 - May not be effective for high removal efficiencies (>95%) and high contaminant concentrations
 - Emission of volatile contaminants and dust during treatment
 - Requires a large land area for treatment


In situ bioremediation

- "In situ" means "situated in the original, natural, or existing place or position" (\leftrightarrow ex situ)
- Application of biological treatment for the in situ cleanup of hazardous chemicals present in the subsurface
- Usually for organic contaminants \rightarrow needs electron acceptors (usually O_2), nutrients, and microorganisms!

In situ bioremediation

- Biostimulation: providing nutrients, electron acceptors, or other chemical agents to stimulate biodegradation by microorganisms
- Bioaugmentation: injection of microorganisms that have capability of degrading target contaminants
- Bioventing and bio-sparging: application of soil vapor extraction and air sparging technology, but focus more on stimulating biodegradation by providing O₂
- Monitored natural attenuation (MNA): rely on natural processes of biodegradation with a monitoring plan

- In situ bioremediation
 - Phytoremediation: use of green plants and their associated microorganisms for the treatment of contaminants

In situ bioremediation

- Advantages
 - Environmentally friendly
 - Low cost, and low energy consumption
 - Toxic compounds are not just separated, but transformed to nontoxic materials
- Disadvantages
 - Slow process
 - Mostly not effective for heavy metals
 - Removal efficiency can be low
 - Knowledge gap exists for biodegradation processes in soils and groundwater