Removal of residual particulate and dissolved constituents

Tertiary treatment

- Further treatment of secondary treatment effluent
 - To meet standards
 - To reduce loading to the water body
 - For water reuse
- Removal of residual particulates and/or dissolved constituents
 - Particulates
 - TDS
 - Refractory organics
 - Nutrients
- Disinfection pathogen inactivation (swimmable water!)

Removal of residual particulates

By filtration processes

Depth filtration

Usually sand filters, anthracite coal, dual- or multi-media

Surface filtration

Use fabrics

Membrane filtration

- Smaller opening size than surface filtration
- Microfiltration, ultrafiltration, nanofiltration, reverse osmosis

Particle removal mechanisms

Particle removal mechanisms

Straining

- Mechanical: particles larger than the pore space are strained out mechanically
- Chance contact: particles smaller than the pore space are trapped within the filter by chance contact

Sedimentation or impaction

 Heavy particles that do not follow the flow streamlines are removed when they come in contact with the surface of the filtering medium

Interception

 Particles that move along in the streamline are removed when they come in contact with the surface of the filtering medium

- Operation of depth filter
 - Filtration-backwash cycle

<Filtration>

<Backwash>

Headloss buildup and effluent quality

- The shorter of the $t_{headloss}$ and $t_{breakthrough}$ will be the time for backwash cycle
- Optimized design: design the filter such that

$$t_{headloss} \approx t_{breakthrough}$$

Membrane filtration

Terminologies

- Feed water: influent water supplied to the membrane system for treatment
- Permeate: the liquid that has passed through the membrane
- Retentate: The portion of the feed water that does not pass through the membrane
- Flux: The rate at which permeate flows through the membrane

Membrane filtration - classification

RO/NF: nonporous membrane Diffusion-like process

MF/UF: porous membrane Straining-like process

IVI —

Membrane configuration

Tubular

- Membrane is cast on the inside of a support tube and the tubes are placed in a pressure vessel
- Feed water is pumped through the tube and the permeate is collected outside
- Tube diameter 6-40 mm

Hollow fiber

- A module consists of a bundle of hundreds to thousands of hollow fibers
- Inside diameter 35-45 μm, outside diameter 90-100 μm

Membrane configuration

Spiral wound

- Flat membrane sheets are rolled into a tight circular configuration
- A flexible permeate spacer is placed between two flat sheets
- Membrane is sealed on the three side; the open side is connected to a perforated pipe

Plate and frame

- Consists of a series of flat membrane sheets and support plates
- The plate supports the membranes and provides a channel for the permeate to flow out of the unit

Driving force: pressure

Reverse osmosis

 Produces retentate (concentrate) that usually has x2 or more salt concentration than the feed water

Osmosis

Water moves from low salt conc. \rightarrow high salt conc.

Osmotic equilibrium

No net water movement

Reverse osmosis

Water moves from high salt conc. → low salt conc.

Membrane fouling

Particulate fouling

Particles clog the membrane pores

Scaling

- As chemical constituents in the feed water are removed at the surface of a membrane, their local concentration increases
- Concentrations of some of the constituents will increase beyond their solubility limits and will be precipitated on the membrane surface
- Especially critical for RO

Organic fouling

- Many natural organic matter (NOM) are sticky accumulate on the membrane surface
- Fouling is accelerated by forming stable organic/inorganic particulate matter

Biological fouling

- Elevated concentrations of organic matter and nutrients on the membrane surface → favorable for microbial growth
- Biofilm formed on the membrane surfac

Forward osmosis

- A membrane technology getting recent interest
 - RO: High energy consumption for pressurizing the feed water
 - FO: Uses natural osmotic pressure with minimal pressure application
 - Use a more concentrated solution (draw solution) to recover water from the feed water
 - Principal requirement of the draw solution
 - Osmotic pressure should be greater than the feed solution
 - Must be easy to reconcentrate after being diluted by the water from the feed solution
 - NaCl is a common salt used for draw solution: easy to reconcentrate, no scaling problems

Adsorption

- Removal of substances in solution by accumulation of those substances on a solid phase
 - Adsorbate: the substance that is being removed from the solution
 - Adsorbent: the material onto which the adsorbate accumulates

Applications

Removal of:

- refractory organics
- residual inorganic constituents (nitrogen, sulfides, heavy metals, etc.)
- · odor compounds

Types of adsorbents

Activated carbon

- Most common removal of refractory organics & residual COD
- Derived by i) pyrolysis of organic materials (wood, coal, coconut, etc.) and
 ii) activation by steam or CO₂ at high temperatures
- Two types based on particle size
 - GAC (granular activated carbon): > 0.1 mm, apply in columns
 - PAC (powdered activated carbon): < 0.074 mm, apply in well-mixed contact tanks

Granular ferric hydroxide

- Ferric hydroxides/oxides have high affinity to many metals and metalloids
- Applicable for removal of arsenic, chromium, selenium, copper, etc.

Activated alumina

- May be considered in case of water reuse
- Removal of arsenic and fluoride

GAC columns: breakthrough curve

- Mass transfer zone
 (MTZ; dashed zone):
 adsorption is occurring,
 some adsorbate conc. in pore-water
- Grey zone: GAC
 exhausted (adsorption
 equilibrium with
 influent), no further
 adsorption
- Breakthrough occurs after adding V_{BT} of influent, but want full usage of the column!

GAC columns: configurations

Gas stripping

Mass transfer of a gas from the liquid phase to the gas phase

Recall: $\frac{dC}{dt} = K_L \frac{A}{V}(C - C_s) = K_L a(C - C_s)$ (for desorption of gas)

- Stripping (blowing) a contaminant-free gas into the water
 - Creates large gas-liquid interfacial area for mass transfer
 - Most significant concern in the process design
 - Concentration gradient generated: $C_s \rightarrow 0$
- Removal of NH₃, odorous gases and VOCs
 - For ammonia stripping, pH should be raised by addition of lime (why?)

Gas stripping

Ion exchange

- A unit process in which ions of a given species are displaced from an insoluble exchange material by ions of a different species in solution
- So ions in the solution is exchanged by other ions originating from the insoluble exchange material
- Applications
 - Most common: water softening (Na⁺ from exchange material to solution; Ca²⁺ and Mg²⁺ from solution to exchange material)
 - Removal of nitrogen, heavy metals, and TDS

Ion exchange

Exchange materials

- Naturally occurring materials: zeolite (clinoptilolite)
- Synthetics material: resins, phenolic polymers

Nitrogen removal

- Remove NH₄⁺ or NO₃⁻
- NH₄⁺: zeolite or synthetic cation exchange resins
- NO₃: synthetic anion exchange resins

Heavy metal removal

- Zeolites, synthetic anion and cation resins, chelating resins
- Some chelating resins are made to have a high selectivity for specific metals (cations – Cu, Ni, Cd, Zn, ...)