
1U Kang

Introduction to Data Mining

Lecture #3: MapReduce-1

U Kang
Seoul National University

2U Kang

Outline

MapReduce

3U Kang

MapReduce

 Much of the course will be devoted to
large scale computing for data mining

 Challenges:
 How to distribute computation?
 Distributed/parallel programming is hard

 Map-reduce addresses all of the above
 Google’s computational/data manipulation model
 Elegant way to work with big data

4U Kang

Single Node Architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining

5U Kang

Motivation: Google Example

 20+ billion web pages x 20KB = 400+ TB
 1 computer reads 30-35 MB/sec from disk
 ~4 months to read the web

 ~1,000 hard drives to store the web
 Takes even more to do something useful

with the data!
 Today, a standard architecture for such problems

is emerging:
 Cluster of commodity Linux nodes
 Commodity network (ethernet) to connect them

6U Kang

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011, Google used ~1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO

7U Kang 7

8U Kang

Large-scale Computing

 Large-scale computing for data mining
problems on commodity hardware

 Challenges:
 How do you distribute computation?
 How can we make it easy to write distributed program

s?
 Machines fail:

 One server may stay up 3 years (1,000 days)
 If you have 1,000 servers, expect to loose 1/day
 People estimated Google had ~1M machines in 2011

 1,000 machines fail every day!

9U Kang

Idea and Solution

 Issue: Copying data over a network takes time
 Idea:
 Bring computation close to the data
 Store files multiple times for reliability

 Map-reduce addresses these problems
 Google’s computational/data manipulation model
 Elegant way to work with big data
 Storage Infrastructure – File system

 Google: GFS. Hadoop (open source): HDFS

 Programming model
 Map-Reduce

10U Kang

Storage Infrastructure

 Problem:
 If nodes fail, how to store data persistently?

 Answer:
 Distributed File System (DFS):

 Provides global file namespace
 Google GFS; Hadoop HDFS;

 Typical usage pattern
 Huge files (100s of GB to TB)
 Data is rarely updated in place
 Reads and appends are common

11U Kang

Distributed File System

 Chunk servers
 File is split into contiguous chunks
 Typically each chunk is 16-64MB
 Each chunk replicated (usually 2x or 3x)
 Try to keep replicas in different racks

 Master node
 a.k.a. Name Node in Hadoop’s HDFS
 Stores metadata about where files are stored
 Might be replicated

 Client library for file access
 Talks to master to find chunk servers
 Connects to chunk servers to access data

12U Kang

Distributed File System

 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines
 Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation to the data! data to computer

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

13U Kang

Warm-up task:
 We have a huge text document
 Count the number of times each

distinct word appears in the file
 Sample application:
 Analyze web server logs to find popular URLs

Programming Model: MapReduce

14U Kang

Task: Word Count

Case 1 (easy)
 File too large for memory, but all <word, count> pairs fit in

memory

Case 2 (hard)
 Both file and all <word, count> pairs do not fit in memory
 Count occurrences of words:

 words(doc.txt) | sort | uniq -c
 where words takes a file and outputs the words in it, one per a line

 Case 2 captures the essence of MapReduce
 Great thing is that it is naturally parallelizable

15U Kang

MapReduce: Overview

 Sequentially read a lot of data
 Map:
 Extract something you care about

 Group by key: Sort and Shuffle
 Reduce:
 Aggregate, summarize, filter or transform

 Write the result
Outline stays the same, Map and
Reduce change to fit the problem

16U Kang

MapReduce: Example
 Assume the words are fruit names

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

(apple, 1)(apple, 1) (strawberry,1)

(apple, 2) (orange, 1)
(strawberry, 1)

(orange, 1)

HDFS

HDFS

map(fruit) {
output(fruit, 1);

}

reduce(fruit, v[1..n]) {
for(i=1; i <=n; i++)

sum = sum + v[i];
output(fruit, sum);

}

17U Kang

MapReduce: The Map Step

vk

k v

k v
map

vk

vk

…
k v

map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

18U Kang

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

Group
by key

reduce

reduce
k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output
key-value pairs

19U Kang

More Specifically

 Input: a set of key-value pairs
 Programmer specifies two methods:
 Map(k, v) → <k’, v’>*

 Takes a key-value pair and outputs a set of key-value pairs
 E.g., key is the filename, value is a single line in the file

 There is one Map function call for every (k,v) pair (input)

 Reduce(k’, <v’>*) → <k’, v’’>*
 All values v’ with same key k’ are reduced together

and processed
 There is one Reduce function call per unique key k’

20U Kang

MapReduce: Word Counting

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing -
- is what we're going to
need ……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and

produces a set of
key-value pairs

Group by
key:

Collect all pairs
with same key

Reduce:
Collect all values
belonging to the
key and output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

Se
qu

en
tia

lly
 re

ad
 th

e
da

ta
O

nl
y

se

qu
en

tia
l

 r
ea

ds

21U Kang

Word Count Using MapReduce

map(key, value):
// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)

22U Kang

Map-Reduce: Environment

Map-Reduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a

set of machines
 Performing the group by key step
 Handling machine failures
 Managing required inter-machine communication

23U Kang

Map-Reduce: A diagram
Big document

MAP:
Read input and

produces a set of
key-value pairs

Group by
key:

Collect all pairs
with same key
(Hash merge,
Shuffle, Sort,

Partition)

Reduce:
Collect all values
belonging to the
key and output

24U Kang

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

25U Kang

Map-Reduce

 Programmer specifies:
 Map and Reduce and input files

 Workflow:
 Read inputs as a set of key-value-pairs
 Map transforms input kv-pairs into a ne

w set of k'v'-pairs
 Sorts & Shuffles the k'v'-pairs to output n

odes
 All k’v’-pairs with a given k’ are sent to t

he same reduce
 Reduce processes all k'v'-pairs grouped b

y key into new k''v''-pairs
 Write the resulting pairs to files

 All phases are distributed with many t
asks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

26U Kang

Data Flow

 Input and final output are stored on a distribute
d file system (FS):
 Scheduler tries to schedule map tasks “close” to physic

al storage location of input data

 Intermediate results are stored on local FS
of Map and Reduce workers

 Output is often input to another
MapReduce task

27U Kang

Coordination: Master

 Master node takes care of coordination:
 Task status: (idle, in-progress, completed)
 Idle tasks get scheduled as workers become available
 When a map task completes, it sends the master the lo

cation and sizes of its R intermediate files, one for eac
h reducer

 Master pushes this info to reducers

 Master pings workers periodically to detect failur
es

28U Kang

Dealing with Failures

 Map worker failure
 Map tasks completed or in-progress at

worker are reset to idle
 Reduce workers are notified when task is rescheduled

on another worker

 Reduce worker failure
 Only in-progress tasks are reset to idle
 Reduce task is restarted on another worker

 Master failure
 MapReduce task is aborted and client is notified

29U Kang

How many Map and Reduce jobs?

 M map tasks, R reduce tasks
 Rule of a thumb:
 Make M much larger than the number of nodes in th

e cluster
 One DFS chunk per map is common
 Improves dynamic load balancing and speeds up rec

overy from worker failures

 Usually R is smaller than M
 Because output is spread across R files (each reduce

task creates one file in DFS)

30U Kang

Task Granularity & Pipelining

 Fine granularity tasks: map tasks >> machines
 Minimizes time for fault recovery
 Can do pipeline shuffling with map execution
 Better dynamic load balancing

: shuffle

31U Kang

Refinements: Backup Tasks

 Problem
 Slow workers significantly lengthen the job completion

time:
 Other jobs on the machine
 A machine may be slow
 Bad disks
 Weird things

[YongChul Kwon et al, SkewTune: Mitigating
Skew in MapReduce Applications, SIGMOD 2012]

32U Kang

Refinements: Backup Tasks

 Solution
 Near end of phase, spawn backup copies of tasks

 Whichever one finishes first “wins”

 Effect
 Shortens job completion

time

[YongChul Kwon et al, SkewTune: Mitigating
Skew in MapReduce Applications, SIGMOD 2012]

33U Kang

Refinement: Combiners

 Often a Map task will produce many pairs of the f
orm (k,v1), (k,v2), … for the same key k
 E.g., popular words in the word count example

 Can save network time by
pre-aggregating values in
the mapper:
 combine(k, list(v1)) (k,v2)
 Combiner is usually the same

as the reduce function
 Works only if reduce

function is commutative and associative

34U Kang

Refinement: Combiners

 Works only if reduce
function is commutative and associative
 Commutative (e.g. x * y = y * x)
 Associative (e.g. (x*y)*z = x *(y*z))

 When shouldn’t we use? Examples?

35U Kang

Refinement: Combiners

 Back to our word counting example:
 Combiner combines the values of all keys of a single m

achine:

 Much less data need to be copied and shuffled!

36U Kang

Refinement: Partition Function

 Want to control how keys get partitioned
 Inputs to map tasks are created by contiguous splits of

input file
 Reduce needs to ensure that records with the same int

ermediate key end up at the same worker
 Partition function: key -> reduce task id
 System uses a default partition function:
 hash(key) mod R

 Sometimes useful to override the hash function:
 E.g., hash(hostname(URL)) mod R ensures URLs from

a host end up in the same output file

(R: # of reduce tasks)

37U Kang

Conclusion

 MapReduce : a simplified model for large scale co
mputation
 Hides the details of parallelization, fault-tolerance, dat

a distribution, and load balancing

 Used widely in industry as well as academia

38U Kang

Questions?

	슬라이드 번호 1
	Outline
	MapReduce
	Single Node Architecture
	Motivation: Google Example
	Cluster Architecture
	슬라이드 번호 7
	Large-scale Computing
	Idea and Solution
	Storage Infrastructure
	Distributed File System
	Distributed File System
	슬라이드 번호 13
	Task: Word Count
	MapReduce: Overview
	MapReduce: Example
	MapReduce: The Map Step
	MapReduce: The Reduce Step
	More Specifically
	MapReduce: Word Counting
	Word Count Using MapReduce
	Map-Reduce: Environment
	Map-Reduce: A diagram
	Map-Reduce: In Parallel
	Map-Reduce
	Data Flow
	Coordination: Master
	Dealing with Failures
	How many Map and Reduce jobs?
	Task Granularity & Pipelining
	Refinements: Backup Tasks
	Refinements: Backup Tasks
	Refinement: Combiners
	Refinement: Combiners
	Refinement: Combiners
	Refinement: Partition Function
	Conclusion
	슬라이드 번호 38

