

Introduction to Data Mining

Lecture #3: MapReduce-1

U Kang Seoul National University

MapReduce

 Much of the course will be devoted to large scale computing for data mining

Challenges:

- How to distribute computation?
- Distributed/parallel programming is hard

Map-reduce addresses all of the above

- Google's computational/data manipulation model
- Elegant way to work with big data

Single Node Architecture

Machine Learning, Statistics

"Classical" Data Mining

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!

Today, a standard architecture for such problems is emerging:

- Cluster of commodity Linux nodes
- Commodity network (ethernet) to connect them

Cluster Architecture

Each rack contains 16-64 nodes

In 2011, Google used ~1M machines, http://bit.ly/Shh0RO

U Kang

Large-scale Computing

Large-scale computing for data mining problems on commodity hardware

Challenges:

- How do you distribute computation?
- How can we make it easy to write distributed program s?
- Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - □ 1,000 machines fail every day!

Idea and Solution

- Issue: Copying data over a network takes time
 Idea:
 - Bring computation close to the data
 - Store files multiple times for reliability
- Map-reduce addresses these problems
 - Google's computational/data manipulation model
 - Elegant way to work with big data
 - Storage Infrastructure File system
 - Google: GFS. Hadoop (open source): HDFS
 - Programming model
 - Map-Reduce

Storage Infrastructure

Problem:

□ If nodes fail, how to store data persistently?

Answer:

- **Distributed File System (DFS):**
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;

Typical usage pattern

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

Distributed File System

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated

Client library for file access

- Talks to master to find chunk servers
- Connects to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation to the data! \Leftrightarrow data to computer

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

Sample application:

Analyze web server logs to find popular URLs

9/1/99, 10:46:11, 1578, 509, 5397, 200, 0, GET, /cfdocs/akonline/paintbrush.JPG, -, 9/1/99, 10:46:49, 37703, 577, 24402, 200, 0, GET, /cfdocs/akonline/email_book.cfm, tfirstname=francis&tlastname=smitt&tid=270&PASSWORD=teachme&USERNAME=francis, 9/1/99, 10:49:11, 181500, 579, 114331, 200, 0, GET, /cfdocs/akonline/update_table.cfm, tfirstname=francis&tlastname=smitt&tid=270&PASSWORD=teachme&USERNAME=francis, 9/1/99, 10:52:04, 354641, 662, 163301, 200, 64, GET, /cfdocs/AKONLINE/assess/PAT118.pdf

Task: Word Count

Case 1 (easy)

 File too large for memory, but all <word, count> pairs fit in memory

Case 2 (hard)

Both file and all <word, count> pairs do not fit in memory

- Count occurrences of words:
 - words(doc.txt) | sort | uniq -c
 - □ where **words** takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

MapReduce: Example

Assume the words are fruit names

HDFS

MapReduce: The Map Step

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - □ Map(k, v) \rightarrow <k', v'>*
 - Takes a key-value pair and outputs a set of key-value pairs
 - □ E.g., key is the filename, value is a single line in the file
 - There is one Map function call for every (k, v) pair (input)
 - □ Reduce(k', $\langle v' \rangle^*$) $\rightarrow \langle k', v'' \rangle^*$
 - All values v' with same key k' are reduced together and processed
 - There is one Reduce function call per unique key k'

MapReduce: Word Counting

	Provided by the programmer		Provided by the programmer
	MAP: Read input and produces a set of key-value pairs	Group by key: Collect all pairs with same key	Reduce: Collect all values belonging to the key and output
The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long term space based man/mache partnership	(The, 1) (crew, 1) (of, 1) (the, 1) (space, 1) (shuttle, 1)	(crew, 1) (crew, 1) (space, 1) (the, 1) (the, 1) (the, 1)	(crew, 2) (space, 1) (the, 3) (shuttle, 1) (recently, 1)
"The work we're doing now the robotics we're doing - - is what we're going to need	(Endeavor, 1) (recently, 1) 	(shuttle, 1) (recently, 1) 	
Big document	(key, value)	(key, value)	(key, value)

U Kang

20

Word Count Using MapReduce

map(key, value):

```
// key: document name; value: text of the document
  for each word w in value:
    emit(w, 1)
```

```
reduce(key, values):
// key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```


Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work UKang 24

Map-Reduce

- Programmer specifies:
 - Map and Reduce and input files
- Workflow:
 - Read inputs as a set of key-value-pairs
 - Map transforms input kv-pairs into a ne w set of k'v'-pairs
 - Sorts & Shuffles the k'v'-pairs to output n odes
 - All k'v'-pairs with a given k' are sent to t he same reduce
 - Reduce processes all k'v'-pairs grouped b y key into new k''v''-pairs
 - Write the resulting pairs to files
- All phases are distributed with many t asks doing the work

- Input and final output are stored on a distribute d file system (FS):
 - Scheduler tries to schedule map tasks "close" to physic al storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the lo cation and sizes of its *R* intermediate files, one for eac h reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failur es

Dealing with Failures

Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted on another worker

Master failure

MapReduce task is aborted and client is notified

We want the way was and way was a set of the way was and way was a set of the way was a set o

M map tasks, R reduce tasks

Rule of a thumb:

- Make *M* much larger than the number of nodes in th e cluster
- One DFS chunk per map is common
- Improves dynamic load balancing and speeds up rec overy from worker failures
- Usually R is smaller than M
 - Because output is spread across *R* files (each reduce task creates one file in DFS)

Task Granularity & Pipelining

Fine granularity tasks: map tasks >> machines

- Minimizes time for fault recovery
- Can do pipeline shuffling with map execution
- Better dynamic load balancing

Process	Time		>						
User Program	MapReduce() wait								
Master	Assign tasks to worker machines								
Worker 1		Map 1	Map 3						
Worker 2			Map	2					
Worker 3			Read 1.1	Read 1.3		Read 1.2		Redu	ce 1
Worker 4			Read 2.1			Read 2.2	Read	l 2.3	Reduce 2
			•	shuffle					

Refinements: Backup Tasks

Problem

- Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - A machine may be slow
 - Bad disks
 - Weird things

[YongChul Kwon et al, SkewTune: Mitigating Skew in MapReduce Applications, SIGMOD 2012] UKang 31

Refinements: Backup Tasks

Solution

Near end of phase, spawn backup copies of tasks

Whichever one finishes first "wins"

Effect

 Shortens job completion time

[YongChul Kwon et al, SkewTune: Mitigating Skew in MapReduce Applications, SIGMOD 2012] UKang 32

Refinement: Combiners

Often a Map task will produce many pairs of the f orm (k,v₁), (k,v₂), ... for the same key k

E.g., popular words in the word count example

- Can save network time by pre-aggregating values in the mapper
 - □ combine(k, list(v₁)) → (k,v₂)
 - Combiner is usually the same as the reduce function
- Works only if reduce function is commutative and associative

Refinement: Combiners

- Works only if reduce function is commutative and associative
 - Commutative (e.g. x * y = y * x)
 - □ Associative (e.g. $(x^*y)^*z = x^*(y^*z)$)
- When shouldn't we use? Examples?

Refinement: Combiners

Back to our word counting example:

 Combiner combines the values of all keys of a single m achine:

Much less data need to be copied and shuffled!

Refinement: Partition Function

Want to control how keys get partitioned

- Inputs to map tasks are created by contiguous splits of input file
- Reduce needs to ensure that records with the same int ermediate key end up at the same worker
- Partition function: key -> reduce task id
- System uses a default partition function:
 hash(key) mod R
 (R: # of reduce tasks)
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

Conclusion

- MapReduce : a simplified model for large scale co mputation
 - Hides the details of parallelization, fault-tolerance, dat a distribution, and load balancing
- Used widely in industry as well as academia

Questions?