
1U Kang

Introduction to Data Mining

Lecture #3: MapReduce-1

U Kang
Seoul National University



2U Kang

Outline

MapReduce



3U Kang

MapReduce

 Much of the course will be devoted to 
large scale computing for data mining

 Challenges:
 How to distribute computation?
 Distributed/parallel programming is hard

 Map-reduce addresses all of the above
 Google’s computational/data manipulation model
 Elegant way to work with big data



4U Kang

Single Node Architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining



5U Kang

Motivation: Google Example

 20+ billion web pages x 20KB = 400+ TB
 1 computer reads 30-35 MB/sec from disk
 ~4 months to read the web

 ~1,000 hard drives to store the web
 Takes even more to do something useful 

with the data!
 Today, a standard architecture for such problems 

is emerging:
 Cluster of commodity Linux nodes
 Commodity network (ethernet) to connect them



6U Kang

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between 
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011, Google used ~1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO


7U Kang 7



8U Kang

Large-scale Computing

 Large-scale computing for data mining 
problems on commodity hardware

 Challenges:
 How do you distribute computation?
 How can we make it easy to write distributed program

s?
 Machines fail:

 One server may stay up 3 years (1,000 days)
 If you have 1,000 servers, expect to loose 1/day
 People estimated Google had ~1M machines in 2011

 1,000 machines fail every day!



9U Kang

Idea and Solution

 Issue: Copying data over a network takes time
 Idea:
 Bring computation close to the data
 Store files multiple times for reliability

 Map-reduce addresses these problems
 Google’s computational/data manipulation model
 Elegant way to work with big data
 Storage Infrastructure – File system

 Google: GFS. Hadoop (open source): HDFS

 Programming model
 Map-Reduce



10U Kang

Storage Infrastructure

 Problem:
 If nodes fail, how to store data persistently? 

 Answer:
 Distributed File System (DFS):

 Provides global file namespace
 Google GFS; Hadoop HDFS;

 Typical usage pattern
 Huge files (100s of GB to TB)
 Data is rarely updated in place
 Reads and appends are common



11U Kang

Distributed File System

 Chunk servers
 File is split into contiguous chunks
 Typically each chunk is 16-64MB
 Each chunk replicated (usually 2x or 3x)
 Try to keep replicas in different racks

 Master node
 a.k.a. Name Node in Hadoop’s HDFS
 Stores metadata about where files are stored
 Might be replicated

 Client library for file access
 Talks to master to find chunk servers 
 Connects to chunk servers to access data



12U Kang

Distributed File System

 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines 
 Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation to the data!  data to computer

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers



13U Kang

Warm-up task:
 We have a huge text document
 Count the number of times each 

distinct word appears in the file
 Sample application: 
 Analyze web server logs to find popular URLs

Programming Model: MapReduce



14U Kang

Task: Word Count

Case 1 (easy)
 File too large for memory, but all <word, count> pairs fit in 

memory

Case 2 (hard)
 Both file and all <word, count> pairs do not fit in memory
 Count occurrences of words:

 words(doc.txt) | sort | uniq -c
 where words takes a file and outputs the words in it, one per a line

 Case 2 captures the essence of MapReduce
 Great thing is that it is naturally parallelizable



15U Kang

MapReduce: Overview

 Sequentially read a lot of data
 Map:
 Extract something you care about

 Group by key: Sort and Shuffle
 Reduce:
 Aggregate, summarize, filter or transform

 Write the result
Outline stays the same, Map and 
Reduce change to fit the problem



16U Kang

MapReduce: Example
 Assume the words are fruit names

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

(apple, 1)(apple, 1) (strawberry,1)

(apple, 2) (orange, 1)
(strawberry, 1)

(orange, 1)

HDFS

HDFS

map( fruit ) {
output(fruit, 1);

}

reduce( fruit, v[1..n] ) {
for(i=1; i <=n; i++)

sum = sum + v[i];
output(fruit, sum);

}



17U Kang

MapReduce: The Map Step

vk

k v

k v
map

vk

vk

…
k v

map

Input
key-value pairs

Intermediate
key-value pairs

…

k v



18U Kang

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

Group
by key

reduce

reduce
k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output 
key-value pairs



19U Kang

More Specifically

 Input: a set of key-value pairs
 Programmer specifies two methods:
 Map(k, v) → <k’, v’>*

 Takes a key-value pair and outputs a set of key-value pairs
 E.g., key is the filename, value is a single line in the file

 There is one Map function call for every (k,v) pair (input)

 Reduce(k’, <v’>*) → <k’, v’’>*
 All values v’ with same key k’ are reduced together 

and processed
 There is one Reduce function call per unique key k’



20U Kang

MapReduce: Word Counting

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing -
- is what we're going to
need ……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and 

produces a set of 
key-value pairs

Group by 
key:

Collect all pairs 
with same key

Reduce:
Collect all values 
belonging to the 
key and output

(key, value)

Provided by the 
programmer

Provided by the 
programmer

(key, value)(key, value)

Se
qu

en
tia

lly
 re

ad
 th

e 
da

ta
O

nl
y 

 
se

qu
en

tia
l  

  r
ea

ds



21U Kang

Word Count Using MapReduce

map(key, value):
// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)



22U Kang

Map-Reduce: Environment

Map-Reduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a 

set of machines
 Performing the group by key step
 Handling machine failures
 Managing required inter-machine communication



23U Kang

Map-Reduce: A diagram
Big document

MAP:
Read input and 

produces a set of 
key-value pairs

Group by 
key:

Collect all pairs 
with same key
(Hash merge, 
Shuffle, Sort, 

Partition)

Reduce:
Collect all values 
belonging to the 
key and output



24U Kang

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work



25U Kang

Map-Reduce

 Programmer specifies:
 Map and Reduce and input files

 Workflow:
 Read inputs as a set of key-value-pairs
 Map transforms input kv-pairs into a ne

w set of k'v'-pairs
 Sorts & Shuffles the k'v'-pairs to output n

odes
 All k’v’-pairs with a given k’ are sent to t

he same reduce
 Reduce processes all k'v'-pairs grouped b

y key into new k''v''-pairs
 Write the resulting pairs to files

 All phases are distributed with many t
asks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle



26U Kang

Data Flow

 Input and final output are stored on a distribute
d file system (FS):
 Scheduler tries to schedule map tasks “close” to physic

al storage location of input data

 Intermediate results are stored on local FS
of Map and Reduce workers

 Output is often input to another 
MapReduce task



27U Kang

Coordination: Master

 Master node takes care of coordination:
 Task status: (idle, in-progress, completed)
 Idle tasks get scheduled as workers become available
 When a map task completes, it sends the master the lo

cation and sizes of its R intermediate files, one for eac
h reducer

 Master pushes this info to reducers

 Master pings workers periodically to detect failur
es



28U Kang

Dealing with Failures

 Map worker failure
 Map tasks completed or in-progress at 

worker are reset to idle
 Reduce workers are notified when task is rescheduled 

on another worker

 Reduce worker failure
 Only in-progress tasks are reset to idle 
 Reduce task is restarted on another worker

 Master failure
 MapReduce task is aborted and client is notified



29U Kang

How many Map and Reduce jobs?

 M map tasks, R reduce tasks
 Rule of a thumb:
 Make M much larger than the number of nodes in th

e cluster
 One DFS chunk per map is common
 Improves dynamic load balancing and speeds up rec

overy from worker failures

 Usually R is smaller than M
 Because output is spread across R files (each reduce 

task creates one file in DFS)



30U Kang

Task Granularity & Pipelining

 Fine granularity tasks: map tasks >> machines
 Minimizes time for fault recovery
 Can do pipeline shuffling with map execution
 Better dynamic load balancing 

: shuffle



31U Kang

Refinements: Backup Tasks

 Problem
 Slow workers significantly lengthen the job completion 

time:
 Other jobs on the machine
 A machine may be slow
 Bad disks
 Weird things

[YongChul Kwon et al, SkewTune: Mitigating 
Skew in MapReduce Applications, SIGMOD 2012]



32U Kang

Refinements: Backup Tasks

 Solution
 Near end of phase, spawn backup copies of tasks

 Whichever one finishes first “wins”

 Effect
 Shortens job completion 

time

[YongChul Kwon et al, SkewTune: Mitigating 
Skew in MapReduce Applications, SIGMOD 2012]



33U Kang

Refinement: Combiners

 Often a Map task will produce many pairs of the f
orm (k,v1), (k,v2), … for the same key k
 E.g., popular words in the word count example

 Can save network time by 
pre-aggregating values in 
the mapper:
 combine(k, list(v1))  (k,v2)
 Combiner is usually the same 

as the reduce function
 Works only if reduce 

function is commutative and associative



34U Kang

Refinement: Combiners

 Works only if reduce 
function is commutative and associative
 Commutative  (e.g.  x * y = y * x)
 Associative (e.g.     (x*y)*z = x *(y*z) )

 When shouldn’t we use?  Examples?



35U Kang

Refinement: Combiners

 Back to our word counting example:
 Combiner combines the values of all keys of a single m

achine:

 Much less data need to be copied and shuffled!



36U Kang

Refinement: Partition Function

 Want to control how keys get partitioned
 Inputs to map tasks are created by contiguous splits of 

input file
 Reduce needs to ensure that records with the same int

ermediate key end up at the same worker
 Partition function: key -> reduce task id
 System uses a default partition function:
 hash(key) mod R

 Sometimes useful to override the hash function:
 E.g., hash(hostname(URL)) mod R ensures URLs from 

a host end up in the same output file

(R: # of reduce tasks)



37U Kang

Conclusion

 MapReduce : a simplified model for large scale co
mputation
 Hides the details of parallelization, fault-tolerance, dat

a distribution, and load balancing

 Used widely in industry as well as academia



38U Kang

Questions?


	슬라이드 번호 1
	Outline
	MapReduce
	Single Node Architecture
	Motivation: Google Example
	Cluster Architecture
	슬라이드 번호 7
	Large-scale Computing
	Idea and Solution
	Storage Infrastructure
	Distributed File System
	Distributed File System
	슬라이드 번호 13
	Task: Word Count
	MapReduce: Overview
	MapReduce: Example
	MapReduce: The Map Step
	MapReduce: The Reduce Step
	More Specifically
	MapReduce: Word Counting
	Word Count Using MapReduce
	Map-Reduce: Environment
	Map-Reduce: A diagram
	Map-Reduce: In Parallel
	Map-Reduce
	Data Flow
	Coordination: Master
	Dealing with Failures
	How many Map and Reduce jobs?
	Task Granularity & Pipelining
	Refinements: Backup Tasks
	Refinements: Backup Tasks
	Refinement: Combiners
	Refinement: Combiners
	Refinement: Combiners
	Refinement: Partition Function
	Conclusion
	슬라이드 번호 38

