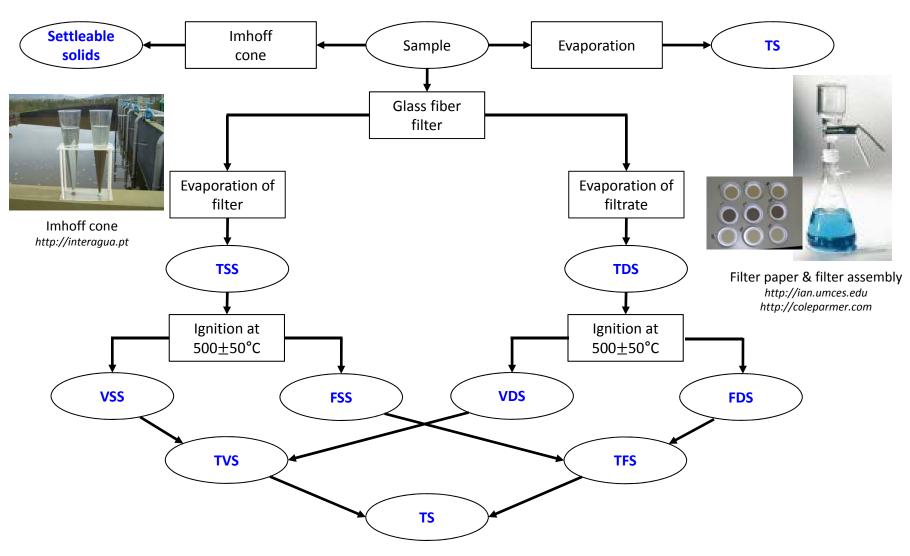
Physical characteristics of water

Solids

All constituents of water other than water and dissolved gases


Dissolved vs. suspended

- Penetrates vs. retained on a filter
- Filter with a pore size of $0.45 2 \mu m$ is used

Fixed vs. volatile

- Remains vs. volatilized at $500\pm50^{\circ}$ C
- Volatile solids are considered to be <u>organic</u>: used to differentiate organics and inorganics

Solids – content analysis

Solids content analysis

Q: The following test results were obtained for a wastewater sample. All the tests were performance using a sample size of 50 mL. Determine the concentrations of TS, TVS, TSS, VSS, TDS, and VDS.

```
Mass of evaporating dish = 53.5433 g

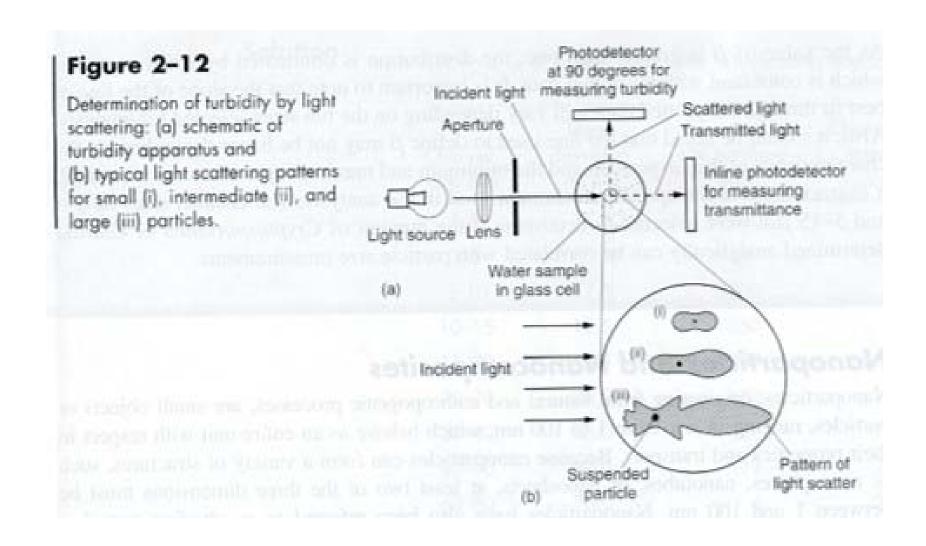
Mass of evaporating dish + residue after evaporation at 105^{\circ}C = 53.5794 g

Mass of evaporating dish + residue after ignition at 500^{\circ}C = 53.5625 g

Mass of filter paper after drying at 105^{\circ}C = 1.5433 g

Mass of filter paper + residue after drying at 105^{\circ}C = 1.5554 g

Mass of filter paper + residue after ignition at 500^{\circ}C = 1.5476 g
```


Turbidity

- A measure of clarity of water
- Unit: nephelometric turbidity units (NTU)
- Measured by the intensity of light scattered by a water sample
- Suspended and colloidal matter increases turbidity
 - No general, direct relationship between TSS and turbidity, but at certain conditions, turbidity may be used to estimate TSS

```
TSS, mg/L \cong TSS_f \times T
TSS_f = conversion factor, mg TSS/L/NTU
T = turbidity, NTU;
ex: 2.3-2.4 for secondary effluent
```

Turbidity can be measure real-time, on-line (TSS cannot)

Turbidity

Color

- Natural water may have yellowish color
 - Major contributor: DOM
- Fresh wastewater is in light brownish-gray color; as anaerobic condition develops, the water gets darker and eventually turn black (septic water)

Light absorption

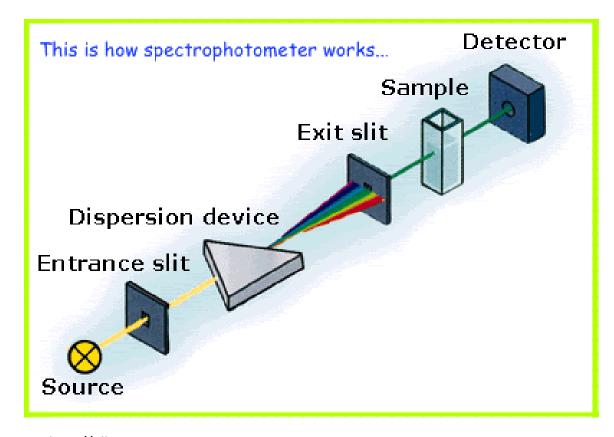
Absorbance

- A measure of the amount of light absorbed by the constituents in a solution
- Typically measured at a wavelength of 254 nm using a spectrophotometer
- Function of solute property, concentration, light path length, and light wavelength

```
A(\lambda) = \log_{10}(I/I_0) = \varepsilon(\lambda)Cx
```

```
A(\lambda) = absorbance at wavelength \lambda (unitless) 

I = light intensity at distance x from the light source (mW/cm²) 


I_0 = light intensity at light source (mW/cm²) 

\varepsilon(\lambda) = molar absorptivity of the light-absorbing solute at wavelength \lambda (L/mole-cm) 

C = concentration of light-absorbing solute (mole/L) 

x = light path length (cm)
```

Light absorption

Absorptivity

$$k(\lambda) = \frac{A(\lambda)}{x} = \varepsilon(\lambda)C$$

 $k(\lambda)$ = absorptivity (cm⁻¹)

http://allcars.pw

Odor

- Offensive odor usually occur in anaerobic conditions
- Quite subjective property

Odorous compounds in water

Odorous compound	Chemical formula	Odor quality
Amines	CH_3NH_2 , $(CH_3)_3H$	Fishy
Ammonia	NH ₃	Ammoniacal
Diamines	$NH_2(CH_2)_4NH_2$, $NH_2(CH_2)_5NH_2$	Decayed flesh
Hydrogen sulfide	H ₂ S	Rotten eggs
Mercaptans	CH_3SH , $CH_3(CH_2)SH$, $(CH_3)_3CSH$, $CH_3(CH_2)_3SH$	Decayed cabbage or skunk
Organic sulfides	$(CH_3)_2S$, $(C_6H_5)_2S$	Rotten cabbage
Skatole	C_9H_9N	Fecal matter

Temperature

- Chemical and biochemical reaction rates increase with temperature
 - van't Hoff-Arrhenius relationship

$$rac{d(\ln k)}{dT} = rac{E}{RT^2}$$
 k = reaction rate constant T = temperature (K) E = activation energy (J/mole) R = ideal gas constant (8.314 J/mole-K)

- Modification of van't Hoff-Arrhenius relationship For a practical range of water temperature, $E/RT^2 \approx constant$

$$\frac{k_2}{k_1} = \theta^{(T_2 - T_1)}$$
 k_1 = reaction rate at T_1
 k_2 = reaction rate at T_2
 θ = temperature coefficient

Temperature

- Gas solubility decrease with temperature
 ex) saturated dissolved oxygen DO: 13.1 mg/L @ 4°C, 9.1 mg/L @ 20°C,
 7.5 mg/L @ 30°C
- Most organisms have distinct temperature ranges within which they reproduce and compete
- Slightly higher temp. in domestic wastewater and much higher temp. in cooling water → can damage aquatic ecosystem
 - Low saturation DO, faster oxygen consumption rate by microorganisms
 → DO depletion
 - Direct effect of temperature increase on aquatic organisms
- Heat recovery from wastewater of current interest