
U Kang

Reinforcement Learning

Finite Markov Decision Process

U Kang
Seoul National University

U Kang

In This Lecture

 Markov Decision Process
 Definition
 Return, state, and action
 Policy and value functions
 Optimality and approximation

U Kang

Overview

 Markov Decision Process (MDP)
 A classical formalization of sequential decision making,

where actions influence not just immediate rewards, but
also subsequent situations, or states, and through those
future rewards

 Involve delayed reward and the need to tradeoff
immediate and delayed reward

 Estimate 𝑞∗(𝑠, 𝑎) for each action a in each state s, or the
value 𝑣∗(𝑠) of each state given optimal action selections

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Agent-Environment Interface

 Objective: learning from interaction to achieve a
goal

 Agent: the learner and decision maker
 Environment: everything outside the agent
 Environment gives rewards, special numerical

values that the agent seeks to maximize over time

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Agent-Environment Interface

 Consider a sequence of time steps, t = 0, 1, 2, …
 At each time t, the agent receives state 𝑆𝑡 and

reward 𝑅𝑡 (when t != 0), and on that basis selects
an action 𝐴𝑡

 One step later, the agent receives state 𝑆𝑡+1 and
reward 𝑅𝑡+1, and on that basis selects an action
𝐴𝑡+1

 Sequence of interactions
 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, …

U Kang

MDP

 Finite MDP
 States, actions, and rewards are finite
 𝑝 𝑠′, 𝑟 𝑠, 𝑎 = 𝑃{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}

 The probability distribution 𝑝 defines the dynamics of
MDP
 𝑝: 𝑆 × 𝑅 × 𝑆 × 𝐴 → [0,1]

 σ𝑠′ σ𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 = 1, for all 𝑠, 𝑎

 The probability 𝑝 𝑠′, 𝑟 𝑠, 𝑎 depends only on the
preceding state and action, not earlier ones
 Markov property

U Kang

MDP

 From 𝑝 𝑠′, 𝑟 𝑠, 𝑎 , we can compute anything we
want to know about the environment
 State-transition probabilities

 𝑝 𝑠′ 𝑠, 𝑎 = 𝑃 𝑆𝑡 = 𝑠′ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎 = σ𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

 Expected reward
 𝑟(𝑠, 𝑎) = 𝐸[𝑅𝑡|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎] = σ𝑟 𝑟 σ𝑠′ 𝑝(𝑠

′, 𝑟|𝑠, 𝑎)

 Expected reward for state-action-next state

 𝑟(𝑠, 𝑎, 𝑠′) = 𝐸[𝑅𝑡|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎, 𝑆𝑡 = 𝑠′] = σ𝑟 𝑟
𝑝(𝑠′,𝑟|𝑠,𝑎)

𝑝 𝑠′ 𝑠, 𝑎

U Kang

Flexibility of MDP

 The time steps need not refer to fixed intervals of
real time; they can refer to arbitrary successive
stages of decision making and acting

 The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or
high-level decisions, such as whether or not to
have lunch or to go to graduate school

 The states can take a wide variety of forms. E.g.,
low-level sensor readings, or high-level symbolic
descriptions of objects in a room

U Kang

Agent-Environment Boundary

 Different from physical boundary
 The motors and mechanical linkages of a robot and its

sensing hardware should usually be considered parts of
the environment rather than parts of the agent

 Anything that cannot be changed arbitrarily by the
agent is considered to be outside of it and thus
part of its environment

 The agent–environment boundary represents the
limit of the agent’s absolute control, not of its
knowledge

U Kang

Abstraction by MDP

 MDP: a considerable abstraction of the problem of
goal-directed learning from interaction

 Any problem of learning goal-directed behavior
can be reduced to three signals between agent
and environment
 Actions: choices made by the agent
 States: basis on which the choices are made
 Rewards: the agent’s goal

U Kang

Example: Bioreactor

 Goal: determine moment-by-moment temperatures and
stirring rates for a bioreactor (a large vat of nutrients and
bacteria used to produce useful chemicals)

 Actions: target temperatures and target stirring rates
 Represented as a vector

 States: thermocouple and other sensory readings, perhaps
filtered and delayed, plus symbolic inputs representing the
ingredients in the vat and the target chemical
 Represented as a vector

 Rewards: moment-by-moment measures of the rate at
which the useful chemical is produced by the bioreactor
 Represented as a scalar

U Kang

Example: Pick-and-Place Robot

 Goal: control the motion of a robot arm in a repetitive pick-
and-place task, to learn movements that are fast and
smooth

 Actions: voltages applied to each motor at each joint
 States: latest readings of joint angles and velocities
 Reward: +1 for each object successfully picked up and

placed
 To encourage smooth movements, on each time step a small,

negative reward can be given as a function of the moment-to-
moment “jerkiness” of the motion.

U Kang

Example: Recycling Robot

 A mobile robot collecting empty soda cans,
running on a rechargeable battery

 State: battery level (high, low)
 Actions: search (for a can), wait (for someone to

bring a can), recharge (its battery)
 Actions sets

 A(high) = {search, wait}
 A(low) = {search, wait, recharge}

U Kang

Example: Recycling Robot

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Goals and Rewards

 Reward hypothesis: the goal of an agent is to
maximize the expected value of the cumulated
reward

 This has proved to be flexible and widely
applicable

U Kang

Examples

 Making a robot learn to walk
 Reward: proportional to the robot’s forward motion, on each time step

 Making a robot learn how to escape from a maze
 Reward: −1 for every time step that passes prior to escape; this

encourages the agent to escape as quickly as possible
 Making a robot learn to find and collect empty soda cans for

recycling
 Reward: 0 most of the time, and +1 for each can collected. One might

also want to give the robot negative rewards when it bumps into
things or when somebody yells at it

 Learning to play chess
 Reward: +1 for winning, −1 for losing, and 0 for drawing and for all

nonterminal positions

U Kang

Maximizing Rewards

 The agent always learns to maximize its long-term reward
 If we want it to do something for us, we must provide

rewards to it in such a way that in maximizing them the
agent will also achieve our goals.

 Reward signal is not the place to impart to the agent prior
knowledge about how to achieve what we want it to do
 E.g., a chess-playing agent should be rewarded only for actually

winning, not for achieving subgoals such as taking its opponent’s
pieces or gaining control of the center of the board

 Exploiting prior knowledge on how: initial policy or value functions
 Reward signal is your way of communicating to the robot

what you want it to achieve, not how you want it achieved

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Returns and Episodes

 Agent’s goal: maximize the cumulative rewards in
the long run

 Maximize expected return 𝐺𝑡
 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 +⋯+ 𝑅𝑇
 T: final time step

 What is the implication of T?

U Kang

Returns and Episodes

 Episode (trial): separated subsequence in agent-
environment interaction
 Plays of a game
 Trips through a maze
 Any sort of repeated interaction

 Each episode ends in a special terminal state, followed by a
reset to a starting state

 Each episode may give different rewards

U Kang

Returns and Episodes

 Episodic tasks: tasks with episodes
 𝑆: set of all nonterminal states
 𝑆+: set of all states plus the terminal state

 Continuing tasks
 Agent-environment interaction does not break into episodes, but

goes on continually without limit
 E.g., a robot with a long life span
 The return may be infinite; thus we need a concept of discounting

U Kang

Returns and Episodes

 An agent selects actions to maximize the sum of discounted
rewards
 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ = σ𝑘=0

∞ 𝛾𝑘 𝑅𝑡+𝑘+1
 𝛾: discount rate in [0, 1]

 Returns at successive time steps are related to each other
 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 +⋯

= 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + 𝛾𝑅𝑡+3 + 𝛾2𝑅𝑡+4 +⋯)

= 𝑅𝑡+1 + 𝛾𝐺𝑡+1

U Kang

Returns and Episodes

 Discount rate determines the present value of future
rewards
 A reward received k time steps in the future is worth only 𝛾𝑘−1 times

what it would be worth if it were received immediately
 If 𝛾 < 1, 𝐺𝑡 is finite as long as reward sequence {𝑅𝑘} is bounded

 If the reward is constant +1, then 𝐺𝑡 = σ𝑘=0
∞ 𝛾𝑘 =

1

1−𝛾

 If 𝛾 = 0, the agent concerns only on the immediate rewards
 As 𝛾 approaches 1, the agent becomes more far-sighted

U Kang

Example: Pole-Balancing

 Objective: apply forces to a cart moving along a track to
keep a pole hinged to the cart from falling over

 Failure: if the pole falls past a given angle from vertical or if
the cart runs off the track

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Pole-Balancing

 Episodic task formulation
 Reward +1 for every time step on which failure did not occur

 Continuing task formulation (with discounting)
 Reward −1 on each failure and 0 at all other times
 The return at each time is related to −𝛾𝐾, where K is the number of

time steps before failure

 In either case, the return is maximized by keeping the pole
balanced for as long as possible

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Episodic and Continuing Tasks

 Agent-environment interaction
 Episodic tasks: interaction is broken into separate

episodes
 Continuing tasks

 It is useful to establish one notation to refer to
both episodic and continuing tasks

U Kang

Episodic and Continuing Tasks

 Absorbing state
 Transitions only to itself and generates only rewards of 0
 Useful to unify episodic and continuing tasks

 Setting 𝑇 = 3 or 𝑇 = ∞ give the same result

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Episodic and Continuing Tasks

 Unified notations for episodic and continuing tasks
 𝐺𝑡 = σ𝑘=𝑡+1

𝑇 𝛾𝑘−𝑡−1𝑅𝑘
 Episodic tasks: 𝛾 = 1

 𝑇 can be finite, or 𝑇 = ∞ with an absorbing state
 Continuing tasks: 𝛾 < 1, 𝑇 = ∞

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Policies and Value Functions

 Almost all RL algorithms involve estimating value
functions
 Value function: map a state (or state-action pair) to a

value representing how good it is in terms of expected
return

 The rewards the agent can expect to receive in the
future depend on what actions it will take; thus
value functions are defined with respect to
particular ways of acting, called policies

U Kang

Policies and Value Functions

 Policy: a mapping from a state to probabilities of
selecting each action
 𝜋(𝑎|𝑠): the probability of selecting 𝐴𝑡 = 𝑎, if 𝑆𝑡 = 𝑠

U Kang

Policies and Value Functions

 Value function
 State-value function for policy 𝜋: expected return when

starting in s and following 𝜋 thereafter
 𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝐸𝜋 σ𝑘=0

∞ 𝛾𝑘 𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

 Action-value function for policy 𝜋: expected return when
starting in s, taking action a, and following 𝜋 thereafter
 𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 =

𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘 𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 The value of the final state is always 0

U Kang

Policies and Value Functions

 Value functions 𝑣𝜋 and 𝑞𝜋 can be estimated from
experience
 Monte Carlo methods: average over many random

samples of actual returns
 𝑣𝜋(𝑠): maintain average of the actual returns that have followed

the state
 𝑞𝜋(𝑠, 𝑎): maintain average of the actual returns that have

followed the state and the action
 Function approximator

 Monte Carlo method is limited when there are many states
 Maintain 𝑣𝜋 and 𝑞𝜋 as parameterized functions (with fewer

parameters than states)
 Learn parameters to better match the observed returns

U Kang

Value Function

 Recursive relationship of value functions 𝑣𝜋
 𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝐸𝜋 σ𝑘=0

∞ 𝛾𝑘 𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

= 𝐸𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′ σ𝑟 𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝐸𝜋 𝐺𝑡+1 𝑆𝑡+1 = 𝑠′]

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

 The value function 𝑣𝜋 is the unique solution to its Bellman equation
Bellman equation for 𝑣𝜋

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Gridworld

 State: each cell
 Actions: north, south, east, and west
 Rewards: +10 (A -> A’), +5 (B -> B’), -1 for “off the grid”, and

0 otherwise

𝑣𝜋(𝑠) for equiprobable random policy,

when 𝛾 = 0.9

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Gridworld

 Observations
 Value of A is less than 10; Value of B is greater than 5
 Value of A’ is negative
 Upper cells have higher values than bottom cells

𝑣𝜋(𝑠) for equiprobable random policy,

when 𝛾 = 0.9

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Golf

 State: location of the ball
 Action: club (, and direction)
 Reward: -1 for each stroke

until hitting the ball into the
hole

 Observations
 𝑣𝑝𝑢𝑡𝑡

 Shorter gaps of values than in driver
 −∞ value for sand

 𝑞∗(𝑠, 𝑑𝑟𝑖𝑣𝑒𝑟)
 Best action-value for ‘driver’ action

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Optimal Policies and Values

 The goal of RL is to find a policy that achieves the best
reward in the long run

 A policy is better than the other if its expected return is
greater than the other for all states
 𝜋 ≥ 𝜋′ iff 𝑣𝜋(𝑠) ≥ 𝑣𝜋′(𝑠), for all s

 Optimal policy 𝜋∗: better than or equal to all other policies
 Share the optimal state-value function 𝑣∗

 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝜋𝑣𝜋(𝑠) for all s

 Share the optimal action-value function 𝑞∗
 𝑞∗ 𝑠, 𝑎 = 𝑚𝑎𝑥𝜋𝑞𝜋(𝑠, 𝑎) for all a and s
 𝑞∗ 𝑠, 𝑎 = 𝐸[𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

U Kang

Optimal Policies and Values

 Bellman optimality equation
 The value of a state under an optimal policy must equal the

expected return for the best action from that state
 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝑎𝑞𝜋∗(𝑠, 𝑎)

= 𝑚𝑎𝑥𝑎𝐸𝜋∗ 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎𝐸𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ 𝑠′]

 𝑞∗ 𝑠, 𝑎 = 𝐸 𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎′𝑞∗(𝑆𝑡+1, 𝑎′) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′)]

U Kang

Optimal Policies and Values

 Backup diagram for 𝑣∗ and 𝑞∗

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Optimal Policies and Values

 How to find the best policy, given 𝑣∗ ?
 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ 𝑠′]

 For each state s, there will be one or more actions at which the
maximum is obtained in the Bellman optimality equation; any policy
that assigns nonzero probability only to these actions is optimal

 Can be thought of as one-step search: the actions that appear best
after a one-step search are optimal

 Greedy search: any policy that is greedy with respect to the optimal
evaluation function 𝑣∗ is optimal

 Considering the one-step consequences of actions is enough, since
𝑣∗ already takes into account the reward consequences of all
possible future behavior

U Kang

Optimal Policies and Values

 How to find the best policy, given 𝑞∗ ?
 𝑞∗ 𝑠, 𝑎 = σ𝑠′,𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′)]

 The agent does not even have to do a one-step search!
 For any state s, find any action that maximizes 𝑞∗ 𝑠, 𝑎
 The action-value function effectively caches the results of all one-

step ahead searches

U Kang

Example: Gridworld

U Kang

Example: Recycling Robot

 h, l, s, w, re: high, low, search, wait, recharge
 For any choice of 𝑟𝑠 , 𝑟𝑤, 𝛼, 𝛽, and 𝛾, with 0 ≤ 𝛾 < 1, 0 ≤ 𝛼, 𝛽 ≤ 1, there is

exactly one pair of numbers 𝑣∗(ℎ) and 𝑣∗(𝑙), that simultaneously satisfy the
following equations

 𝑣∗ ℎ = 𝑚𝑎𝑥
𝑝 ℎ ℎ, 𝑠 𝑟 ℎ, 𝑠, ℎ + 𝛾𝑣∗ ℎ + 𝑝 𝑙 ℎ, 𝑠 𝑟 ℎ, 𝑠, 𝑙 + 𝛾𝑣∗ 𝑙 ,

𝑝 ℎ ℎ, 𝑤 𝑟 ℎ, 𝑤, ℎ + 𝛾𝑣∗ ℎ + 𝑝 𝑙 ℎ, 𝑤 𝑟 ℎ, 𝑤, 𝑙 + 𝛾𝑣∗ 𝑙

= 𝑚𝑎𝑥
𝛼 𝑟𝑠 + 𝛾𝑣∗ ℎ + 1 − 𝛼 𝑟𝑠 + 𝛾𝑣∗ 𝑙 ,

1 𝑟𝑤 + 𝛾𝑣∗ ℎ + 0 𝑟𝑤 + 𝛾𝑣∗ 𝑙

= 𝑚𝑎𝑥
𝑟𝑠 + 𝛾[𝛼𝑣∗ ℎ + 1 − 𝛼 𝑣∗ 𝑙 ,

𝑟𝑤 + 𝛾𝑣∗ ℎ
.

 𝑣∗(𝑙) = 𝑚𝑎𝑥

𝛽𝑟𝑠 − 3 1 − 𝛽 + 𝛾 1 − 𝛽 𝑣∗ ℎ + 𝛽𝑣∗ 𝑙 ,

𝑟𝑤+𝛾𝑣∗ 𝑙 ,

𝛾𝑣∗ ℎ

.

U Kang

Bellman Optimality Equation

 Explicitly solving Bellman optimality equation leads to
solving the RL problem; however, it is rarely useful in
practice
 1) We do not know the exact dynamics of the environment
 2) We do not have enough computational resources to complete the

computation
 3) Markov property may not be true

 E.g., backgammon
 It has 1020 states, and thus take thousands of years to solve the

Bellman equation
 Needs approximate computation

U Kang

Bellman Optimality Equation

 Many decision-making methods can be viewed as ways of
approximately solving the Bellman optimality equation
 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ 𝑠′]

 Heuristic search method
 Expand the Bellman optimality equation several times (up to some

depth), forming a “tree” of possibilities, and then using a heuristic
evaluation function to approximate 𝑣∗ at the “leaf” nodes

 DP (dynamic programming) is more closely related to the
Bellman Optimality Equation

 Many RL methods approximately solve the Bellman
optimality equation using actual experienced transitions in
place of knowledge of the expected transitions

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Optimality and Approximation

 An agent that learns an optimal policy has done
very well, but in practice this rarely happens

 For the kinds of tasks in which we are interested,
optimal policies can be generated only with
extreme computational cost

 Optimality is an ideal that agents can only
approximate to varying degrees, due to
 Computational limitation
 Memory limitation

U Kang

Optimality and Approximation

 Computational limitation
 Chess: it is difficult to exactly solve the Bellman

optimality equation
 Memory limitation

 For small and finite states, it is possible to make a table
of storing values, policies, and models

 When there are too many states, we need parameterized
function approximation

U Kang

Optimality and Approximation

 Approximation for RL presents challenges
 In approximating optimal behavior, there may be many states that

the agent faces with such a low probability that selecting
suboptimal actions for them has little impact on the amount of
reward the agent receives

 E.g., Tesauro’s backgammon player plays with exceptional skill even
though it might make very bad decisions on board configurations
that never occur in games against experts.

 The online nature of RL makes it possible to approximate optimal
policies in ways that put more effort into learning to make good
decisions for frequently encountered states, at the expense of less
effort for infrequently encountered states

 This is one key property that distinguishes RL from other
approaches to approximately solving MDPs

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Conclusion

 RL
 Learning from interaction how to behave in order to achieve a goal
 RL agent and its environment interact over a sequence of discrete

time steps
 Actions: choices made by the agent
 States: basis for making the choices
 Rewards: the basis for evaluating the choices
 Environment: everything inside the agent is completely known and

controllable by the agent; everything outside is incompletely
controllable but may or may not be completely known

 Policy: a stochastic rule from state to action
 Agent’s goal: maximize the amount of reward it receives over time

U Kang

Conclusion

 Markov decision process (MDP)
 State, action, and reward sets with well-defined transition

probabilities
 Return: function of future rewards that the agent seeks to maximize

in expectation
 Undiscounted return: appropriate for episodic tasks
 Discounted return: appropriate for continuing tasks

U Kang

Conclusion

 Markov decision process (MDP)
 A policy’s value functions map each state, or state–action pair to the

expected return from that state, or state–action pair, given that the
agent uses the policy

 Optimal value functions: give the largest expected return achievable
by any policy

 Optimal policy: a policy whose value functions are optimal
 The optimal value functions are unique for a given MDP, but there

can be many optimal policies
 Any policy that is greedy with respect to the optimal value functions

must be an optimal policy
 Bellman optimality equations should be satisfied by the optimal

value functions; given the optimal value functions, an optimal policy
can be determined easily

U Kang

Conclusion

 Approximation
 RL agent may have complete knowledge of the environment, or

incomplete knowledge of it
 Even if the agent has a complete knowledge of the environment, the

agent cannot exactly compute it
 Computational limitation
 Memory limitation

 Approximation is the key to RL

U Kang

Exercise

 (Question 1)
 Suppose that we have a small gridworld and agent travels each state

with the equiprobable random policy. There are four actions possible in
each state, 𝐴 = 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑟𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡 , which deterministically cause
the corresponding state transitions, except that actions that would take
the agent off the grid in fact leave the state unchanged. The reward is -
1 on all transitions until the terminal state (shaded) is reached.

U Kang

Exercise

 (Question 1)
 Now, suppose a new state 15 is added to the gridworld just below state

13, and its actions, left, up, right, and down, take the agent to states 12,
13, 14, and 15, respectively. Assume that the transitions and the values
of the original states are unchanged. What is 𝑣𝜋(15) with the discount
rate 𝛾 = 0.9 for the equiprobable random policy in this case?

U Kang

Exercise

 (Answer)
 We need to calculate state-value function for state 15. Since we have

converged state-value function for all states except the new state 15,
we may calculate 𝑣𝜋 15 with the neighbor state-value functions.

 From the state-value function equation 𝑉𝜋 𝑠 =
σ𝑎∈𝐴𝜋 𝑠 𝑎 ∗ σ𝑠′∈𝑆 𝑃𝑠,𝑠′

𝑎 ∗ 𝑟 𝑠′ + 𝛾 ∗ 𝑉𝜋 𝑠′ , state-value function
for the new state 15 can be formulized as,

 𝑉𝜋 15 =
1

4
∗ [−1 + 𝛾𝑉𝜋 12 + −1 + 𝛾𝑉𝜋 13 + −1 + 𝛾𝑉𝜋 14 +

U Kang

Questions?

