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Overview

 Dynamic Programming (DP)
 Collection of algorithms that can be used to compute 

optimal policies given a perfect model of the 
environment as MDP

 Classical DP algorithms are of limited utility in RL both 
because of their assumption of a perfect model and 
because of their great computational expense, but they 
are still important theoretically

 DP provides an essential foundation for the 
understanding of most RL methods, which are attempts 
to do what DP does, but with less computation and 
without assuming a perfect model of the environment
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Overview

 Dynamic Programming (DP)
 Key idea: use of value functions to organize and 

structure the search for good policies
 DP is used to compute optimal value functions
 Given the optimal value function, we can easily obtain 

optimal policies which satisfy the Bellman optimality 
equations
 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ 𝑠′ ]

 𝑞∗ 𝑠, 𝑎 = 𝐸 𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎′𝑞∗(𝑆𝑡+1, 𝑎′) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′)]

 DP turns Bellman equations into update rules
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Policy Evaluation (Prediction)

 Policy evaluation (or prediction): given a policy 𝜋, compute 
the state-value function 𝑣𝜋

 𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘 𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

= 𝐸𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

= 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

 𝜋(𝑎|𝑠) : probability of taking action a in state s under policy 𝜋
 𝑣𝜋 exists and is unique as long as either 𝛾 < 1 or eventual 

termination is guaranteed from all states under policy 𝜋
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Policy Evaluation (Prediction)

 If the environment’s dynamics are completely known, then 
solving for 𝑣𝜋 is equivalent to solving |S| linear equations 
with |S| unknown

 Iterative policy evaluation
 Consider a sequence of approximate value functions 𝑣0, 𝑣1, 𝑣2, …

each mapping state to a real number
 The initial approximation 𝑣0 chosen arbitrarily
 Update rule

 𝑣𝑘+1 𝑠 = 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]

 The sequence {𝑣𝑘 𝑠 } converges to 𝑣𝜋
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Policy Evaluation (Prediction)

 Update rule
 𝑣𝑘+1 𝑠 = 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]

 This is called expected updates

 Implementation
 Two-arrays version

 One for 𝑣𝑘+1 𝑠 , the other for 𝑣𝑘 𝑠

 In-place version
 Use only one array
 Faster convergence
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Policy Evaluation (Prediction)

 Two-arrays version
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Policy Evaluation (Prediction)

 In-place version

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Gridworld

 Nonterminal states S = {1, 2, …, 14}
 Actions A = {up, down, right, left}

 Actions that would take the agent off the grid leave the 
state unchanged e.g., p(7, -1|7, right) = 1

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Gridworld

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Policy Improvement

 Suppose we have determined the value function 
𝑣𝜋 for an arbitrary deterministic policy 𝜋

 Would it be better or worse to change to a new 
policy?

 Idea: evaluate action value function
 𝑞𝜋 𝑠, 𝑎 = 𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

 If 𝑞𝜋 𝑠, 𝑎 > 𝑣𝜋(𝑠), then it is better to select a in s and 
thereafter follow 𝜋



U Kang

Policy Improvement

 Policy improvement theorem
 Let 𝜋 and 𝜋′ be any pair of deterministic policies such 

that, 𝑞𝜋 𝑠, 𝜋′(𝑠) ≥ 𝑣𝜋(𝑠), for all s
 Then, 𝜋′ is as good as, or better than 𝜋
 That is, 𝑣𝜋′(𝑠) ≥ 𝑣𝜋(𝑠)

 Special case: 𝜋′ is identical to 𝜋 except that 𝜋′ 𝑠 = 𝑎 ≠
𝜋(𝑠)
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Policy Improvement

 Proof of policy improvement theorem
 𝑣𝜋(𝑠) ≤ 𝑞𝜋 𝑠, 𝜋′(𝑠)

= 𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋′(𝑠)

= 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠

≤ 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑞𝜋 𝑆𝑡+1, 𝜋′(𝑆𝑡+1) 𝑆𝑡 = 𝑠

= 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝐸𝜋′ 𝑅𝑡+2 + 𝛾𝑣𝜋 𝑆𝑡+2 𝑆𝑡+1, 𝐴𝑡+1 = 𝜋′(𝑆𝑡+1) 𝑆𝑡 = 𝑠

= 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑣𝜋 𝑆𝑡+2 𝑆𝑡 = 𝑠

≤ 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑣𝜋 𝑆𝑡+3 𝑆𝑡 = 𝑠

…

≤ 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 +⋯ 𝑆𝑡 = 𝑠

= 𝑣𝜋′(𝑠)
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Policy Improvement

 Greedy policy
 Consider selecting at each state the action that appears 

the best according to 𝑞𝜋 𝑠, 𝑎

 𝜋′ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋 𝑠, 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

 By construction, the greed policy is as good as, or better 
than, the original policy

 Policy improvement: the process of making a new policy 
that improves on an original policy, by making it greedy 
wrt the value function of the original policy
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Policy Improvement

 Greedy policy
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Policy Improvement

 Stochastic policy
 (Reminder: greedy policy)

 𝜋′ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋 𝑠, 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

 A stochastic policy 𝜋 specifies probabilities, 𝜋(𝑎|𝑠) for 
taking each action a in each state s

 All the ideas, including policy improvement theorem, we 
discussed extend easily to stochastic policies

 If there are ties in policy improvement steps, we select 
any of the maximizing actions
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Example: Gridworld

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Policy Iteration

 After a policy 𝜋 has been improved using 𝑣𝜋 to 
yield a better policy 𝜋′, we can compute 𝑣𝜋′ and 
improve it again to yield an even better 𝜋′′

𝜋0՜
𝐸
𝑣𝜋0 ՜

𝐼
𝜋1՜

𝐸
𝑣𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑣∗

 This process converges to an optimal policy and 
optimal value function in a finite number of 
iterations

 This is called policy iteration
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Policy Iteration
Sutton and Barto, 

Reinforcement 

Learning, 2018
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Policy Iteration
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Example: Jack’s Car Rental

 Jack manages two locations for a car rental company
 For a customer to a location, if Jack has a car available, he rents it out 

and is credited $10; no $ if he is out of cars
 Cars become available for renting the day after they are returned
 Jack can move them between the two locations overnight, at a cost of 

$2 per car moved
 Number of cars requested and returned at each location are Poisson 

random variables: 𝑃 𝑛 =
𝜆𝑛

𝑛!
𝑒−𝜆, where 𝜆 is the expected number

 Assume 𝜆𝐿1,𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 3, 𝜆𝐿2,𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 4, 𝜆𝐿1,𝑟𝑒𝑡𝑢𝑟𝑛 = 3, 𝜆𝐿2,𝑟𝑒𝑡𝑢𝑟𝑛 = 2

 Assume there can be no more than 20 cars at each location, maximum 
of five cars can be moved from one to the other location, and 𝛾 = 0.9
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Example: Jack’s Car Rental

 MDP formulation
 State: the number of cars at each location at the end of the day
 Actions: net number of cars moved from location 1 to location 2 

overnight

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Value Iteration

 Drawback of policy iteration: each iteration 
involves policy evaluation which is expensive

 Policy evaluation step can be truncated, without 
losing the convergence guarantees of policy 
iteration
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Reminder: Policy Iteration
Sutton and Barto, 

Reinforcement 

Learning, 2018
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Value Iteration

 Value iteration
 Policy evaluation is stopped after one update of each 

state
 𝑣𝑘+1 𝑠 = 𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]

 For arbitrary 𝑣0, the sequence {𝑣𝑘} converges to 𝑣∗
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Value Iteration

 Understanding value iteration
 Value iteration is obtained by turning the Bellman 

optimality equation into an update rule
 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ 𝑠′ ]

 Value iteration is identical to the policy evaluation 
update, except that it requires the maximum over all 
actions
 𝑣𝑘+1 𝑠 = 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]
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Value Iteration

 Termination of value iteration
 Value iteration formally requires an infinite number of iterations to 

converge exactly to 𝑣∗
 In practice, we stop when the value function changes by only a small 

amount

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Value Iteration

 Value iteration effectively combines one sweep of policy 
evaluation and one sweep of policy improvement

 Faster convergence is often achieved by interposing 
multiple policy evaluation sweeps between each policy 
improvement sweep

 The entire class of truncated policy iteration algorithms can 
be thought of as sequences of sweeps (policy evaluation 
updates and value iteration updates) 

 In value iteration, the max operation is added to some 
sweeps of policy evaluation

 All of these algorithms converge to an optimal policy for 
discounted finite MDPs



U Kang

Value Iteration
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Example: Gambler’s Problem

 A gambler make bets on the outcomes of a sequence of 
coin flips

 If the flip result = head, he wins as many dollars as he has 
staked on the flip; otherwise he loses his stake

 The game ends when the gambler wins by earning $100, or 
loses by running out of money

 On each flip, the gambler must decide $$ to bet
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Example: Gambler’s Problem

 This problem can be formulated as an undiscounted, 
episodic, finite MDP

 State s: the gambler’s capital (1, 2, …, 99)
 Action: stake to bet; 𝑎 ∈ {0, 1,… ,min 𝑠, 100 − 𝑠 }

 Reward: 1 when the gambler reaches the goal of $100, or 0 
on all other cases

 State-value function: gives the probability of winning from 
each state

 Policy: map capital to stakes
 Optimal policy: maximizes the probability of reaching the 

goal
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Example: Gambler’s Problem

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Asynchronous DP

 Synchronous DP methods require sweeps of the entire 
state set; if the state set is very large, then it would take too 
long time for the sweeps
 Backgammon has over 1020 states

 Asynchronous DP: in-place iterative DP
 Update the values of states in any order, using whatever values of 

other states happen to be available
 The values of some states may be updated several times before the 

values of others are updated once
 To converge correctly, asynchronous DP must continue to update 

the values of all the states
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Asynchronous DP

 An asynchronous value iteration may update the value of 
only one state on each step

 If 0 ≤ 𝛾 < 1, asymptotic convergence to 𝑣∗ is guaranteed 
when each state is visited an infinite number of times

 It is possible to intermix policy evaluation and value 
iteration updates to produce a kind of asynchronous 
truncated policy iteration
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Asynchronous DP

 We can take advantage of this flexibility by selecting the 
states to which we apply updates so as to improve the 
algorithm’s rate of progress

 We can order the updates to let value information 
propagate from state to state in an efficient way

 Some states may not need their values updated as often as 
others

 We might even try to skip updating some states entirely if 
they are not relevant to optimal behavior
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Asynchronous DP

 Intermixing computation with real-time interaction
 To solve a given MDP, we can run an iterative DP algorithm at the 

same time that an agent is actually experiencing the MDP
 The agent’s experience can be used to determine the states to 

which the DP algorithm applies its updates
 At the same time the latest value and policy information from the 

DP algorithm can guide the agent’s decision making
 For example, we can apply updates to states as the agent visits 

them
 This makes it possible to focus the DP algorithm’s updates onto 

parts of the state set that are most relevant to the agent
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Asynchronous DP

 Real-time Dynamic Programming (RTDP)
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Generalized Policy Iteration

 Policy iteration consists of two simultaneous, interacting 
processes
 Policy evaluation: make the value function consistent with the current 

policy
 Policy improvement: make the policy greedy with respect to the 

current value function
 The two processes alternate, but not necessarily

 Value iteration: only a single iteration of policy evaluation is 
performed in between each policy improvement

 Asynchronous DP: the two processes are interleaved at a finer grain 
 In some cases, a single state is updated in one process before 

returning to the other
 As long as both processes continue to update all states, the ultimate 

result typically converges to the optimal value function and policy
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Generalized Policy Iteration

 Generalized Policy Iteration (GPI)
 General idea of letting policy-evaluation 

and policy-improvement process 
interact, independent of the granularity 
and other details of the two processes

 Almost all RL methods are well 
described as GPI; they have policies and 
value functions, with the policy always 
being improved with respect to the 
value function and the value function 
always being driven toward the value 
function for the policy

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Generalized Policy Iteration

 Generalized Policy Iteration (GPI)
 If both the evaluation process and the improvement process stabilize, 

then the value function and policy is optimal
 The value function stabilizes only when it is consistent with the current 

policy, and the policy stabilizes only when it is greedy with respect to 
the current value function

 This implies that the Bellman optimality equation holds, and thus that 
the policy and the value function are optimal
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Generalized Policy Iteration

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Efficiency of DP

 DP may not be practical for very large problems, 
but compared with other methods for solving 
MDPs, DP methods are actually quite efficient

 The (worst case) time DP methods take to find an 
optimal policy is polynomial in the numbers n of 
states and k of actions
 Even though the total number of (deterministic) policies 

is 𝑘𝑛

 Thus, DP is exponentially faster than any direct 
search in policy space could be
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Efficiency of DP

 LP (linear programming) methods can also be 
used to solve MDPs

 But LP methods become impractical at a much 
smaller number of states than do DP methods (by 
a factor of about 100)

 For the largest problems, only DP methods are 
feasible
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Efficiency of DP

 DP methods can be used with today’s computers 
to solve MDPs with millions of states

 Both policy iteration and value iteration are widely 
used

 These methods usually converge much faster than 
their theoretical worst-case run times, particularly 
if they are started with good initial value functions 
or policies.
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Efficiency of DP

 On problems with large state spaces, 
asynchronous DP methods are often preferred, 
since they do not need to visit all states for each 
iteration

 Synchronous DP methods are too expensive for 
problems with large states
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Conclusion

 Ideas and algorithms of DP to solve finite MDPs
 Policy evaluation: iterative computation of the value functions for a 

given policy
 Policy improvement: computation of an improved policy given the 

value function for that policy
 These computations combine to get policy iteration and value iteration, 

the two most popular DP methods
 DP methods operate in sweeps through the state set, performing an 

expected update operation on each state
 Each such operation updates the value of one state based on the values 

of all possible successor states and their probabilities of occurring.
 Expected updates are based on Bellman equations
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Conclusion

 Generalized Policy Iteration (GPI)
 The general idea of two interacting processes revolving around an 

approximate policy and an approximate value function
 One process takes the policy as given and performs some form of 

policy evaluation, changing the value function to be more like the 
true value function for the policy

 The other process takes the value function as given and performs 
some form of policy improvement, changing the policy to make it 
better, assuming that the value function is its value function

 A policy and value function that are unchanged by either process 
are optimal



U Kang

Conclusion

 Asynchronous DP
 In-place iterative methods that update states in an arbitrary order
 Converges faster to the optimal solution

 Bootstrapping
 DP methods update estimates of the values of states based on 

estimates of the values of successor states
 This idea is called ‘bootstrapping’
 DP is a bootstrapping method that also requires a complete and 

accurate model of the environment
 There are methods that do not require a model and do not 

bootstrap
 There are methods that do not require a model but do bootstrap
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Questions?


