
U Kang

Reinforcement Learning

Dynamic Programming

U Kang
Seoul National University

U Kang

In This Lecture

 Overview of DP
 Policy Iteration
 Value Iteration
 Generalized Policy Iteration
 Synchronous and Asynchronous DP

U Kang

Overview

 Dynamic Programming (DP)
 Collection of algorithms that can be used to compute

optimal policies given a perfect model of the
environment as MDP

 Classical DP algorithms are of limited utility in RL both
because of their assumption of a perfect model and
because of their great computational expense, but they
are still important theoretically

 DP provides an essential foundation for the
understanding of most RL methods, which are attempts
to do what DP does, but with less computation and
without assuming a perfect model of the environment

U Kang

Overview

 Dynamic Programming (DP)
 Key idea: use of value functions to organize and

structure the search for good policies
 DP is used to compute optimal value functions
 Given the optimal value function, we can easily obtain

optimal policies which satisfy the Bellman optimality
equations
 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ 𝑠′]

 𝑞∗ 𝑠, 𝑎 = 𝐸 𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎′𝑞∗(𝑆𝑡+1, 𝑎′) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′)]

 DP turns Bellman equations into update rules

U Kang

Outline

Policy Evaluation (Prediction)
Policy Improvement
Policy Iteration
Value Iteration
Asynchronous DP
Generalized Policy Iteration
Efficiency of DP
Conclusion

U Kang

Policy Evaluation (Prediction)

 Policy evaluation (or prediction): given a policy 𝜋, compute
the state-value function 𝑣𝜋

 𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝐸𝜋 σ𝑘=0
∞ 𝛾𝑘 𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

= 𝐸𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

= 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

 𝜋(𝑎|𝑠) : probability of taking action a in state s under policy 𝜋
 𝑣𝜋 exists and is unique as long as either 𝛾 < 1 or eventual

termination is guaranteed from all states under policy 𝜋

U Kang

Policy Evaluation (Prediction)

 If the environment’s dynamics are completely known, then
solving for 𝑣𝜋 is equivalent to solving |S| linear equations
with |S| unknown

 Iterative policy evaluation
 Consider a sequence of approximate value functions 𝑣0, 𝑣1, 𝑣2, …

each mapping state to a real number
 The initial approximation 𝑣0 chosen arbitrarily
 Update rule

 𝑣𝑘+1 𝑠 = 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

 The sequence {𝑣𝑘 𝑠 } converges to 𝑣𝜋

U Kang

Policy Evaluation (Prediction)

 Update rule
 𝑣𝑘+1 𝑠 = 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

 This is called expected updates

 Implementation
 Two-arrays version

 One for 𝑣𝑘+1 𝑠 , the other for 𝑣𝑘 𝑠

 In-place version
 Use only one array
 Faster convergence

U Kang

Policy Evaluation (Prediction)

 Two-arrays version

U Kang

Policy Evaluation (Prediction)

 In-place version

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Gridworld

 Nonterminal states S = {1, 2, …, 14}
 Actions A = {up, down, right, left}

 Actions that would take the agent off the grid leave the
state unchanged e.g., p(7, -1|7, right) = 1

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Gridworld

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Policy Evaluation (Prediction)
Policy Improvement
Policy Iteration
Value Iteration
Asynchronous DP
Generalized Policy Iteration
Efficiency of DP
Conclusion

U Kang

Policy Improvement

 Suppose we have determined the value function
𝑣𝜋 for an arbitrary deterministic policy 𝜋

 Would it be better or worse to change to a new
policy?

 Idea: evaluate action value function
 𝑞𝜋 𝑠, 𝑎 = 𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

 If 𝑞𝜋 𝑠, 𝑎 > 𝑣𝜋(𝑠), then it is better to select a in s and
thereafter follow 𝜋

U Kang

Policy Improvement

 Policy improvement theorem
 Let 𝜋 and 𝜋′ be any pair of deterministic policies such

that, 𝑞𝜋 𝑠, 𝜋′(𝑠) ≥ 𝑣𝜋(𝑠), for all s
 Then, 𝜋′ is as good as, or better than 𝜋
 That is, 𝑣𝜋′(𝑠) ≥ 𝑣𝜋(𝑠)

 Special case: 𝜋′ is identical to 𝜋 except that 𝜋′ 𝑠 = 𝑎 ≠
𝜋(𝑠)

U Kang

Policy Improvement

 Proof of policy improvement theorem
 𝑣𝜋(𝑠) ≤ 𝑞𝜋 𝑠, 𝜋′(𝑠)

= 𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋′(𝑠)

= 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠

≤ 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑞𝜋 𝑆𝑡+1, 𝜋′(𝑆𝑡+1) 𝑆𝑡 = 𝑠

= 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝐸𝜋′ 𝑅𝑡+2 + 𝛾𝑣𝜋 𝑆𝑡+2 𝑆𝑡+1, 𝐴𝑡+1 = 𝜋′(𝑆𝑡+1) 𝑆𝑡 = 𝑠

= 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑣𝜋 𝑆𝑡+2 𝑆𝑡 = 𝑠

≤ 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑣𝜋 𝑆𝑡+3 𝑆𝑡 = 𝑠

…

≤ 𝐸𝜋′ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 +⋯ 𝑆𝑡 = 𝑠

= 𝑣𝜋′(𝑠)

U Kang

Policy Improvement

 Greedy policy
 Consider selecting at each state the action that appears

the best according to 𝑞𝜋 𝑠, 𝑎

 𝜋′ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋 𝑠, 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

 By construction, the greed policy is as good as, or better
than, the original policy

 Policy improvement: the process of making a new policy
that improves on an original policy, by making it greedy
wrt the value function of the original policy

U Kang

Policy Improvement

 Greedy policy

U Kang

Policy Improvement

 Stochastic policy
 (Reminder: greedy policy)

 𝜋′ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋 𝑠, 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

 A stochastic policy 𝜋 specifies probabilities, 𝜋(𝑎|𝑠) for
taking each action a in each state s

 All the ideas, including policy improvement theorem, we
discussed extend easily to stochastic policies

 If there are ties in policy improvement steps, we select
any of the maximizing actions

U Kang

Example: Gridworld

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Policy Evaluation (Prediction)
Policy Improvement
Policy Iteration
Value Iteration
Asynchronous DP
Generalized Policy Iteration
Efficiency of DP
Conclusion

U Kang

Policy Iteration

 After a policy 𝜋 has been improved using 𝑣𝜋 to
yield a better policy 𝜋′, we can compute 𝑣𝜋′ and
improve it again to yield an even better 𝜋′′

𝜋0՜
𝐸
𝑣𝜋0 ՜

𝐼
𝜋1՜

𝐸
𝑣𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑣∗

 This process converges to an optimal policy and
optimal value function in a finite number of
iterations

 This is called policy iteration

U Kang

Policy Iteration
Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Policy Iteration

U Kang

Example: Jack’s Car Rental

 Jack manages two locations for a car rental company
 For a customer to a location, if Jack has a car available, he rents it out

and is credited $10; no $ if he is out of cars
 Cars become available for renting the day after they are returned
 Jack can move them between the two locations overnight, at a cost of

$2 per car moved
 Number of cars requested and returned at each location are Poisson

random variables: 𝑃 𝑛 =
𝜆𝑛

𝑛!
𝑒−𝜆, where 𝜆 is the expected number

 Assume 𝜆𝐿1,𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 3, 𝜆𝐿2,𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 4, 𝜆𝐿1,𝑟𝑒𝑡𝑢𝑟𝑛 = 3, 𝜆𝐿2,𝑟𝑒𝑡𝑢𝑟𝑛 = 2

 Assume there can be no more than 20 cars at each location, maximum
of five cars can be moved from one to the other location, and 𝛾 = 0.9

U Kang

Example: Jack’s Car Rental

 MDP formulation
 State: the number of cars at each location at the end of the day
 Actions: net number of cars moved from location 1 to location 2

overnight

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Policy Evaluation (Prediction)
Policy Improvement
Policy Iteration
Value Iteration
Asynchronous DP
Generalized Policy Iteration
Efficiency of DP
Conclusion

U Kang

Value Iteration

 Drawback of policy iteration: each iteration
involves policy evaluation which is expensive

 Policy evaluation step can be truncated, without
losing the convergence guarantees of policy
iteration

U Kang

Reminder: Policy Iteration
Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Value Iteration

 Value iteration
 Policy evaluation is stopped after one update of each

state
 𝑣𝑘+1 𝑠 = 𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

 For arbitrary 𝑣0, the sequence {𝑣𝑘} converges to 𝑣∗

U Kang

Value Iteration

 Understanding value iteration
 Value iteration is obtained by turning the Bellman

optimality equation into an update rule
 𝑣∗ 𝑠 = 𝑚𝑎𝑥𝑎𝐸 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝑚𝑎𝑥𝑎 σ𝑠′,𝑟 𝑝(𝑠
′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ 𝑠′]

 Value iteration is identical to the policy evaluation
update, except that it requires the maximum over all
actions
 𝑣𝑘+1 𝑠 = 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠

= σ𝑎 𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

U Kang

Value Iteration

 Termination of value iteration
 Value iteration formally requires an infinite number of iterations to

converge exactly to 𝑣∗
 In practice, we stop when the value function changes by only a small

amount

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Value Iteration

 Value iteration effectively combines one sweep of policy
evaluation and one sweep of policy improvement

 Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy
improvement sweep

 The entire class of truncated policy iteration algorithms can
be thought of as sequences of sweeps (policy evaluation
updates and value iteration updates)

 In value iteration, the max operation is added to some
sweeps of policy evaluation

 All of these algorithms converge to an optimal policy for
discounted finite MDPs

U Kang

Value Iteration

U Kang

Example: Gambler’s Problem

 A gambler make bets on the outcomes of a sequence of
coin flips

 If the flip result = head, he wins as many dollars as he has
staked on the flip; otherwise he loses his stake

 The game ends when the gambler wins by earning $100, or
loses by running out of money

 On each flip, the gambler must decide $$ to bet

U Kang

Example: Gambler’s Problem

 This problem can be formulated as an undiscounted,
episodic, finite MDP

 State s: the gambler’s capital (1, 2, …, 99)
 Action: stake to bet; 𝑎 ∈ {0, 1,… ,min 𝑠, 100 − 𝑠 }

 Reward: 1 when the gambler reaches the goal of $100, or 0
on all other cases

 State-value function: gives the probability of winning from
each state

 Policy: map capital to stakes
 Optimal policy: maximizes the probability of reaching the

goal

U Kang

Example: Gambler’s Problem

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Policy Evaluation (Prediction)
Policy Improvement
Policy Iteration
Value Iteration
Asynchronous DP
Generalized Policy Iteration
Efficiency of DP
Conclusion

U Kang

Asynchronous DP

 Synchronous DP methods require sweeps of the entire
state set; if the state set is very large, then it would take too
long time for the sweeps
 Backgammon has over 1020 states

 Asynchronous DP: in-place iterative DP
 Update the values of states in any order, using whatever values of

other states happen to be available
 The values of some states may be updated several times before the

values of others are updated once
 To converge correctly, asynchronous DP must continue to update

the values of all the states

U Kang

Asynchronous DP

 An asynchronous value iteration may update the value of
only one state on each step

 If 0 ≤ 𝛾 < 1, asymptotic convergence to 𝑣∗ is guaranteed
when each state is visited an infinite number of times

 It is possible to intermix policy evaluation and value
iteration updates to produce a kind of asynchronous
truncated policy iteration

U Kang

Asynchronous DP

 We can take advantage of this flexibility by selecting the
states to which we apply updates so as to improve the
algorithm’s rate of progress

 We can order the updates to let value information
propagate from state to state in an efficient way

 Some states may not need their values updated as often as
others

 We might even try to skip updating some states entirely if
they are not relevant to optimal behavior

U Kang

Asynchronous DP

 Intermixing computation with real-time interaction
 To solve a given MDP, we can run an iterative DP algorithm at the

same time that an agent is actually experiencing the MDP
 The agent’s experience can be used to determine the states to

which the DP algorithm applies its updates
 At the same time the latest value and policy information from the

DP algorithm can guide the agent’s decision making
 For example, we can apply updates to states as the agent visits

them
 This makes it possible to focus the DP algorithm’s updates onto

parts of the state set that are most relevant to the agent

U Kang

Asynchronous DP

 Real-time Dynamic Programming (RTDP)

U Kang

Outline

Policy Evaluation (Prediction)
Policy Improvement
Policy Iteration
Value Iteration
Asynchronous DP
Generalized Policy Iteration
Efficiency of DP
Conclusion

U Kang

Generalized Policy Iteration

 Policy iteration consists of two simultaneous, interacting
processes
 Policy evaluation: make the value function consistent with the current

policy
 Policy improvement: make the policy greedy with respect to the

current value function
 The two processes alternate, but not necessarily

 Value iteration: only a single iteration of policy evaluation is
performed in between each policy improvement

 Asynchronous DP: the two processes are interleaved at a finer grain
 In some cases, a single state is updated in one process before

returning to the other
 As long as both processes continue to update all states, the ultimate

result typically converges to the optimal value function and policy

U Kang

Generalized Policy Iteration

 Generalized Policy Iteration (GPI)
 General idea of letting policy-evaluation

and policy-improvement process
interact, independent of the granularity
and other details of the two processes

 Almost all RL methods are well
described as GPI; they have policies and
value functions, with the policy always
being improved with respect to the
value function and the value function
always being driven toward the value
function for the policy

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Generalized Policy Iteration

 Generalized Policy Iteration (GPI)
 If both the evaluation process and the improvement process stabilize,

then the value function and policy is optimal
 The value function stabilizes only when it is consistent with the current

policy, and the policy stabilizes only when it is greedy with respect to
the current value function

 This implies that the Bellman optimality equation holds, and thus that
the policy and the value function are optimal

U Kang

Generalized Policy Iteration

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Policy Evaluation (Prediction)
Policy Improvement
Policy Iteration
Value Iteration
Asynchronous DP
Generalized Policy Iteration
Efficiency of DP
Conclusion

U Kang

Efficiency of DP

 DP may not be practical for very large problems,
but compared with other methods for solving
MDPs, DP methods are actually quite efficient

 The (worst case) time DP methods take to find an
optimal policy is polynomial in the numbers n of
states and k of actions
 Even though the total number of (deterministic) policies

is 𝑘𝑛

 Thus, DP is exponentially faster than any direct
search in policy space could be

U Kang

Efficiency of DP

 LP (linear programming) methods can also be
used to solve MDPs

 But LP methods become impractical at a much
smaller number of states than do DP methods (by
a factor of about 100)

 For the largest problems, only DP methods are
feasible

U Kang

Efficiency of DP

 DP methods can be used with today’s computers
to solve MDPs with millions of states

 Both policy iteration and value iteration are widely
used

 These methods usually converge much faster than
their theoretical worst-case run times, particularly
if they are started with good initial value functions
or policies.

U Kang

Efficiency of DP

 On problems with large state spaces,
asynchronous DP methods are often preferred,
since they do not need to visit all states for each
iteration

 Synchronous DP methods are too expensive for
problems with large states

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Conclusion

 Ideas and algorithms of DP to solve finite MDPs
 Policy evaluation: iterative computation of the value functions for a

given policy
 Policy improvement: computation of an improved policy given the

value function for that policy
 These computations combine to get policy iteration and value iteration,

the two most popular DP methods
 DP methods operate in sweeps through the state set, performing an

expected update operation on each state
 Each such operation updates the value of one state based on the values

of all possible successor states and their probabilities of occurring.
 Expected updates are based on Bellman equations

U Kang

Conclusion

 Generalized Policy Iteration (GPI)
 The general idea of two interacting processes revolving around an

approximate policy and an approximate value function
 One process takes the policy as given and performs some form of

policy evaluation, changing the value function to be more like the
true value function for the policy

 The other process takes the value function as given and performs
some form of policy improvement, changing the policy to make it
better, assuming that the value function is its value function

 A policy and value function that are unchanged by either process
are optimal

U Kang

Conclusion

 Asynchronous DP
 In-place iterative methods that update states in an arbitrary order
 Converges faster to the optimal solution

 Bootstrapping
 DP methods update estimates of the values of states based on

estimates of the values of successor states
 This idea is called ‘bootstrapping’
 DP is a bootstrapping method that also requires a complete and

accurate model of the environment
 There are methods that do not require a model and do not

bootstrap
 There are methods that do not require a model but do bootstrap

U Kang

Questions?

