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Scene Completion Problem 
[Hays and Efros, SIGGRAPH 2007]
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Scene Completion Problem 
[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 20,000 images
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A Common Metaphor

 Many problems can be expressed as 
finding “similar” sets:
 Find near-neighbors in high-dimensional space

 Examples:
 Pages with similar words

 For duplicate detection, classification by topic
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A Common Metaphor

 Examples (cont.):
 Customers who purchased similar products

 Products with similar customer sets 
 Images with similar features

 Scene completion
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Problem for Today’s Lecture

 Given: High dimensional data points 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, …
 For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅𝒅(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐)
 Which quantifies the “distance” between 𝒙𝒙𝟏𝟏 and 𝒙𝒙𝟐𝟐

 Goal: Find all pairs of data points (𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋) that are 
within some distance threshold 𝒅𝒅 𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋 ≤ 𝒔𝒔

 Note: Naïve solution would take 𝑶𝑶 𝑵𝑵𝟐𝟐 
where 𝑵𝑵 is the number of data points

 MAGIC: This can be done in 𝑶𝑶 𝑵𝑵 !! How?
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Distance Measures

 Goal: Find near-neighbors in high-dim. space
 We formally define “near neighbors” as 

points that are a “small distance” apart
 For each application, we first need to define what 

“distance” means
 Today: Jaccard distance/similarity
 The Jaccard similarity of two sets is the size of their 

intersection divided by the size of their union:
sim(C1, C2) = |C1∩C2|/|C1∪C2|

 Jaccard distance: d(C1, C2) = 1 - |C1∩C2|/|C1∪C2|
3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8
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Task: Finding Similar Documents

 Goal: Given a large number (𝑵𝑵 in the millions or billio
ns) of documents, find “near duplicate” pairs

 Applications:
 Mirror websites, or approximate mirrors

 Don’t want to show both in search results

 Similar news articles at many news sites
 Cluster articles by “same story”
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Task: Finding Similar Documents

 Goal: Given a large number (𝑵𝑵 in the millions or billio
ns) of documents, find “near duplicate” pairs

 Applications:
 Mirror websites, or approximate mirrors

 Don’t want to show both in search results
 Similar news articles at many news sites

 Cluster articles by “same story”

 Problems:
 Many small pieces of one document can appear 

out of order in another
 Too many documents to compare all pairs
 Documents are so large or so many that they cannot 

fit in main memory
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3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatu
res, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

 Candidate pairs!
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The Big Picture

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity



Step 1: Shingling: Convert documents to sets

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument
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Documents as High-Dim Data

 Step 1: Shingling: Convert documents to sets

 Simple approaches:
 Document = set of words appearing in document
 Document = set of “important” words
 Don’t work well for this application. Why?

 Need to account for ordering of words!
 A different way: Shingles!
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Define: Shingles

 A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc
 Tokens can be characters, words or something else, 

depending on the application
 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
 Option: Shingles as a bag (multiset), count ab twice: 

S’(D1) = {ab, bc, ca, ab}
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Compressing Shingles

 To compress long shingles, we can hash them to 
(say) 4 bytes

 Represent a document by the set of hash values 
of its k-shingles

 Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the singles: h(D1) = {1, 5, 7}
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Similarity Metric for Shingles

 Document D1 is a set of its k-shingles C1=S(D1)
 Equivalently, each document is a 

0/1 vector in the space of k-shingles
 Each unique shingle is a dimension
 Vectors are very sparse

 A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1∩C2|/|C1∪C2|
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Working Assumption

 Documents that have lots of shingles in common 
have similar text, even if the text appears in 
different order

 Caveat: You must pick k large enough, or most 
documents will have most shingles
 k = 5 is OK for short documents
 k = 10 is better for long documents
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Motivation for Minhash/LSH

 Suppose we need to find near-duplicate 
documents among 𝑵𝑵 = 𝟏𝟏 million documents

 Naïvely, we would have to compute pairwise 
Jaccard similarities for every pair of docs
 𝑵𝑵(𝑵𝑵− 𝟏𝟏)/𝟐𝟐 ≈ 5*1011 comparisons
 At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

 For 𝑵𝑵 = 𝟏𝟏𝟏𝟏 million, it takes more than a year…



Step 2: Minhashing: Convert large sets to sho
rt signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity
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Encoding Sets as Bit Vectors

 Many similarity problems can be 
formalized as finding subsets that 
have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors 
 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and 
set union as bitwise OR

 Example: C1 = 10111; C2 = 10011
 Size of intersection = 3; size of union = 4, 
 Jaccard similarity (not distance) = 3/4
 Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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From Sets to Boolean Matrices

 Rows = elements (shingles)
 Columns = sets (documents)
 1 in row e and column s if and only if 

e is a member of s
 Column similarity is the Jaccard

similarity of the corresponding sets 
(rows with value 1)

 Typical matrix is sparse!
 Each document is a column:

 Example: sim(C1 ,C2) = ?
 Size of intersection = 3; size of union = 6, 

Jaccard similarity (not distance) = 3/6
 d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101
0111
1001
1000
1010
1011
0111 

Documents

Sh
in

gl
es
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Outline: Finding Similar Columns

 So far:
 Documents → Sets of shingles
 Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while computing 
small signatures
 Similarity of columns == similarity of signatures
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Hashing Columns (Signatures)

 Key idea: “hash” each column C to a small 
signature h(C), such that:
 (1) h(C) is small enough that the signature fits in RAM
 (2) sim(C1, C2) is the same as the “similarity” of 

signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:
 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs 
of near duplicate docs hash into the same bucket!
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Min-Hashing

 Goal: Find a hash function h(·) such that:
 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on 
the similarity metric:
 Not all similarity metrics have a suitable 

hash function

 There is a suitable hash function for 
the Jaccard similarity: It is called Min-Hashing
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Min-Hashing

 Imagine the rows of the boolean matrix 
permuted under random permutation π

 Define a “hash” function hπ(C) = the index of the 
first (in the permuted order π) row in which 
column C has value 1:

hπ (C) = minπ π(C)

 Use several (e.g., 100) independent hash 
functions (that is, permutations) to create a 
signature of a column
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Min-Hashing

 Original Sets
 S1 = {1, 4} min(S1) = 1
 S2 = {2, 3, 4} min(S2) = 2
 S3 = {3, 5} min(S3) = 3

 Permutation 𝜋𝜋: 1 2 3 4 5 ⇒ 4 1 5 3 2
 This means row 1 is mapped to row 4, row 2 is mapped to row 1, …
 Min-hash(S1) = 3
 Min-hash(S2) = 1
 Min-hash(S3) = 2

 Intuition: if two sets are similar, there min-hashes are likely to 
be the same
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Min-Hashing Example

Signature matrix M

1212

5
7
6
3
1
2

4

1412

4
5
1
6
7
3

2

2121

0101
0101
1010
1010
1010
1001
0101 

Input matrix (Shingles x Documents) 

3

4
7
2
6
1
5

Permutation π
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The Min-Hash Property

 Choose a random permutation π
 Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2) 
 Why? (intuition)

Set 1 Set 2

Let w be an item which has the smallest hash value among 
all items in set1 and set2.
When do the min-hashes of the two sets agree?
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Similarity for Signatures

 We know: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 [Aside]
 Assume we have a biased coin with P(head) = c (≠ 0.5)
 How can we find out c?
 We toss coin n times, and find out the number h for the 

‘head’.
 A good estimator of c is h/n
 (expected number of ‘head’ : n * c = h)
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Similarity for Signatures

 We know: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the fraction of 
the hash functions in which they agree

 Note: Because of the Min-Hash property, the 
similarity of columns is the same as the expected 
similarity of their signatures
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Min-Hashing Example

Signature matrix M

1212

5
7
6
3
1
2

4

1412

4
5
1
6
7
3

2

2121

0101
0101
1010
1010
1010
1001
0101 

Input matrix (Shingles x Documents) 

3

4
7
2
6
1
5

Permutation π

Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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Min-Hash Signatures

 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the 

index of the first row that has a 1 in column C
sig(C)[i] = min (πi(C))

 Note: The sketch (signature) of document C is small  
~𝟏𝟏𝟏𝟏𝟏𝟏 bytes!

 We achieved our goal! We “compressed” 
long bit vectors into short signatures



38U Kang

Implementation Trick
 Permuting rows even once is prohibitive
 Row hashing!
 Pick K = 100 hash functions ki

 Ordering under ki gives a random row permutation!
 One-pass implementation
 For each column C and hash-func. ki keep a “slot” for 

the min-hash value
 Initialize all sig(C)[i] = ∞
 Scan rows looking for 1s

 Suppose row j has 1 in column C
 Then for each ki :

 If ki(j) < sig(C)[i], then sig(C)[i] ← ki(j)

How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … integers
p … prime number (p > N)
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Implementation Trick

 Raw Data and Hash Functions

 In the beginning
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Implementation Trick

 Row 0                                    Row 1

 Row 2                                    Row 3

 … Finally



Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity
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LSH: First Cut

 Goal: Find documents with Jaccard similarity at least 
s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that tells 
whether x and y is a candidate pair: a pair of 
elements whose similarity must be evaluated

 For Min-Hash matrices: 
 Hash columns of signature matrix M to many buckets
 Each pair of documents that hashes into the 

same bucket is a candidate pair

1212

1412

2121
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Candidates from Min-Hash

 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if their 
signatures agree on at least fraction s of their 
rows: 
M (i, x) = M (i, y) for at least frac. s values of i
 We expect documents x and y to have the same 

(Jaccard) similarity as their signatures

1212

1412

2121Problem: we have to compare 
all pairs of columns!
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LSH for Min-Hash

 Big idea: Hash columns of 
signature matrix M several times

 Arrange that (only) similar columns are 
likely to hash to the same bucket, with high 
probability

 Candidate pairs are those that hash to the 
same bucket

1212

1412

2121
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Partition M into b Bands

Signature matrix  M

r rows
per band

b bands

One
signature
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Partition M into Bands

 Divide matrix M into b bands of r rows

 For each band, hash its portion of each column 
to a hash table with k buckets
 Make k as large as possible

 Candidate column pairs are those that hash to 
the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs, 
but few non-similar pairs
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Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical 
(candidate pair)

Columns 6 and 7 are
surely different.

Hashing Bands
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Simplifying Assumption

 There are enough buckets that columns are 
unlikely to hash to the same bucket unless they 
are identical in a particular band

 Hereafter, we assume that “same bucket” means 
“identical in that band”

 Assumption needed only to simplify analysis, not 
for correctness of algorithm
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Example of Bands

Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40Mb
 Choose b = 20 bands of r = 5 integers/band

 Goal: Find pairs of documents that 
are at least s = 0.8 similar

1212

1412

2121
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C1, C2 are 80% Similar

 Find pairs of ≥ s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8

 Since sim(C1, C2) ≥ s, we want C1, C2 to be a candidate pair: We 
want them to hash to at least 1 common bucket (at least one 
band is identical)

 Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

 Probability C1, C2 are not similar in all of the 20 bands: 
(1-0.328)20 = 0.00035 
 i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)
 We would find 99.965% pairs of truly similar documents
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 False Positive is called Type 1 Error
 False Negative is called Type 2 error

False Positive and Negative

(Truth)
Similar Not similar

Our Algorithm 
says

Similar True Positive False Positive
Not Similar False Negative True Negative

Talk

You got a cold
You didn’t get a cold
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C1, C2 are 30% Similar

 Find pairs of ≥ s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3

 Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

 Probability C1, C2 identical in one particular band: 
(0.3)5 = 0.00243

 Probability C1, C2 identical in at least 1 of 20 bands: 1 
- (1 - 0.00243)20 = 0.0474
 In other words, approximately 4.74% pairs of docs with 

similarity 0.3 end up becoming candidate pairs
 They are false positives since we will have to examine them (they 

are candidate pairs) but then it will turn out their similarity is below 
threshold s
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LSH Involves a Tradeoff

 Pick:
 The number of Min-Hashes (rows of M) 
 The number of bands b, and 
 The number of rows r per band

to balance false positives/negatives



54U Kang

Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y 
th

re
sh

ol
d 

s

No chance
if t < s

Probability = 1 
if t > s
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What 1 Band of 1 Row Gives You

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket
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b bands, r rows/band

 Columns C1 and C2 have similarity t
 Pick any band (r rows)
 Prob. that all rows in band equal = tr

 Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical  = (1 - tr)b

 Prob. that at least 1 band identical =                  
1 - (1 - tr)b
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What b Bands of r Rows Gives You

t r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r 

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

By controlling s, you can determine the shape of the function
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Example: b = 20; r = 5

 Similarity of two sets = t
 Prob. that at least 1 band is identical:

t 1-(1-tr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996
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Picking r and b: The S-curve

 Picking r and b to get the best S-curve
 50 hash-functions (r=5, b=10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Green area: False Negative rate
Black area: False Positive rate

Similarity

Pr
ob

. s
ha

rin
g 

a 
bu

ck
et
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Picking r and b: The S-curve

 If avoiding false 
negatives is important 
(accuracy is important)
 Make (1/b)^(1/r) smaller 

than s (desired similarity)

s s

 If avoiding false 
positives is important 
(speed is important)
 Make (1/b)^(1/r) larger 

than s (desired similarity)
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LSH Summary

 Tune M, b, r to get almost all pairs with similar 
signatures, but eliminate most pairs that do not 
have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data, check 
that the remaining candidate pairs really 
represent similar documents
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Summary: 3 Steps

 Shingling: Convert documents to sets
 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short 
signatures, while preserving similarity
 We used similarity preserving hashing to generate 

signatures with property Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)
 We used hashing to get around generating random 

permutations

 Locality-Sensitive Hashing: Focus on pairs of 
signatures likely to be from similar documents
 We used hashing to find candidate pairs of similarity ≥ s
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Questions?
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