Water constituents

What's in water

Microorganisms

- Native vs. introduced; Oligotrophic vs. eutrophic
- Millions to billions per mL or g
- Complex consortia
 - Species makeup: f(T, O₂, pH, nutrients, etc.)
- Indicators & pathogens

Dissolved inorganics

- Major vs. trace
- Nutrient vs. contaminant

What's in water

Dissolved organics (DOM)

- Simple vs. polymeric
- Biodegradable vs. recalcitrant
- Natural vs. anthropogenic

Suspended matter

- Operationally define: retained on 0.45 μm-filter
 - Mineral colloids; organic polymers; bacteria
 - Aggregation & sorption
- Contaminant sink, transport consequences

Microbes

C₅H₇O₂N – approx. microbial chemical formula

Dry weight basis; Cell is composed of ~90% water by weight

Other major constituents

- P: ~0.07 mole/mole cell material
- S, Mg, Ca, K, Na: ~0.02-0.03 mole/mole cell material
- Fe: more than trace, less than major

Trace constituents

- Cr, Co, Mn, Mo, Ni, Se, W, V, Zn
- Constituents of enzyme systems
- Need a little, but too much is toxic

Dissolved inorganics

- Major constituents of surface & groundwaters (ppm+)
 - Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻, SO₄²⁻, SiO₂
- Others important to life (ppb~ppm)
 - O₂; Fe; N (NO₃-, NH₃); P (PO₄³⁻)
 - N & P: rapid uptake by biota
 - P: strongly sorbed to minerals
 - Fe: low solubility in aerobic waters (Fe³⁺) and moderate pH
- Special cases
 - Oxygen absent: high Fe²⁺, S²⁻
 - Low pH high Fe³⁺
- Total dissolved solids (TDS): primarily ions
 - Surface water < groundwater < seawater

Dissolved inorg. - electroneutrality

Electroneutrality principle

$$\sum cations (in eq/L) = \sum anions (in eq/L)$$

 May use the following condition to determine the accuracy of water ion content analysis

$$\left|\sum anions - \sum cations\right| \le \left(0.1065 + 0.0155 \sum anions\right)$$

Dissolved inorg. - electroneutrality

Ionic strength

$$I = \frac{1}{2} \sum_{i} (C_i \times z_i^2)$$

$$C_i = \text{concentration of ionic species } i \text{ (M)}$$

$$z_i = \text{charge of ionic species } i$$

- Significance: in dilute solutions ($I \sim 10^{-3}$ M) the ions behave independently of each other, but as ion concentration increases, ion interactions become significant, decreasing the activity of the ions
- Activity vs. molarity ({ } vs. [])

$$\{i\} = \gamma_i[i]$$

- $-\gamma_i \cong 1$ in dilute solutions (for most natural waters except for seawater, this would be acceptable for crude calculations)
- Güntelberg equation (for l < 0.1): $\log \gamma_i = -\frac{0.5 z_i^2 I^{0.5}}{1 + I^{0.5}}$

Organics in natural waters

Simple sugars, amino acids, etc.

Concentrations typically very low – easily degraded, assimilated

Microbial polymers

- Important components of biofilms, flocs, aggregates
- In some cases may have significant dissolved concentrations

Humic substances

- Typically the primary component of dissolved & particulate organic matter (DOM, POM)
 - Resistant to degradation
 - Many ions & hydrophobic compounds sorb strongly to humics

Organics in natural waters

Anthropogenic organics

- >100,000 synthetic chemicals in daily use
 - Pesticides, solvents, dyes, personal care products, anti-fouling agents, additives
 - >300,000,000 tons produced annually
- Wide varying properties
 - Size, aqueous solubility, volatility, degradability, toxicity

Dissolved organics – humic substances

Acidic polymers

- ~3-15 mmoles/g, primarily
 - carboxylic
 - Phenolic OH

Wide varying composition

- There is no "humic molecule"
- MWs from ~500 to >100,000

Molecular volume a function of pH, ionic strength

- Compact at high salinity, low pH
- Extend at low salinity, high pH

Dissolved organics – humic substances

- Hydrophilic/hydrophobic regions
 - High affinity for many toxic organics
- Coat minerals
- Photoactive
- High metal affinity

Suspended matter

- Not dissolved; potentially settleable (usually)
 - Traditionally considered to be material that retained on a 0.45 μ m-filter
 - Colloids may be as small as a few nanometers
- Includes: mineral colloids, microbes and their debris, organic polymers
 - Often found as aggregates, flocs that are mixtures of minerals, polymers, and microbial matter
 - Aggregates >0.45 μm may consist of many individual components <<0.45 μm

Suspended matter

Suspended mater influences:

- Contaminant transport, scavenging
- Light attenuation
- Disinfection efficacy
- Where the material settles

Aqueous chemistry parameters

Units

- Mass/vol
- #/vol
- Transferable electrons or protons/vol
- Mole fraction

Why different units?

- Engineers vs. chemists
- Specific needs of the problem

Aggregate parameters

- BOD, COD, TOC
- Hardness
- Total PCBs

kg/m³, mg/L, ... mole/m³, # of organisms/mL equiv/m³, equiv/L mole/∑mole

Aqueous chemistry parameters

Aggregate parameters

- Characterize important properties of mixtures
 - OD (oxygen demand)
 - TO__ (total organic carbons (C), halides (X))
- Conduct one analysis instead of many
- __per__as___
 - Prevent confusion
 - mg/L as CaCO₃
 - mg/L as N
 - % as P_2O_5 or K_2O

Measures of (oxidizable) organic matter

BOD – Biochemical Oxygen Demand

- Measure of a water's biologically oxidizable constituents
 - Analyze [DO] in a water sample before & after controlled incubation
 - 5 day incubation is common

COD – Chemical Oxygen Demand

- Measure of a water's chemically oxidizable constituents
 - 2-3 hour reaction time
 - Generates liquid hazardous wastes
- Doesn't oxidize organic N

TOC, DOC – Total/Dissolved Organic Carbon

- Measure of a water's organic carbon content
 - Analyze mass/concentration of CO₂ produced after chemical oxidation of a sample
 - Sampling time a few minutes

BOD₅, COD & TOC

Compound	Formula	MW	BOD ₅	COD	TOC	COD/TOC	TOC/MW	COD/MW
Methane	CH₄	16	??	64	12	5.3	0.75	4.0
MTBE	C ₅ H ₁₂ O	88	~0	240	60	4.0	0.68	2.7
Benzene	C ₆ H ₆	78	??	240	72	3.3	0.92	3.1
Glucose	C ₆ H ₁₂ O ₆	192	~192	192	72	2.7	0.38	1.0

$$CH_4 + 2O_2 \Leftrightarrow CO_2 + 2H_2O$$

$$C_5H_{12}O + 7.5O_2 \iff 5CO_2 + 6H_2O$$

$$C_6H_6 + 7.5O_2 \Leftrightarrow 6CO_2 + 3H_2O$$

$$C_6H_{12}O_6 + 6O_2 \Leftrightarrow 6CO_2 + 6H_2O$$

Aqueous chemistry parameters – pH

- pH = $-\log_{10}\{H^+\} \approx -\log_{10}[H^+]$
 - For most natural waters 5<pH<9
 - Most aquatic life adapted for this range

$$- K_w = \{H^+\}\{OH^-\} = 10^{-14}$$
 @25°C

- pK_w = pH + pOH ≈ 14
- Chemical speciation can be highly pH dependent

$$ROH \iff RO^- + H^+$$
 $K_a \approx \frac{[RO^-][H^+]}{[ROH]}$

- If pK_a > pH, deprotonated (dissociated)
- If pK_a < pH, protonated (associated)