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Overview

 Monte Carlo (MC) Methods
 Do not assume complete knowledge of the environment
 MC methods require only experience (sample sequences 

of states, actions, and rewards) from actual or simulated 
interaction with an environment

 Learning from actual experience is useful because it 
requires no prior knowledge of the environment

 Learning from simulated experience is also powerful;  
Although a model is required, the model needs only to 
generate sample transitions, not the complete probability 
distributions of all possible transitions as in DP
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Overview

 Monte Carlo (MC) Methods
 MC methods are ways of solving RL problem based on 

averaging sample returns
 MC methods are defined only for episodic tasks; only on 

the completion of an episode are value estimates and 
policies changed

 MC methods can thus be incremental in an episode-by-
episode sense, but not in a step-by-step (online) sense

 “Monte Carlo” is often used more broadly for any 
estimation method whose operation involves a 
significant random component
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Overview

 Monte Carlo (MC) Methods
 MC methods sample and average returns for each state–

action pair much like the bandit methods sample and 
average rewards for each action

 In MC, there are multiple states, acting like different 
bandit problems which are interrelated

 The return after taking an action in one state depends 
on the actions taken in later states in the same episode

 Because all the action selections are undergoing 
learning, the problem becomes nonstationary from the 
point of view of the earlier state
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Overview

 Monte Carlo (MC) Methods
 To handle the nonstationarity, we adapt the idea of 

general policy iteration (GPI)
 In DP, we computed value functions from knowledge of the 

MDP; in MC, we learn value functions from sample returns 
with the MDP

 Outline
 Prediction problem (computation of 𝑣𝜋 and 𝑞𝜋 for a fixed policy 𝜋)
 Policy improvement
 Control problem and its solution by GPI
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Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion
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MC Prediction

 Learn the state-value function for a given policy by 
MC methods

 Value of a state: expected return (expected 
cumulative future discounted reward) starting 
from the state

 MC methods estimate it from experience; average 
the returns observed after visits to that state

 As more returns are observed, the average should 
converge to the expected value
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MC Prediction

 Suppose we wish to estimate 𝑣𝜋 𝑠 , the value of a state 𝑠
under policy 𝜋, given a set of episodes obtained by 
following 𝜋 and passing through 𝑠

 Each occurrence of state s in an episode is called a visit to 
s; s may be visited multiple times in the same episode

 First-visit MC method: estimates 𝑣𝜋 𝑠 as the average of 
the returns following first visits to 𝑠

 Every-visit MC method: averages the returns following all 
visits to 𝑠
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MC Prediction

Sutton and Barto, 

Reinforcement 

Learning, 2018
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MC Prediction

 Both first-visit MC and every-visit MC converge to 𝑣𝜋 𝑠 as 
the number of visits to s goes to infinity

 First-visit MC
 Each return is an independent, identically distributed estimate of 

𝑣𝜋 𝑠 with finite variance
 By the law of large numbers the sequence of averages of these 

estimates converges to their expected value
 Each average is itself an unbiased estimate, and the standard 

deviation of its error falls as 1/ 𝑛, where n is the number of returns 
averaged

 Every-visit MC: also converges to 𝑣𝜋 𝑠
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Example: Blackjack

https://en.wikipedia.org/wiki/Blackjack#/media/File:Blackjack_game_1.JPG
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Example: Blackjack

 Object of blackjack: to obtain cards whose sum is as great as possible 
without exceeding 21

 All face cards count as 10, and an ace can count either as 1 or as 11
 The game begins with two cards dealt to both dealer and player; one of 

the dealer’s cards is face up and the other is face down
 If the player has 21 immediately (an ace and a 10-card), it is called a 

natural; he then wins unless the dealer also has a natural, in which case 
the game is a draw

 If the player does not have a natural, then he can request additional cards, 
one by one (hits), until he either stops (sticks) or exceeds 21 (goes bust )

 If he goes bust, he loses; if he sticks, then it becomes the dealer’s turn. The 
dealer hits or sticks according to a fixed strategy without choice: he sticks 
on any sum of 17 or greater, and hits otherwise

 If the dealer goes bust, then the player wins; otherwise, the outcome is 
determined by whose final sum is closer to 21.
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Example: Blackjack

 Playing blackjack is naturally formulated as an episodic finite MDP
 Rewards: +1, −1, and 0 for winning, losing, and drawing

 All rewards within a game are zero, and we do not discount; thus the terminal rewards 
are also the returns

 Actions: hit or stick
 States: depend on the player’s cards and the dealer’s showing card

 If the player holds an ace that he could count as 11 without going bust, then the ace is 
said to be usable. 

 The player makes decisions on the basis of three variables: his current sum (12–21), the 
dealer’s one showing card (ace–10), and whether or not he holds a usable ace

 This makes for a total of 200 states
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Example: Blackjack

 Example policy: sticks if the player’s sum is 20 or 21, and otherwise hits

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Backup Diagram for MC

MC DP Sutton and Barto, 

Reinforcement 

Learning, 2018
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MC’s Advantages over DP

 Advantage 1
 MC does not require complete knowledge of the environment

 MC for blackjack is easy: one simulates many blackjack games 
using a policy and averages the returns following each state

 DP for blackjack
 Although we have complete knowledge of the environment in the 

blackjack task, it would not be easy to apply DP methods to compute 
the value function

 DP methods require the distribution of next events, which is non-trivial 
to compute

 For example, suppose the player’s sum is 14 and he chooses to stick. 
What is his probability of terminating with a reward of +1 as a function 
of the dealer’s showing card? Computing the probabilities is complex 
and error-prone
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MC’s Advantages over DP

 Advantage 2
 MC allows to learn from actual experience and from simulated 

experience
 DP does not learn from experiences
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MC’s Advantages over DP

 MC vs. DP
 DP: bootstrap (an estimate for each state builds on the estimate of 

any other state)
 MC: does not bootstrap (an estimate for each state does not build 

on the estimate of any other state)

 Advantage 3
 The computational expense of estimating the value of a single state 

in MC is independent of the number of states
 This is useful especially when one requires the value of only a subset 

of states
 In MC, one can generate many sample episodes starting from the 

states of interest, ignoring all others
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Example: Soap Bubble

 Suppose a wire frame forming a closed 
loop is dunked in soapy water to form a 
soap bubble conforming at its edges to 
the wire frame

 If the geometry of the wire frame is 
known, how to compute the shape of the 
surface?

 The total force on each point exerted by 
neighboring points is zero (or else the 
shape would change); the surface’s 
height at any point is the average of its 
heights at points in a small circle around 
that point

 The surface must also meet at its 
boundaries with the wire frame

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Soap Bubble

 DP solution for soap bubble problem
 Put a grid over the area covered by the surface and solve for its height at the grid 

points by an iterative computation
 This process then iterates, much like DP’s iterative policy evaluation, and ultimately 

converges to a solution

 MC solution for soap bubble problem
 Imagine standing on the surface and taking a random walk until you reach the 

boundary
 The expected value of the height at the boundary is a close approximation to the 

height of the desired surface at the starting point
 Thus, one can closely approximate the height of the surface at a point by simply 

averaging the boundary heights of many walks started at the point
 If one is interested in only the value at one point, or any fixed small set of points, 

then this Monte Carlo method can be far more efficient than the iterative method 
based on local consistency
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Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion
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MC Estimation of Action Values

 If a model is not available, then it is particularly useful to 
estimate action values (the values of state–action pairs) 
rather than state values

 With a model, state values alone are sufficient to 
determine a policy; one simply looks ahead one step and 
chooses whichever action leads to the best combination of 
reward and next state

 Without a model, state values alone are not sufficient; one 
must explicitly estimate the value of each action in order 
for the values to be useful in suggesting a policy
 Thus, one of our primary goals for MC methods is to estimate 𝑞∗; to 

do this, we first consider the policy evaluation problem for action 
values
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MC Estimation of Action Values

 Policy evaluation problem for action values: estimate 
𝑞𝜋(𝑠, 𝑎), the expected return when starting in state s, 
taking action a, and thereafter following policy 𝜋

 MC methods for the problem are essentially the same as 
those for state values
 Every-visit MC method: estimates the value of a state–action pair as 

the average of the returns that have followed all the visits to it
 First-visit MC method: averages the returns following the first time 

in each episode that the state was visited and the action was 
selected

 These methods converge to the true expected values as the number 
of visits to each state–action pair approaches infinity
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MC Estimation of Action Values

 Complication: many state–action pairs may never be 
visited; if 𝜋 is a deterministic policy, then one will observe 
returns only for one of the actions from each state

 MC estimates of the other actions will not be learned; this 
is a serious problem because the purpose of learning 
action values is to help in choosing among the actions 
available in each state
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MC Estimation of Action Values

 Maintaining exploration
 For policy evaluation to work for action values, we must assure 

continual exploration
 A solution: exploring starts

 Specifying that the episodes start in a state–action pair, and that every pair has a 
nonzero probability of being selected as the start

 This guarantees that all state–action pairs will be visited an infinite number of 
times

 However, this method does not work well when learning directly from actual 
interaction with an environment

 Alternative solution: consider only stochastic policy
 Stochastic policy: a nonzero probability of selecting all actions in each state
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Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion
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MC Control

 Goal: approximate optimal policies using MC 
estimation

 Main idea: generalized policy iteration (GPI)
 The value function is repeatedly altered to more closely 

approximate the value function for the current policy, 
and the policy is repeatedly improved with respect to the 
current value function

Sutton and Barto, 

Reinforcement 

Learning, 2018
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MC Control

 MC version of policy iteration
 Alternate complete steps of policy evaluation and policy 

improvement, beginning with an arbitrary policy 𝜋0 and 
ending with the optimal policy and optimal action-value 
function

𝜋0՜
𝐸
𝑞𝜋0՜

𝐼
𝜋1՜

𝐸
𝑞𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑞∗
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MC Control

 MC version of policy iteration

 Policy evaluation: after experiencing many episodes, the 
approximate action-value function approaches the true 
function asymptotically

𝜋0՜
𝐸
𝑞𝜋0՜

𝐼
𝜋1՜

𝐸
𝑞𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑞∗
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MC Control

 MC version of policy iteration

 Policy improvement: making the policy greedy with respect to the 
current action-value function (no model is required)
 𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞(𝑠, 𝑎)

 𝜋𝑘+1 is constructed as the greedy policy wrt 𝑞𝜋𝑘
 𝑞𝜋𝑘 𝑠, 𝜋𝑘+1 𝑠 = 𝑞𝜋𝑘 𝑠, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋𝑘(𝑠, 𝑎)

= 𝑚𝑎𝑥𝑎𝑞𝜋𝑘(𝑠, 𝑎)

≥ 𝑞𝜋𝑘(𝑠, 𝜋𝑘 𝑠 )

= 𝑣𝜋𝑘(𝑠)

 𝜋𝑘+1 is uniformly better than or equal to 𝜋𝑘, which assures that the overall 
process converges to the optimal policy

 MC policy iteration requires only sample episodes, without knowledge of the 
environment

𝜋0՜
𝐸
𝑞𝜋0՜

𝐼
𝜋1՜

𝐸
𝑞𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑞∗
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MC Control

 Convergence of MC policy iteration
 Two assumptions

 1) Episodes have exploring starts
 2) Policy evaluation could be done with an infinite number of episodes

 Removing assumption 2
 Idea 1: approximate 𝑞𝜋𝑘 as much as possible; the error will be related to the 

degree of approximation
 Idea 2: give up trying to complete policy evaluation before returning to policy 

improvement. On each evaluation step we move the value function toward 𝑞𝜋𝑘, 
but we do not expect to actually get close to it

 Example of idea 2: value iteration (only one iteration of iterative policy evaluation 
is performed between each step of policy improvement)
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MC Control

 Monte Carlo with Exploring Starts
 Alternate between evaluation and improvement on an episode-by-episode 

basis; after each episode, the observed returns are used for policy evaluation, 
and then the policy is improved at all the states visited in the episode

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Blackjack

 It is easy to arrange for exploring starts that include all possibilities 
since the episodes are all simulated games

 One simply picks the dealer’s cards, the player’s sum, and whether or 
not the player has a usable ace, all at random with equal probability

 As the initial policy we use the policy which sticks only on 20 or 21
 The initial action-value function can be zero for all state–action pairs

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion
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MC Control w.o. Exploring Starts

 Goal: ensure that all actions are selected infinitely 
often 

 Question: How to achieve it without the unlikely 
assumption of exploring starts? 

 Solutions: 
 On-policy methods: attempt to evaluate or improve the 

policy that is used to make decisions
 Monte Carlo ES method (previous section)
 Monte Carlo w.o. ES (focus of this section)

 Off-policy methods: evaluate or improve a policy 
different from that used to generate the data
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MC Control w.o. Exploring Starts

 𝜀-greedy policy: most of the time choose an action 
that has maximal estimated action value, but with 
probability 𝜀 select an action at random
 All nongreedy actions: given the minimal probability of 

selection 𝜀

|𝐴 𝑠 |

 Greedy action: 1 − 𝜀 +
𝜀

|𝐴 𝑠 |

 𝜀-soft policy: π(𝑎|𝑠) ≥ 𝜀

|𝐴 𝑠 |
for all states and 

actions, for some 𝜀 > 0

 𝜀-greedy policy is a 𝜀-soft policy
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MC Control w.o. Exploring Starts

 GPI does not require that the policy be taken all 
the way to a greedy policy, only that it be moved 
toward a greedy policy

 MC control w.o. exploring starts
 Move the policy to an 𝜀–greedy policy
 For any 𝜀–soft policy π, any 𝜀–greedy policy wrt 𝑞π is 

guaranteed to be better than or equal to π
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MC Control w.o. Exploring Starts
Sutton and Barto, 

Reinforcement 

Learning, 2018
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MC Control w.o. Exploring Starts

 For any 𝜀–soft policy π, any 𝜀–greedy policy π′ wrt 𝑞π is 
guaranteed to be better than or equal to π
 (proof)

𝑞𝜋 𝑠, 𝜋′ 𝑠 = 

𝑎

𝜋′ 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

=
𝜀

|𝒜(𝑠)|


𝑎

𝑞𝜋(𝑠, 𝑎) + 1 − 𝜀 max
𝑎

𝑞𝜋 𝑠, 𝑎

≥
𝜀

𝒜 𝑠


𝑎

𝑞𝜋 𝑠, 𝑎 + 1 − 𝜀 

𝑎

𝜋 𝑎 𝑠 −
𝜀

𝒜 𝑠

1 − 𝜀
𝑞𝜋 𝑠, 𝑎

=
𝜀

𝒜 𝑠


𝑎

𝑞𝜋 𝑠, 𝑎 −
𝜀

𝒜 𝑠


𝑎

𝑞𝜋 𝑠, 𝑎 +

𝑎

𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = 𝑣𝜋(𝑠)

 By the policy improvement theorem, π′ ≥ π (i.e., 𝑣𝜋′(𝑠) ≥ 𝑣𝜋(𝑠))
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MC Control w.o. Exploring Starts

 Policy iteration works for 𝜀-soft policies
 Using the natural notion of greedy policy for 𝜀-soft policies, 

one is assured of improvement on every step, until 
convergence

 Although achieving the best policy only among the 𝜀-soft 
policies, we have eliminated the assumption of exploring 
starts
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𝑆1 𝑆2 𝑆3

𝑆4 𝑆5 𝑆6

𝑆7 𝑆8 𝑇

MC with exploring starts MC without exploring starts

Fixed start pointRandom start for each episode
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Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion
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Off-Policy Prediction via 
Importance Sampling

 All learning control methods face a dilemma: they seek to learn action 
values conditional on subsequent optimal behavior, but they need to 
behave non-optimally in order to explore all actions (to find the optimal 
actions)

 How to learn about the optimal policy while behaving according to an 
exploratory policy? 

 A straightforward approach is to use two policies
 Target policy: one that is learned about and that becomes the optimal policy
 Behavior policy: one that is more exploratory and is used to generate behavior

 In this case we say that learning is from data off the target policy, and 
the overall process is termed off-policy learning
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Off-Policy Prediction via 
Importance Sampling

 On-policy methods are generally simpler and are 
considered first

 Off-policy methods 
 (Pros) more powerful and general. They include on-policy methods as the 

special case in which the target and behavior policies are the same
 (Pros) have a variety of additional uses in applications; e.g., they can be 

applied to learn from data generated by a conventional non-learning 
controller, or from a human expert

 (Cons) often of greater variance and are slower to converge, since the data 
is due to a different policy



U Kang

Problem Setting

 Off-policy prediction problem
 Both target and behavior policies are fixed
 Assume we wish to estimate 𝑣𝜋 or 𝑞𝜋, but all we have are episodes 

following another policy 𝑏 ≠ 𝜋

 𝜋: target policy, b: behavior policy



U Kang

Problem Setting

 Assumption of coverage
 In order to use episodes from b to estimate values for 𝜋, every 

action taken under 𝜋 should be also taken under b; 𝜋(a|s) > 0 
implies b(a|s) > 0; b must be stochastic in states where their actions 
with non-zero probabilities are not identical to those of 𝜋

 The target policy 𝜋, on the other hand, may be deterministic, and, in 
fact, this is a case of particular interest in control applications

 In control, the target policy is typically the deterministic greedy 
policy with respect to the current estimate of the action-value 
function. This policy becomes a deterministic optimal policy while 
the behavior policy remains stochastic and more exploratory, for 
example, an 𝜀-greedy policy

 In this section, we consider the prediction problem, in which 𝜋 is 
unchanging and given
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Off-Policy Prediction via 
Importance Sampling

 Importance sampling
 A general technique for estimating expected values under one 

distribution given samples from another
 Apply importance sampling to off-policy learning by weighting 

returns according to the relative probability of their trajectories 
occurring under the target and behavior policies, called the 
importance-sampling ratio
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Off-Policy Prediction via 
Importance Sampling

 Importance sampling
 Given a starting state 𝑆𝑡, the probability of the subsequent state-

action trajectory, 𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇, occurring under policy 𝜋 is
Pr 𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇 𝑆𝑡 , 𝐴𝑡:𝑇−1~𝜋}
= 𝜋 𝐴𝑡 𝑆𝑡 𝑝 𝑆𝑡+1 𝑆𝑡 , 𝐴𝑡 𝜋 𝐴𝑡+1 𝑆𝑡+1 ⋯𝑝 𝑆𝑇 𝑆𝑇−1, 𝐴𝑇−1

= ෑ

𝑘=𝑡

𝑇−1

𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

 Importance-sampling ratio: relative probability of the trajectory 
under the target and behavior policies

𝜌𝑡:𝑇−1 =
ς𝑘=𝑡
𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

= ෑ

𝑘=𝑡

𝑇−1
𝜋(𝐴𝑘|𝑆𝑘)

𝑏(𝐴𝑘|𝑆𝑘)

 Depends only on the two policies and the sequence, not on the MDP
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Off-Policy Prediction via 
Importance Sampling

 Importance sampling
 Goal: estimate the expected returns (values) under the target policy
 We have 𝐺𝑡 due to the behavior policy; these returns have the 

wrong expectation 𝐸 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝑣𝑏(𝑠) and so cannot be averaged 
to obtain 𝑣𝜋

 Importance sampling ratio 𝜌𝑡:𝑇−1 transforms the returns to have the 
right expected value: 𝐸 𝜌𝑡:𝑇−1𝐺𝑡 𝑆𝑡 = 𝑠 = 𝑣𝜋(𝑠)
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Off-Policy Prediction via 
Importance Sampling

 Importance sampling
 Importance sampling ratio 𝜌𝑡:𝑇−1 transforms the returns to have the 

right expected value: 𝐸 𝜌𝑡:𝑇−1𝐺𝑡 𝑆𝑡 = 𝑠 = 𝑣𝜋(𝑠)

 (Proof)

Let 𝑃 𝑒 𝑖 ~𝜋|𝑆𝑡 be 

Pr 𝐴𝑡 , 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇 𝑆𝑡 , 𝐴𝑡:𝑇−1~𝜋}
= 𝜋 𝐴𝑡 𝑆𝑡 𝑝 𝑆𝑡+1 𝑆𝑡 , 𝐴𝑡 𝜋 𝐴𝑡+1 𝑆𝑡+1 ⋯𝑝 𝑆𝑇 𝑆𝑇−1, 𝐴𝑇−1
= ς𝑘=𝑡

𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

Let 𝐺(𝑖) be the return from the i th episode.

Then, 𝑣𝑏 𝑠 = 𝐸 𝐺𝑡 𝑆𝑡 = 𝑠 = σ𝑖 𝐺
(𝑖)𝑃 𝑒 𝑖 ~𝑏|𝑆𝑡

Thus, 𝑣𝜋 𝑠 = σ𝑖 𝐺
(𝑖)𝑃 𝑒 𝑖 ~𝜋|𝑆𝑡 = σ𝑖 𝐺

(𝑖)𝑃 𝑒 𝑖 ~𝑏|𝑆𝑡 𝜌𝑡:𝑇−1 = 𝐸 𝜌𝑡:𝑇−1𝐺𝑡 𝑆𝑡 = 𝑠

𝜌𝑡:𝑇−1 =
ς𝑘=𝑡
𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

= ෑ

𝑘=𝑡

𝑇−1
𝜋(𝐴𝑘|𝑆𝑘)

𝑏(𝐴𝑘|𝑆𝑘)
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MC Off-policy Algorithm

 Averages returns from a batch of observed episodes following policy b to 
estimate 𝑣𝜋(𝑠)

 Assume time steps increase across episode boundaries; if the first episode of 
the batch ends in a terminal state at time 100, then the next episode begins at 
time t = 101

 A(s) = the set of all time steps in which state s is visited (every-visit method)
 For a first-visit method, A(s) would only include time steps that were first visits to s 

within their episodes
 T(t) = the first time of termination following time t
 𝐺𝑡 = the return after t up through T(t)
 {𝐺𝑡}𝑡∈Α(𝑠) are the returns that pertain to state s, and {𝜌𝑡:𝑇(𝑡)−1}𝑡∈Α(𝑠) are the 

corresponding importance-sampling ratios

 Then, 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

 This is called ordinary importance sampling
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MC Off-policy Algorithm

 Ordinary importance sampling

 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

 Alternative: weighted importance sampling

 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1
, or 0 if the denominator is 0
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MC Off-policy Algorithm

 Consider the estimates of their first-visit methods after observing a 
single return from state s

 Weighted importance sampling: 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1

 In the weighted-average estimate, the ratio 𝜌𝑡:𝑇−1 for the single return cancels in the 
numerator and denominator, so that the estimate is equal to the observed return 
independent of the ratio (assuming the ratio is nonzero)

 Given that this return was the only one observed, this is a reasonable estimate, but 
its expectation is 𝑣𝑏(𝑠) rather than 𝑣𝜋(𝑠), and thus it is biased

 Ordinary importance sampling: 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

 The first-visit version of the ordinary importance-sampling estimator is always 𝑣𝜋(𝑠)
in expectation (it is unbiased), but it can be extreme

 Suppose the ratio were ten, indicating that the trajectory observed is ten times as 
likely under the target policy as under the behavior policy

 In this case the ordinary importance-sampling estimate would be ten times the 
observed return. That is, it would be quite far from the observed return even though 
the episode’s trajectory is considered very representative of the target policy
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MC Off-policy Algorithm

 Ordinary vs. Weighted Importance Sampling (first-visit methods)
 Ordinary importance sampling is unbiased whereas weighted importance 

sampling is biased (though the bias converges asymptotically to zero)
 The variance of ordinary importance sampling is in general unbounded 

because the variance of the ratios can be unbounded, whereas in the 
weighted estimator the largest weight on any single return is one. 
Assuming bounded returns, the variance of the weighted importance-
sampling estimator converges to zero

 In practice, the weighted estimator usually has dramatically lower variance 
and is strongly preferred

 First-visit vs. Every-visit methods
 In practice, every-visit methods are often preferred because they remove 

the need to keep track of which states have been visited
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Example: Off-policy Estimation of 
a BlackJack State Value

 Goal: estimate the value of a single blackjack state from off-policy data, 
using both ordinary and weighted importance-sampling methods

 Behavior policy: starting in the state then choosing to hit or stick at 
random with equal probability

 Target policy: stick only on a sum of 20 or 21
 Both off-policy methods closely approximated this value after 1000 off-

policy episodes using the random policy; but the weighted importance-
sampling method has much lower error at the beginning

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion
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Incremental Implementation

 Monte Carlo prediction methods can be 
implemented incrementally, on an episode-by-
episode basis

 Idea: average returns
 On-policy MC method: easy
 Off-policy MC method: need to separately consider 

those that use ordinary importance sampling and 
those that use weighted importance sampling



U Kang

Incremental Implementation

 Ordinary importance sampling
 The returns are scaled by the importance sampling ratio 

 Then, returns are incrementally updated to compute the 
average

 𝑣 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

𝑝𝑡:𝑇−1 =
ς𝑘=𝑡
𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

= ෑ

𝑘=𝑡

𝑇−1
𝜋(𝐴𝑘|𝑆𝑘)

𝑏(𝐴𝑘|𝑆𝑘)
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Incremental Implementation

 Weighted importance sampling
 Suppose we have a sequence of returns 𝐺1, 𝐺2, … , 𝐺𝑛−1, all starting 

in the same state and each with a corresponding random weight 𝑊𝑖

(e.g., 𝑊𝑖 = 𝜌𝑡𝑖:𝑇 𝑡𝑖 −1)
 We wish to form the estimate 

and keep it up-to-date as we obtain a single additional return 𝐺𝑛
 In addition to keeping track of 𝑉𝑛, we must maintain for each state 

the cumulative sum 𝐶𝑛 of the weights given to the first n returns
 Then, the update rules are

where 𝐶0 = 0 and 𝑉1 is arbitrary

𝑉𝑛 =
σ𝑘=1
𝑛−1𝑊𝑘𝐺𝑘
σ𝑘=1
𝑛−1𝑊𝑘

, 𝑛 ≥ 2

𝑉𝑛+1 = 𝑉𝑛 +
𝑊𝑛

𝐶𝑛
𝐺𝑛 − 𝑉𝑛 , 𝑛 ≥ 1

𝐶𝑛+1 = 𝐶𝑛 +𝑊𝑛+1
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Incremental Implementation

 Off-policy MC prediction for estimating 𝑄 ≈ 𝑞𝜋

𝑉𝑛+1 = 𝑉𝑛 +
𝑊𝑛

𝐶𝑛
𝐺𝑛 − 𝑉𝑛 , 𝑛 ≥ 1

𝐶𝑛+1 = 𝐶𝑛 +𝑊𝑛+1

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion
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Off-Policy MC Control

 On-policy methods: estimate the value of a policy 
while using it for control

 Off-policy methods: behavior policy and target 
policy are separated
 Behavior policy generates behavior
 Target policy is evaluated and improved
 Advantage: the target policy may be deterministic (e.g., 

greedy), while the behavior policy can continue to 
sample all possible actions
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Off-Policy MC Control

 Off-policy MC control methods
 Follow the behavior policy while learning about and 

improving the target policy
 The behavior policy should have a nonzero probability of 

selecting all actions that might be selected by the target 
policy (coverage)
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Off-Policy MC Control
Sutton and Barto, 

Reinforcement 

Learning, 2018
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Off-Policy MC Control

 Off-policy MC control methods
 Uses GPI and weighted importance sampling, for estimating 𝜋∗ and 

𝑞∗
 The target policy 𝜋 ≈ 𝜋∗ is the greedy policy with respect to Q, 

which is an estimate of 𝑞𝜋
 The behavior policy b can be anything, but an infinite number of 

returns must be obtained for each pair of state and action, to assure 
convergence; this can be assured by choosing b to be 𝜖-soft

 The policy 𝜋 converges to optimal at all encountered states even 
though actions are selected according to a different soft policy b, 
which may change between or even within episodes
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Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion
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Conclusion

 Monte Carlo methods learn value functions and optimal policies from 
experience in the form of sample episodes

 Advantages of MC methods over DP methods
 They can be used to learn optimal behavior directly from interaction with the 

environment, with no model of the environment’s dynamics
 They can be used with simulation or sample models; for many applications it is easy 

to simulate sample episodes even though it is difficult to construct the kind of explicit 
model of transition probabilities required by DP methods

 It is easy and efficient to focus MC methods on a small subset of the states; A region 
of special interest can be accurately evaluated without going to the expense of 
accurately evaluating the rest of the state set

 They may be less harmed by violations of the Markov property, since they do not 
update their value estimates on the basis of the value estimates of successor states; 
i.e., they do not bootstrap.

 There are methods that learn from experience, like Monte Carlo methods, but also 
bootstrap, like DP methods
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Conclusion

 MC control methods uses the idea of generalized policy iteration (GPI)
 GPI involves interacting processes of policy evaluation and policy 

improvement
 MC methods provide an alternative policy evaluation process; rather 

than using a model to compute the value of each state, they simply 
average many returns that start in the state

 Because a state’s value is the expected return, this average can become 
a good approximation to the value

 In control methods we are particularly interested in approximating 
action-value functions which can be used to improve the policy without 
requiring a model of the environment’s transition dynamics

 MC methods intermix policy evaluation and policy improvement steps 
on an episode-by-episode basis, and can be incrementally 
implemented on an episode-by-episode basis
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Conclusion

 Maintaining sufficient exploration
 An important issue in Monte Carlo control methods
 It is not enough just to select the actions currently estimated to be 

best, because then no returns will be obtained for alternative actions
 One approach is to assume that episodes  begin with state–action 

pairs randomly selected to cover all possibilities (exploring starts); 
this may be possible in applications with simulated episodes, but are 
unlikely in learning from real experience

 In on-policy methods, the agent commits to always exploring and 
tries to find the best policy that still explores

 In off-policy methods, the agent also explores, but learns a 
deterministic optimal policy that may be unrelated to the policy 
followed
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Conclusion

 Off-policy prediction
 Learn the value function of a target policy from data generated by a 

different behavior policy
 Based on some form of importance sampling: weight returns by the 

ratio of the probabilities of taking the observed actions under the two 
policies, thereby transforming their expectations from the behavior 
policy to the target policy

 Ordinary importance sampling uses a simple average of the weighted 
returns, while weighted importance sampling uses a weighted 
average

 Ordinary importance sampling produces unbiased estimates, but has 
larger, possibly infinite, variance, whereas weighted importance 
sampling always has finite variance and is preferred in practice
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Exercise

 (Question 1)
 A) Consider an MDP with a single nonterminal state and a single action 

that transitions back to the nonterminal state with probability p and 
transitions to the terminal state with probability 1-p. Let the reward be 
+1 on all transitions and let γ = 1. Suppose you observe one episode 
that lasts 10 steps, with a return of 10. What are the first-visit and 
every-visit estimators of the value of the nonterminal state?

 B) What would be the answer of A if the discounting factor is changed 
to 0.9?
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Exercise

 (Answer A)

 First visit = 10 / 1 = 10
 Every visit = (1+2+ … + 10) / 10 = 55/10 = 5.5

Step 0 1 2 3 4 5 6 7 8 9 10

State S S S S S S S S S S T

Reward 1 1 1 1 1 1 1 1 1 1

Action p p p p p p p p p 1-p
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Exercise

 (Answer B)

 First visit = 1 + 0.9 + 0.92 +⋯+ 0.99 =
1 (1−0.910)

1−0.9

 Every visit = σ𝑡=1
10 (1 + ⋯+ 0.9𝑡−1)/10 = σ𝑡=1

10 (1−0.9𝑡)

1−0.9
/10

Step 0 1 2 3 4 5 6 7 8 9 10

State S S S S S S S S S S T

Reward 1 1 1 1 1 1 1 1 1 1

Action p p p p p p p p p 1-p
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Questions?


