
U Kang

Reinforcement Learning

Monte Carlo Methods

U Kang
Seoul National University

U Kang

In This Lecture

 Overview of Monte Carlo (MC) methods for RL
 MC prediction
 MC control
 Off-policy methods for MC

U Kang

Overview

 Monte Carlo (MC) Methods
 Do not assume complete knowledge of the environment
 MC methods require only experience (sample sequences

of states, actions, and rewards) from actual or simulated
interaction with an environment

 Learning from actual experience is useful because it
requires no prior knowledge of the environment

 Learning from simulated experience is also powerful;
Although a model is required, the model needs only to
generate sample transitions, not the complete probability
distributions of all possible transitions as in DP

U Kang

Overview

 Monte Carlo (MC) Methods
 MC methods are ways of solving RL problem based on

averaging sample returns
 MC methods are defined only for episodic tasks; only on

the completion of an episode are value estimates and
policies changed

 MC methods can thus be incremental in an episode-by-
episode sense, but not in a step-by-step (online) sense

 “Monte Carlo” is often used more broadly for any
estimation method whose operation involves a
significant random component

U Kang

Overview

 Monte Carlo (MC) Methods
 MC methods sample and average returns for each state–

action pair much like the bandit methods sample and
average rewards for each action

 In MC, there are multiple states, acting like different
bandit problems which are interrelated

 The return after taking an action in one state depends
on the actions taken in later states in the same episode

 Because all the action selections are undergoing
learning, the problem becomes nonstationary from the
point of view of the earlier state

U Kang

Overview

 Monte Carlo (MC) Methods
 To handle the nonstationarity, we adapt the idea of

general policy iteration (GPI)
 In DP, we computed value functions from knowledge of the

MDP; in MC, we learn value functions from sample returns
with the MDP

 Outline
 Prediction problem (computation of 𝑣𝜋 and 𝑞𝜋 for a fixed policy 𝜋)
 Policy improvement
 Control problem and its solution by GPI

U Kang

Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion

U Kang

MC Prediction

 Learn the state-value function for a given policy by
MC methods

 Value of a state: expected return (expected
cumulative future discounted reward) starting
from the state

 MC methods estimate it from experience; average
the returns observed after visits to that state

 As more returns are observed, the average should
converge to the expected value

U Kang

MC Prediction

 Suppose we wish to estimate 𝑣𝜋 𝑠 , the value of a state 𝑠
under policy 𝜋, given a set of episodes obtained by
following 𝜋 and passing through 𝑠

 Each occurrence of state s in an episode is called a visit to
s; s may be visited multiple times in the same episode

 First-visit MC method: estimates 𝑣𝜋 𝑠 as the average of
the returns following first visits to 𝑠

 Every-visit MC method: averages the returns following all
visits to 𝑠

U Kang

MC Prediction

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

MC Prediction

 Both first-visit MC and every-visit MC converge to 𝑣𝜋 𝑠 as
the number of visits to s goes to infinity

 First-visit MC
 Each return is an independent, identically distributed estimate of

𝑣𝜋 𝑠 with finite variance
 By the law of large numbers the sequence of averages of these

estimates converges to their expected value
 Each average is itself an unbiased estimate, and the standard

deviation of its error falls as 1/ 𝑛, where n is the number of returns
averaged

 Every-visit MC: also converges to 𝑣𝜋 𝑠

U Kang

Example: Blackjack

https://en.wikipedia.org/wiki/Blackjack#/media/File:Blackjack_game_1.JPG

U Kang

Example: Blackjack

 Object of blackjack: to obtain cards whose sum is as great as possible
without exceeding 21

 All face cards count as 10, and an ace can count either as 1 or as 11
 The game begins with two cards dealt to both dealer and player; one of

the dealer’s cards is face up and the other is face down
 If the player has 21 immediately (an ace and a 10-card), it is called a

natural; he then wins unless the dealer also has a natural, in which case
the game is a draw

 If the player does not have a natural, then he can request additional cards,
one by one (hits), until he either stops (sticks) or exceeds 21 (goes bust)

 If he goes bust, he loses; if he sticks, then it becomes the dealer’s turn. The
dealer hits or sticks according to a fixed strategy without choice: he sticks
on any sum of 17 or greater, and hits otherwise

 If the dealer goes bust, then the player wins; otherwise, the outcome is
determined by whose final sum is closer to 21.

U Kang

Example: Blackjack

 Playing blackjack is naturally formulated as an episodic finite MDP
 Rewards: +1, −1, and 0 for winning, losing, and drawing

 All rewards within a game are zero, and we do not discount; thus the terminal rewards
are also the returns

 Actions: hit or stick
 States: depend on the player’s cards and the dealer’s showing card

 If the player holds an ace that he could count as 11 without going bust, then the ace is
said to be usable.

 The player makes decisions on the basis of three variables: his current sum (12–21), the
dealer’s one showing card (ace–10), and whether or not he holds a usable ace

 This makes for a total of 200 states

U Kang

Example: Blackjack

 Example policy: sticks if the player’s sum is 20 or 21, and otherwise hits

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Backup Diagram for MC

MC DP Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

MC’s Advantages over DP

 Advantage 1
 MC does not require complete knowledge of the environment

 MC for blackjack is easy: one simulates many blackjack games
using a policy and averages the returns following each state

 DP for blackjack
 Although we have complete knowledge of the environment in the

blackjack task, it would not be easy to apply DP methods to compute
the value function

 DP methods require the distribution of next events, which is non-trivial
to compute

 For example, suppose the player’s sum is 14 and he chooses to stick.
What is his probability of terminating with a reward of +1 as a function
of the dealer’s showing card? Computing the probabilities is complex
and error-prone

U Kang

MC’s Advantages over DP

 Advantage 2
 MC allows to learn from actual experience and from simulated

experience
 DP does not learn from experiences

U Kang

MC’s Advantages over DP

 MC vs. DP
 DP: bootstrap (an estimate for each state builds on the estimate of

any other state)
 MC: does not bootstrap (an estimate for each state does not build

on the estimate of any other state)

 Advantage 3
 The computational expense of estimating the value of a single state

in MC is independent of the number of states
 This is useful especially when one requires the value of only a subset

of states
 In MC, one can generate many sample episodes starting from the

states of interest, ignoring all others

U Kang

Example: Soap Bubble

 Suppose a wire frame forming a closed
loop is dunked in soapy water to form a
soap bubble conforming at its edges to
the wire frame

 If the geometry of the wire frame is
known, how to compute the shape of the
surface?

 The total force on each point exerted by
neighboring points is zero (or else the
shape would change); the surface’s
height at any point is the average of its
heights at points in a small circle around
that point

 The surface must also meet at its
boundaries with the wire frame

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Soap Bubble

 DP solution for soap bubble problem
 Put a grid over the area covered by the surface and solve for its height at the grid

points by an iterative computation
 This process then iterates, much like DP’s iterative policy evaluation, and ultimately

converges to a solution

 MC solution for soap bubble problem
 Imagine standing on the surface and taking a random walk until you reach the

boundary
 The expected value of the height at the boundary is a close approximation to the

height of the desired surface at the starting point
 Thus, one can closely approximate the height of the surface at a point by simply

averaging the boundary heights of many walks started at the point
 If one is interested in only the value at one point, or any fixed small set of points,

then this Monte Carlo method can be far more efficient than the iterative method
based on local consistency

U Kang

Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion

U Kang

MC Estimation of Action Values

 If a model is not available, then it is particularly useful to
estimate action values (the values of state–action pairs)
rather than state values

 With a model, state values alone are sufficient to
determine a policy; one simply looks ahead one step and
chooses whichever action leads to the best combination of
reward and next state

 Without a model, state values alone are not sufficient; one
must explicitly estimate the value of each action in order
for the values to be useful in suggesting a policy
 Thus, one of our primary goals for MC methods is to estimate 𝑞∗; to

do this, we first consider the policy evaluation problem for action
values

U Kang

.

.

.

T

.

.

.

T

Monte Carlo state value 𝑣𝜋(𝑠) Monte Carlo action value 𝑞𝜋(𝑠, 𝑎)

U Kang

MC Estimation of Action Values

 Policy evaluation problem for action values: estimate
𝑞𝜋(𝑠, 𝑎), the expected return when starting in state s,
taking action a, and thereafter following policy 𝜋

 MC methods for the problem are essentially the same as
those for state values
 Every-visit MC method: estimates the value of a state–action pair as

the average of the returns that have followed all the visits to it
 First-visit MC method: averages the returns following the first time

in each episode that the state was visited and the action was
selected

 These methods converge to the true expected values as the number
of visits to each state–action pair approaches infinity

U Kang

MC Estimation of Action Values

 Complication: many state–action pairs may never be
visited; if 𝜋 is a deterministic policy, then one will observe
returns only for one of the actions from each state

 MC estimates of the other actions will not be learned; this
is a serious problem because the purpose of learning
action values is to help in choosing among the actions
available in each state

U Kang

MC Estimation of Action Values

 Maintaining exploration
 For policy evaluation to work for action values, we must assure

continual exploration
 A solution: exploring starts

 Specifying that the episodes start in a state–action pair, and that every pair has a
nonzero probability of being selected as the start

 This guarantees that all state–action pairs will be visited an infinite number of
times

 However, this method does not work well when learning directly from actual
interaction with an environment

 Alternative solution: consider only stochastic policy
 Stochastic policy: a nonzero probability of selecting all actions in each state

U Kang

Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion

U Kang

MC Control

 Goal: approximate optimal policies using MC
estimation

 Main idea: generalized policy iteration (GPI)
 The value function is repeatedly altered to more closely

approximate the value function for the current policy,
and the policy is repeatedly improved with respect to the
current value function

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

MC Control

 MC version of policy iteration
 Alternate complete steps of policy evaluation and policy

improvement, beginning with an arbitrary policy 𝜋0 and
ending with the optimal policy and optimal action-value
function

𝜋0՜
𝐸
𝑞𝜋0՜

𝐼
𝜋1՜

𝐸
𝑞𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑞∗

U Kang

MC Control

 MC version of policy iteration

 Policy evaluation: after experiencing many episodes, the
approximate action-value function approaches the true
function asymptotically

𝜋0՜
𝐸
𝑞𝜋0՜

𝐼
𝜋1՜

𝐸
𝑞𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑞∗

U Kang

MC Control

 MC version of policy iteration

 Policy improvement: making the policy greedy with respect to the
current action-value function (no model is required)
 𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞(𝑠, 𝑎)

 𝜋𝑘+1 is constructed as the greedy policy wrt 𝑞𝜋𝑘
 𝑞𝜋𝑘 𝑠, 𝜋𝑘+1 𝑠 = 𝑞𝜋𝑘 𝑠, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋𝑘(𝑠, 𝑎)

= 𝑚𝑎𝑥𝑎𝑞𝜋𝑘(𝑠, 𝑎)

≥ 𝑞𝜋𝑘(𝑠, 𝜋𝑘 𝑠)

= 𝑣𝜋𝑘(𝑠)

 𝜋𝑘+1 is uniformly better than or equal to 𝜋𝑘, which assures that the overall
process converges to the optimal policy

 MC policy iteration requires only sample episodes, without knowledge of the
environment

𝜋0՜
𝐸
𝑞𝜋0՜

𝐼
𝜋1՜

𝐸
𝑞𝜋1՜

𝐼
𝜋2՜

𝐸
⋯՜

𝐼
𝜋∗՜

𝐸
𝑞∗

U Kang

MC Control

 Convergence of MC policy iteration
 Two assumptions

 1) Episodes have exploring starts
 2) Policy evaluation could be done with an infinite number of episodes

 Removing assumption 2
 Idea 1: approximate 𝑞𝜋𝑘 as much as possible; the error will be related to the

degree of approximation
 Idea 2: give up trying to complete policy evaluation before returning to policy

improvement. On each evaluation step we move the value function toward 𝑞𝜋𝑘,
but we do not expect to actually get close to it

 Example of idea 2: value iteration (only one iteration of iterative policy evaluation
is performed between each step of policy improvement)

U Kang

MC Control

 Monte Carlo with Exploring Starts
 Alternate between evaluation and improvement on an episode-by-episode

basis; after each episode, the observed returns are used for policy evaluation,
and then the policy is improved at all the states visited in the episode

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Blackjack

 It is easy to arrange for exploring starts that include all possibilities
since the episodes are all simulated games

 One simply picks the dealer’s cards, the player’s sum, and whether or
not the player has a usable ace, all at random with equal probability

 As the initial policy we use the policy which sticks only on 20 or 21
 The initial action-value function can be zero for all state–action pairs

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion

U Kang

MC Control w.o. Exploring Starts

 Goal: ensure that all actions are selected infinitely
often

 Question: How to achieve it without the unlikely
assumption of exploring starts?

 Solutions:
 On-policy methods: attempt to evaluate or improve the

policy that is used to make decisions
 Monte Carlo ES method (previous section)
 Monte Carlo w.o. ES (focus of this section)

 Off-policy methods: evaluate or improve a policy
different from that used to generate the data

U Kang

MC Control w.o. Exploring Starts

 𝜀-greedy policy: most of the time choose an action
that has maximal estimated action value, but with
probability 𝜀 select an action at random
 All nongreedy actions: given the minimal probability of

selection 𝜀

|𝐴 𝑠 |

 Greedy action: 1 − 𝜀 +
𝜀

|𝐴 𝑠 |

 𝜀-soft policy: π(𝑎|𝑠) ≥ 𝜀

|𝐴 𝑠 |
for all states and

actions, for some 𝜀 > 0

 𝜀-greedy policy is a 𝜀-soft policy

U Kang

MC Control w.o. Exploring Starts

 GPI does not require that the policy be taken all
the way to a greedy policy, only that it be moved
toward a greedy policy

 MC control w.o. exploring starts
 Move the policy to an 𝜀–greedy policy
 For any 𝜀–soft policy π, any 𝜀–greedy policy wrt 𝑞π is

guaranteed to be better than or equal to π

U Kang

MC Control w.o. Exploring Starts
Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

MC Control w.o. Exploring Starts

 For any 𝜀–soft policy π, any 𝜀–greedy policy π′ wrt 𝑞π is
guaranteed to be better than or equal to π
 (proof)

𝑞𝜋 𝑠, 𝜋′ 𝑠 =

𝑎

𝜋′ 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

=
𝜀

|𝒜(𝑠)|

𝑎

𝑞𝜋(𝑠, 𝑎) + 1 − 𝜀 max
𝑎

𝑞𝜋 𝑠, 𝑎

≥
𝜀

𝒜 𝑠

𝑎

𝑞𝜋 𝑠, 𝑎 + 1 − 𝜀

𝑎

𝜋 𝑎 𝑠 −
𝜀

𝒜 𝑠

1 − 𝜀
𝑞𝜋 𝑠, 𝑎

=
𝜀

𝒜 𝑠

𝑎

𝑞𝜋 𝑠, 𝑎 −
𝜀

𝒜 𝑠

𝑎

𝑞𝜋 𝑠, 𝑎 +

𝑎

𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = 𝑣𝜋(𝑠)

 By the policy improvement theorem, π′ ≥ π (i.e., 𝑣𝜋′(𝑠) ≥ 𝑣𝜋(𝑠))

U Kang

MC Control w.o. Exploring Starts

 Policy iteration works for 𝜀-soft policies
 Using the natural notion of greedy policy for 𝜀-soft policies,

one is assured of improvement on every step, until
convergence

 Although achieving the best policy only among the 𝜀-soft
policies, we have eliminated the assumption of exploring
starts

U Kang

𝑆1 𝑆2 𝑆3

𝑆4 𝑆5 𝑆6

𝑆7 𝑆8 𝑇

MC with exploring starts MC without exploring starts

Fixed start pointRandom start for each episode

U Kang

Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion

U Kang

Off-Policy Prediction via
Importance Sampling

 All learning control methods face a dilemma: they seek to learn action
values conditional on subsequent optimal behavior, but they need to
behave non-optimally in order to explore all actions (to find the optimal
actions)

 How to learn about the optimal policy while behaving according to an
exploratory policy?

 A straightforward approach is to use two policies
 Target policy: one that is learned about and that becomes the optimal policy
 Behavior policy: one that is more exploratory and is used to generate behavior

 In this case we say that learning is from data off the target policy, and
the overall process is termed off-policy learning

U Kang

Off-Policy Prediction via
Importance Sampling

 On-policy methods are generally simpler and are
considered first

 Off-policy methods
 (Pros) more powerful and general. They include on-policy methods as the

special case in which the target and behavior policies are the same
 (Pros) have a variety of additional uses in applications; e.g., they can be

applied to learn from data generated by a conventional non-learning
controller, or from a human expert

 (Cons) often of greater variance and are slower to converge, since the data
is due to a different policy

U Kang

Problem Setting

 Off-policy prediction problem
 Both target and behavior policies are fixed
 Assume we wish to estimate 𝑣𝜋 or 𝑞𝜋, but all we have are episodes

following another policy 𝑏 ≠ 𝜋

 𝜋: target policy, b: behavior policy

U Kang

Problem Setting

 Assumption of coverage
 In order to use episodes from b to estimate values for 𝜋, every

action taken under 𝜋 should be also taken under b; 𝜋(a|s) > 0
implies b(a|s) > 0; b must be stochastic in states where their actions
with non-zero probabilities are not identical to those of 𝜋

 The target policy 𝜋, on the other hand, may be deterministic, and, in
fact, this is a case of particular interest in control applications

 In control, the target policy is typically the deterministic greedy
policy with respect to the current estimate of the action-value
function. This policy becomes a deterministic optimal policy while
the behavior policy remains stochastic and more exploratory, for
example, an 𝜀-greedy policy

 In this section, we consider the prediction problem, in which 𝜋 is
unchanging and given

U Kang

Off-Policy Prediction via
Importance Sampling

 Importance sampling
 A general technique for estimating expected values under one

distribution given samples from another
 Apply importance sampling to off-policy learning by weighting

returns according to the relative probability of their trajectories
occurring under the target and behavior policies, called the
importance-sampling ratio

U Kang

Off-Policy Prediction via
Importance Sampling

 Importance sampling
 Given a starting state 𝑆𝑡, the probability of the subsequent state-

action trajectory, 𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇, occurring under policy 𝜋 is
Pr 𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇 𝑆𝑡 , 𝐴𝑡:𝑇−1~𝜋}
= 𝜋 𝐴𝑡 𝑆𝑡 𝑝 𝑆𝑡+1 𝑆𝑡 , 𝐴𝑡 𝜋 𝐴𝑡+1 𝑆𝑡+1 ⋯𝑝 𝑆𝑇 𝑆𝑇−1, 𝐴𝑇−1

= ෑ

𝑘=𝑡

𝑇−1

𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

 Importance-sampling ratio: relative probability of the trajectory
under the target and behavior policies

𝜌𝑡:𝑇−1 =
ς𝑘=𝑡
𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

= ෑ

𝑘=𝑡

𝑇−1
𝜋(𝐴𝑘|𝑆𝑘)

𝑏(𝐴𝑘|𝑆𝑘)

 Depends only on the two policies and the sequence, not on the MDP

U Kang

Off-Policy Prediction via
Importance Sampling

 Importance sampling
 Goal: estimate the expected returns (values) under the target policy
 We have 𝐺𝑡 due to the behavior policy; these returns have the

wrong expectation 𝐸 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝑣𝑏(𝑠) and so cannot be averaged
to obtain 𝑣𝜋

 Importance sampling ratio 𝜌𝑡:𝑇−1 transforms the returns to have the
right expected value: 𝐸 𝜌𝑡:𝑇−1𝐺𝑡 𝑆𝑡 = 𝑠 = 𝑣𝜋(𝑠)

U Kang

Off-Policy Prediction via
Importance Sampling

 Importance sampling
 Importance sampling ratio 𝜌𝑡:𝑇−1 transforms the returns to have the

right expected value: 𝐸 𝜌𝑡:𝑇−1𝐺𝑡 𝑆𝑡 = 𝑠 = 𝑣𝜋(𝑠)

 (Proof)

Let 𝑃 𝑒 𝑖 ~𝜋|𝑆𝑡 be

Pr 𝐴𝑡 , 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇 𝑆𝑡 , 𝐴𝑡:𝑇−1~𝜋}
= 𝜋 𝐴𝑡 𝑆𝑡 𝑝 𝑆𝑡+1 𝑆𝑡 , 𝐴𝑡 𝜋 𝐴𝑡+1 𝑆𝑡+1 ⋯𝑝 𝑆𝑇 𝑆𝑇−1, 𝐴𝑇−1
= ς𝑘=𝑡

𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

Let 𝐺(𝑖) be the return from the i th episode.

Then, 𝑣𝑏 𝑠 = 𝐸 𝐺𝑡 𝑆𝑡 = 𝑠 = σ𝑖 𝐺
(𝑖)𝑃 𝑒 𝑖 ~𝑏|𝑆𝑡

Thus, 𝑣𝜋 𝑠 = σ𝑖 𝐺
(𝑖)𝑃 𝑒 𝑖 ~𝜋|𝑆𝑡 = σ𝑖 𝐺

(𝑖)𝑃 𝑒 𝑖 ~𝑏|𝑆𝑡 𝜌𝑡:𝑇−1 = 𝐸 𝜌𝑡:𝑇−1𝐺𝑡 𝑆𝑡 = 𝑠

𝜌𝑡:𝑇−1 =
ς𝑘=𝑡
𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

= ෑ

𝑘=𝑡

𝑇−1
𝜋(𝐴𝑘|𝑆𝑘)

𝑏(𝐴𝑘|𝑆𝑘)

U Kang

MC Off-policy Algorithm

 Averages returns from a batch of observed episodes following policy b to
estimate 𝑣𝜋(𝑠)

 Assume time steps increase across episode boundaries; if the first episode of
the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101

 A(s) = the set of all time steps in which state s is visited (every-visit method)
 For a first-visit method, A(s) would only include time steps that were first visits to s

within their episodes
 T(t) = the first time of termination following time t
 𝐺𝑡 = the return after t up through T(t)
 {𝐺𝑡}𝑡∈Α(𝑠) are the returns that pertain to state s, and {𝜌𝑡:𝑇(𝑡)−1}𝑡∈Α(𝑠) are the

corresponding importance-sampling ratios

 Then, 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

 This is called ordinary importance sampling

U Kang

MC Off-policy Algorithm

 Ordinary importance sampling

 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

 Alternative: weighted importance sampling

 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1
, or 0 if the denominator is 0

U Kang

MC Off-policy Algorithm

 Consider the estimates of their first-visit methods after observing a
single return from state s

 Weighted importance sampling: 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1

 In the weighted-average estimate, the ratio 𝜌𝑡:𝑇−1 for the single return cancels in the
numerator and denominator, so that the estimate is equal to the observed return
independent of the ratio (assuming the ratio is nonzero)

 Given that this return was the only one observed, this is a reasonable estimate, but
its expectation is 𝑣𝑏(𝑠) rather than 𝑣𝜋(𝑠), and thus it is biased

 Ordinary importance sampling: 𝑣𝜋 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

 The first-visit version of the ordinary importance-sampling estimator is always 𝑣𝜋(𝑠)
in expectation (it is unbiased), but it can be extreme

 Suppose the ratio were ten, indicating that the trajectory observed is ten times as
likely under the target policy as under the behavior policy

 In this case the ordinary importance-sampling estimate would be ten times the
observed return. That is, it would be quite far from the observed return even though
the episode’s trajectory is considered very representative of the target policy

U Kang

MC Off-policy Algorithm

 Ordinary vs. Weighted Importance Sampling (first-visit methods)
 Ordinary importance sampling is unbiased whereas weighted importance

sampling is biased (though the bias converges asymptotically to zero)
 The variance of ordinary importance sampling is in general unbounded

because the variance of the ratios can be unbounded, whereas in the
weighted estimator the largest weight on any single return is one.
Assuming bounded returns, the variance of the weighted importance-
sampling estimator converges to zero

 In practice, the weighted estimator usually has dramatically lower variance
and is strongly preferred

 First-visit vs. Every-visit methods
 In practice, every-visit methods are often preferred because they remove

the need to keep track of which states have been visited

U Kang

Example: Off-policy Estimation of
a BlackJack State Value

 Goal: estimate the value of a single blackjack state from off-policy data,
using both ordinary and weighted importance-sampling methods

 Behavior policy: starting in the state then choosing to hit or stick at
random with equal probability

 Target policy: stick only on a sum of 20 or 21
 Both off-policy methods closely approximated this value after 1000 off-

policy episodes using the random policy; but the weighted importance-
sampling method has much lower error at the beginning

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion

U Kang

Incremental Implementation

 Monte Carlo prediction methods can be
implemented incrementally, on an episode-by-
episode basis

 Idea: average returns
 On-policy MC method: easy
 Off-policy MC method: need to separately consider

those that use ordinary importance sampling and
those that use weighted importance sampling

U Kang

Incremental Implementation

 Ordinary importance sampling
 The returns are scaled by the importance sampling ratio

 Then, returns are incrementally updated to compute the
average

 𝑣 𝑠 =
σ𝑡∈Α(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

|𝐴 𝑠 |

𝑝𝑡:𝑇−1 =
ς𝑘=𝑡
𝑇−1𝜋 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝(𝑆𝑘+1|𝑆𝑘 , 𝐴𝑘)

= ෑ

𝑘=𝑡

𝑇−1
𝜋(𝐴𝑘|𝑆𝑘)

𝑏(𝐴𝑘|𝑆𝑘)

U Kang

Incremental Implementation

 Weighted importance sampling
 Suppose we have a sequence of returns 𝐺1, 𝐺2, … , 𝐺𝑛−1, all starting

in the same state and each with a corresponding random weight 𝑊𝑖

(e.g., 𝑊𝑖 = 𝜌𝑡𝑖:𝑇 𝑡𝑖 −1)
 We wish to form the estimate

and keep it up-to-date as we obtain a single additional return 𝐺𝑛
 In addition to keeping track of 𝑉𝑛, we must maintain for each state

the cumulative sum 𝐶𝑛 of the weights given to the first n returns
 Then, the update rules are

where 𝐶0 = 0 and 𝑉1 is arbitrary

𝑉𝑛 =
σ𝑘=1
𝑛−1𝑊𝑘𝐺𝑘
σ𝑘=1
𝑛−1𝑊𝑘

, 𝑛 ≥ 2

𝑉𝑛+1 = 𝑉𝑛 +
𝑊𝑛

𝐶𝑛
𝐺𝑛 − 𝑉𝑛 , 𝑛 ≥ 1

𝐶𝑛+1 = 𝐶𝑛 +𝑊𝑛+1

U Kang

Incremental Implementation

 Off-policy MC prediction for estimating 𝑄 ≈ 𝑞𝜋

𝑉𝑛+1 = 𝑉𝑛 +
𝑊𝑛

𝐶𝑛
𝐺𝑛 − 𝑉𝑛 , 𝑛 ≥ 1

𝐶𝑛+1 = 𝐶𝑛 +𝑊𝑛+1

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Monte Carlo (MC) Prediction
MC Estimation of Action Values
MC Control
MC Control without Exploring Starts
Off-policy Prediction via Importance Sampling
Incremental Implementation
Off-policy MC Control
Conclusion

U Kang

Off-Policy MC Control

 On-policy methods: estimate the value of a policy
while using it for control

 Off-policy methods: behavior policy and target
policy are separated
 Behavior policy generates behavior
 Target policy is evaluated and improved
 Advantage: the target policy may be deterministic (e.g.,

greedy), while the behavior policy can continue to
sample all possible actions

U Kang

Off-Policy MC Control

 Off-policy MC control methods
 Follow the behavior policy while learning about and

improving the target policy
 The behavior policy should have a nonzero probability of

selecting all actions that might be selected by the target
policy (coverage)

U Kang

Off-Policy MC Control
Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Off-Policy MC Control

 Off-policy MC control methods
 Uses GPI and weighted importance sampling, for estimating 𝜋∗ and

𝑞∗
 The target policy 𝜋 ≈ 𝜋∗ is the greedy policy with respect to Q,

which is an estimate of 𝑞𝜋
 The behavior policy b can be anything, but an infinite number of

returns must be obtained for each pair of state and action, to assure
convergence; this can be assured by choosing b to be 𝜖-soft

 The policy 𝜋 converges to optimal at all encountered states even
though actions are selected according to a different soft policy b,
which may change between or even within episodes

U Kang

Outline

Agent-Environment Interface
Goals and Rewards
Returns and Episodes
Episodic and Continuing Tasks
Policies and Value Functions
Optimal Policies and Value Functions
Optimality and Approximation
Conclusion

U Kang

Conclusion

 Monte Carlo methods learn value functions and optimal policies from
experience in the form of sample episodes

 Advantages of MC methods over DP methods
 They can be used to learn optimal behavior directly from interaction with the

environment, with no model of the environment’s dynamics
 They can be used with simulation or sample models; for many applications it is easy

to simulate sample episodes even though it is difficult to construct the kind of explicit
model of transition probabilities required by DP methods

 It is easy and efficient to focus MC methods on a small subset of the states; A region
of special interest can be accurately evaluated without going to the expense of
accurately evaluating the rest of the state set

 They may be less harmed by violations of the Markov property, since they do not
update their value estimates on the basis of the value estimates of successor states;
i.e., they do not bootstrap.

 There are methods that learn from experience, like Monte Carlo methods, but also
bootstrap, like DP methods

U Kang

Conclusion

 MC control methods uses the idea of generalized policy iteration (GPI)
 GPI involves interacting processes of policy evaluation and policy

improvement
 MC methods provide an alternative policy evaluation process; rather

than using a model to compute the value of each state, they simply
average many returns that start in the state

 Because a state’s value is the expected return, this average can become
a good approximation to the value

 In control methods we are particularly interested in approximating
action-value functions which can be used to improve the policy without
requiring a model of the environment’s transition dynamics

 MC methods intermix policy evaluation and policy improvement steps
on an episode-by-episode basis, and can be incrementally
implemented on an episode-by-episode basis

U Kang

Conclusion

 Maintaining sufficient exploration
 An important issue in Monte Carlo control methods
 It is not enough just to select the actions currently estimated to be

best, because then no returns will be obtained for alternative actions
 One approach is to assume that episodes begin with state–action

pairs randomly selected to cover all possibilities (exploring starts);
this may be possible in applications with simulated episodes, but are
unlikely in learning from real experience

 In on-policy methods, the agent commits to always exploring and
tries to find the best policy that still explores

 In off-policy methods, the agent also explores, but learns a
deterministic optimal policy that may be unrelated to the policy
followed

U Kang

Conclusion

 Off-policy prediction
 Learn the value function of a target policy from data generated by a

different behavior policy
 Based on some form of importance sampling: weight returns by the

ratio of the probabilities of taking the observed actions under the two
policies, thereby transforming their expectations from the behavior
policy to the target policy

 Ordinary importance sampling uses a simple average of the weighted
returns, while weighted importance sampling uses a weighted
average

 Ordinary importance sampling produces unbiased estimates, but has
larger, possibly infinite, variance, whereas weighted importance
sampling always has finite variance and is preferred in practice

U Kang

Exercise

 (Question 1)
 A) Consider an MDP with a single nonterminal state and a single action

that transitions back to the nonterminal state with probability p and
transitions to the terminal state with probability 1-p. Let the reward be
+1 on all transitions and let γ = 1. Suppose you observe one episode
that lasts 10 steps, with a return of 10. What are the first-visit and
every-visit estimators of the value of the nonterminal state?

 B) What would be the answer of A if the discounting factor is changed
to 0.9?

U Kang

Exercise

 (Answer A)

 First visit = 10 / 1 = 10
 Every visit = (1+2+ … + 10) / 10 = 55/10 = 5.5

Step 0 1 2 3 4 5 6 7 8 9 10

State S S S S S S S S S S T

Reward 1 1 1 1 1 1 1 1 1 1

Action p p p p p p p p p 1-p

U Kang

Exercise

 (Answer B)

 First visit = 1 + 0.9 + 0.92 +⋯+ 0.99 =
1 (1−0.910)

1−0.9

 Every visit = σ𝑡=1
10 (1 + ⋯+ 0.9𝑡−1)/10 = σ𝑡=1

10 (1−0.9𝑡)

1−0.9
/10

Step 0 1 2 3 4 5 6 7 8 9 10

State S S S S S S S S S S T

Reward 1 1 1 1 1 1 1 1 1 1

Action p p p p p p p p p 1-p

U Kang

Questions?

