
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Machine Learning Basics - 2

U Kang
Seoul National University

U Kang 2

In This Lecture

 Estimators, bias, and variance
 Maximum likelihood estimation
 Supervised learning algorithm
 Stochastic Gradient Descent (SGD)
 Challenges motivating deep learning

U Kang 3

Estimators

 Point estimation: the attempt to provide the single
“best” prediction of some quantity of interest

 Let {𝑥𝑥(1), … , 𝑥𝑥 𝑚𝑚 } be a set of m independent and
identically distributed (i.i.d.) data points. A point
estimator or statistic is any function of the data:
�𝜃𝜃𝑚𝑚 = 𝑔𝑔(𝑥𝑥(1), … , 𝑥𝑥 𝑚𝑚)
 E.g., estimate the average of a random variable

U Kang 4

Bias

 Bias of an estimator is defined as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚 = 𝐸𝐸 �𝜃𝜃𝑚𝑚 − 𝜃𝜃
 An estimator �𝜃𝜃𝑚𝑚 is unbiased if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚 = 0

 E.g., Bernoulli Distribution: 𝑃𝑃 𝑥𝑥 𝑖𝑖 ;𝜃𝜃 = 𝜃𝜃𝑥𝑥 𝑖𝑖 (1 − 𝜃𝜃)(1−𝑥𝑥(𝑖𝑖))

 A common estimator for 𝜃𝜃 is given by �𝜃𝜃𝑚𝑚 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑥𝑥 𝑖𝑖

 Is �𝜃𝜃𝑚𝑚 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑥𝑥 𝑖𝑖 biased?

U Kang 5

Variance

 Variance of an estimator is defined as in the variance of a
variable
 𝑉𝑉𝑉𝑉𝑉𝑉 𝜃̂𝜃 = 𝐸𝐸 (𝜃̂𝜃 − 𝐸𝐸 𝜃̂𝜃)2

 Square root of the variance is called the standard error SE �𝜃𝜃
 We want an estimator to have a low variance

U Kang 6

Bias – Variance Tradeoff

 The mean squared error (MSE) is tightly connected to bias
and variance (called bias-variance decomposition)
 MSE = 𝐸𝐸 (�𝜃𝜃𝑚𝑚 − 𝜃𝜃)2 = (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚)2+𝑉𝑉𝑉𝑉𝑉𝑉(�𝜃𝜃𝑚𝑚)
 (Pf)

 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚)2= (𝐸𝐸�𝜃𝜃𝑚𝑚 − 𝜃𝜃)2= (𝐸𝐸�𝜃𝜃𝑚𝑚)2−2𝜃𝜃𝐸𝐸�𝜃𝜃𝑚𝑚 + 𝜃𝜃2

 𝑉𝑉𝑉𝑉𝑉𝑉 �𝜃𝜃𝑚𝑚 = 𝐸𝐸(�𝜃𝜃𝑚𝑚
2) − (𝐸𝐸�𝜃𝜃𝑚𝑚)2

 The tradeoff suggests that to minimize MSE we should
consider both bias and variance

U Kang 7

Bias and Variance

U Kang 8

Maximum Likelihood Estimation

 Consider a set of m examples 𝑋𝑋 = {𝑥𝑥(1), … , 𝑥𝑥(𝑚𝑚)} drawn from
the true but unknown data generating distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

 Let 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥;𝜃𝜃) be a parametric family of our model
distribution

 The maximum likelihood estimator for 𝜃𝜃 is defined as
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋;𝜃𝜃

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥(𝑖𝑖);𝜃𝜃

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 ∑𝑖𝑖=1𝑚𝑚 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥(𝑖𝑖);𝜃𝜃
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥;𝜃𝜃

where 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the empirical distribution defined by the training data

 E.g., estimating mean of a Gaussian

U Kang 9

Maximum Likelihood Estimation

 The maximum likelihood estimator (MLE) for 𝜃𝜃 is defined as
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥;𝜃𝜃

 MLE is equivalent to minimizing the dissimilarity between the
empirical distribution 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and the model distribution in terms
of KL divergence
 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑| 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) − log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)
 Minimizing the above KL divergence by training the model (finding the

best parameters) is equivalent to minimizing −𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

 Note that minimizing DKL(P||Q) with regard to Q is equivalent to
mining the cross entropy H(P,Q) with regard to Q
 Thus, minimizing cross entropy is equal to finding MLE

 Maximum likelihood is an attempt to make the model
distribution match the empirical distribution 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 Ideally, we would like to match 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, but we do not really know it

U Kang 10

Conditional Log-Likelihood

 The maximum likelihood estimator (MLE) can be readily
generalized to the case where our goal is to estimate a
conditional probability P(y|x;𝜃𝜃) in order to predict y given x

 This is in fact the most common situation because it forms the
basis for most supervised learning

 The conditional maximum likelihood estimator is given by
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑃𝑃 𝑌𝑌 | 𝑋𝑋;𝜃𝜃
 If the examples are assumed to be i.i.d., then
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 ∑𝑖𝑖=1𝑚𝑚 log𝑃𝑃 𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖);𝜃𝜃

U Kang 11

Bayesian Statistics

 We have discussed frequentist statistics: we want to estimate a
fixed but unknown 𝜃𝜃

 Bayesian statistics: the parameter 𝜃𝜃 is not fixed; it is a random
variable

 Before observing the data, we represent our knowledge of
𝜃𝜃 using the prior probability distribution p(𝜃𝜃)

 After observing the data, our belief on 𝜃𝜃 changes

 𝑃𝑃 𝜃𝜃 𝑥𝑥 = 𝑝𝑝 𝑥𝑥 𝜃𝜃 𝑝𝑝(𝜃𝜃)
𝑝𝑝(𝑥𝑥)

 Prediction using Bayesian estimation is different from that of
maximum likelihood estimation
 𝑃𝑃 𝑥𝑥(𝑚𝑚+1) = ∫𝑝𝑝 𝑥𝑥(𝑚𝑚+1) 𝜃𝜃 𝑝𝑝 𝜃𝜃 𝑥𝑥 1 .. 𝑚𝑚 𝑑𝑑𝜃𝜃
 That is, we use the full posterior distribution of 𝜃𝜃

U Kang 12

Maximum A Posteriori (MAP)
Estimation

 Although prediction in Bayesian estimation uses full posterior
distribution of 𝜃𝜃, it is often desirable to have a single point
estimate
 Why? Many operations involving Bayesian posterior is intractable
 A point estimate offers a tractable approximation

 MAP (Maximum a Posteriori): chooses the point of maximal
posterior probability
 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑝𝑝 𝜃𝜃 𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 log𝑝𝑝(𝑥𝑥|𝜃𝜃) + log𝑝𝑝(𝜃𝜃)

U Kang 13

Supervised Learning Algorithms

 Logistic Regression
 Support Vector Machine
 K Nearest Neighbor
 Decision Tree

U Kang 14

Logistic Regression

 Probabilistic supervised learning: estimate 𝑝𝑝(𝑦𝑦|𝒙𝒙)
 We can do this by finding the best parameter vector 𝜽𝜽 for a parametric

family of distributions 𝑝𝑝(𝑦𝑦|𝒙𝒙;𝜽𝜽)

 Linear classifier

 I.e., 𝑥𝑥 belongs to class +1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0, and to class -1 if 𝑤𝑤𝑇𝑇𝑥𝑥 < 0

U Kang 15

Logistic Regression (LR)

 Logistic regression is a linear classifier
 y has two labels (1 and -1)

 Intuitively, we want p(y=1|x) be large if 𝑤𝑤𝑇𝑇𝑥𝑥 is large
 Also, we want p(y=1|x) be small if 𝑤𝑤𝑇𝑇𝑥𝑥 is small
 Logistic regression uses sigmoid function 𝝈𝝈 to squash 𝑤𝑤𝑇𝑇𝑥𝑥 into a

probability in [0,1]

 The probability of y=1 in logistic regression is given by

 𝑝𝑝 𝑦𝑦 = 1 𝒙𝒙;𝜽𝜽 = 𝝈𝝈 𝜽𝜽𝑻𝑻𝒙𝒙 = 𝟏𝟏
𝟏𝟏+𝒆𝒆𝒆𝒆𝒆𝒆(−𝜽𝜽𝑻𝑻𝒙𝒙)

U Kang 16

Support Vector Machine (SVM)

 SVM is similar to logistic regression in that the class is
determined by a linear function 𝑤𝑤𝑇𝑇𝑥𝑥

 However, unlike LR, SVM does not provide probabilities, but
only outputs a class identity

 SVM predicts that y=+1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0. Likewise it predicts y=-1 if
𝑤𝑤𝑇𝑇𝑥𝑥 < 0

 SVM is called maximum margin classifier

U Kang 17

K Nearest Neighbor (K-NN)

 Can be used for classification or regression
 Given a new test input x, we want to produce an output y
 We find the k nearest neighbors of x in the training data X
 We then return the average of the corresponding y values

 For classification, we compute the average of one-hot code vectors with
cy=1 and ci=0 for all other values of i

 K-NN is a nonparametric learning algorithm: it can achieve very
high capacity
 Given a large training set, K-NN gives high accuracy

 Disadvantage of K-NN
 It has a high computational cost
 It may generalize very badly given a small, finite training set
 It cannot learn that one feature is more discriminative than another

U Kang 18

Decision Trees

 Breaks the input space into regions
 E.g., buy_computer ?

 Limitation: it cannot correctly find the non-axis-aligned
decision boundary

CR: credit rating

U Kang 19

Unsupervised Learning Algorithms

 Unsupervised algorithms experience only “features”,
but not a supervised signal

 Examples
 Density estimation
 Learn to denoise data from some distribution
 Finding a manifold that the data lies near
 Clustering the data into groups of related examples

Manifold learning

U Kang 20

Unsupervised Learning Algorithms

 Classic unsupervised learning task: find the ‘best’
representation of the data
 ‘best’ means that we look for a simpler representation while

preserving as much information of the original data

 3 common ways of defining a simple representation
 Low-dimensional representation
 Sparse representation
 Independent representation

 Disentangle the sources of variation underlying the data distribution
such that the dimensions of the representation are statistically
independent

U Kang 21

Principal Component Analysis

 PCA disentangles the factors of variation underlying the data

U Kang 22

k-means Clustering

 k-means algorithm divides the training set into k
different clusters of examples that are near each
other

 k-means algorithm
 Initialize k different centroids {𝜇𝜇 1 , … , 𝜇𝜇 𝑘𝑘 }
 Until convergence

 Assign each training example to cluster i where i is the index of the
nearest centroid 𝜇𝜇 𝑖𝑖

 Each centroid 𝜇𝜇 𝑖𝑖 is updated to the mean of all training examples
assigned to cluster i

U Kang 23

Stochastic Gradient Descent (SGD)

 A recurring problem in ML: large training sets are necessary
for good generalization, but large training sets are more
computationally expensive

 Cost function using cross-entropy:
 𝐽𝐽 𝜃𝜃 = 𝐸𝐸𝑥𝑥,𝑦𝑦~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿 𝑥𝑥,𝑦𝑦,𝜃𝜃 = 1

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝐿𝐿(𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 ,𝜃𝜃)

where L is the per-example loss 𝐿𝐿 𝑥𝑥,𝑦𝑦,𝜃𝜃 = − log𝑝𝑝(𝑦𝑦|𝑥𝑥; 𝜃𝜃)

 Gradient descent requires computing ∇𝜃𝜃𝐽𝐽(𝜃𝜃)= 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝛻𝛻𝜃𝜃𝐿𝐿(𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 ,𝜃𝜃)

 The computational cost of the gradient descent is O(m) which can take
long for large m

 Insight of SGD: gradient is an expectation which can be
approximately estimated using a small set of samples

U Kang 24

Stochastic Gradient Descent (SGD)

 SGD
 We sample a minibatch of examples 𝐵𝐵 = {𝑥𝑥 1 , … , 𝑥𝑥 𝑚𝑚𝑚 } drawn

uniformly from the training set
 The minibatch size m’ is typically a small number (1 to few hundred)
 m‘ is usually fixed as the training set size m grows

 The estimate of the gradient is 𝑔𝑔 = 1
𝑚𝑚′
∑𝑖𝑖=1𝑚𝑚′ 𝛻𝛻𝜃𝜃𝐿𝐿(𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 ,𝜃𝜃)

 Then the gradient descent is given by 𝜃𝜃 ← 𝜃𝜃 − 𝜖𝜖𝑔𝑔

 SGD works well in practice
 I.e., it often finds a very low value of the cost function quickly enough

to be useful

U Kang 25

Building a Machine Learning
Algorithm

 Simple recipe: combine a specification of
 a dataset
 a cost function
 The most common one is the negative log-likelihood (or

cross entropy)
 an optimization procedure, and
 a model: p(y|x)

U Kang 26

Challenges Motivating Deep Learning

 The simple ML algorithms discussed work well on
many problems; however they failed in solving the
central problems in AI, such as speech recognition or
object recognition

 Deep learning is motivated in part by the failure
 Challenges of generalizing to new examples becomes

exponentially more difficult when working with high-
dimensional data
 Curse of dimensionality
 Local constancy and smoothness regularization
 Manifold learning

U Kang 27

Curse of Dimensionality

 The number of possible distinct configurations of a set of
variables increases exponentially as the number of variables
increases

U Kang 28

Local Constancy and Smoothness
Regularization

 In order to generalize well, ML algorithms need to be guided by
prior beliefs about what kind of function they should learn

 Widely used priors: smoothness prior or local constancy prior
 The function we learn should not change very much within a small region
 To distinguish O(k) regions in input space, we would require O(k) examples
 For very high dimensional data, the required number of examples would be

too large

Nearest neighbor
algorithm breaks up the
input space into regions

U Kang 29

Manifold Learning

 Manifold is a connected region: a set of points associated
with a neighborhood around each region
 The surface of the earth is a 2-D manifold in 3-D space

U Kang 30

Manifold Learning

 Real world objects are not random; they lie in low-
dimensional manifolds
 If you generate a document by picking letters uniformly at random, you would

get a meaningful English text with almost 0 probability
 Sampling pixels uniformly at random gives rise to noisy images

U Kang 31

How Deep Learning Helps

 Deep learning finds an effective representation for
very high dimensional objects by the following two
main ideas
 Distributed representation
 Uses composition of factors

 A vision system can recognize cars, trucks, and birds, and these
objects can each be red, green, or blue

 One way of representing these inputs is to have a separate
neuron that activates for each of the nine possible combinations

 Distributed representation: three neurons for objects, three
neurons for colors => total six neurons

 Allows a small number of features to represent input
 Deep layers

U Kang 32

How Deep Learning Helps

 Deep layers

U Kang 33

What you need to know

 Maximum likelihood estimation or cross entropy
is widely used as cost function

 SGD is a popular and efficient optimization
method for many machine learning algorithms
including deep learning

 Deep learning solves the problem of previous
machine learning algorithms in handling high
dimensional data, by finding effective
representations

U Kang 34

Questions?

	슬라이드 번호 1
	In This Lecture
	Estimators
	Bias
	Variance
	Bias – Variance Tradeoff
	Bias and Variance
	Maximum Likelihood Estimation
	Maximum Likelihood Estimation
	Conditional Log-Likelihood
	Bayesian Statistics
	Maximum A Posteriori (MAP) Estimation
	Supervised Learning Algorithms
	Logistic Regression
	Logistic Regression (LR)
	Support Vector Machine (SVM)
	K Nearest Neighbor (K-NN)
	Decision Trees
	Unsupervised Learning Algorithms
	Unsupervised Learning Algorithms
	Principal Component Analysis
	k-means Clustering
	Stochastic Gradient Descent (SGD)
	Stochastic Gradient Descent (SGD)
	Building a Machine Learning Algorithm
	Challenges Motivating Deep Learning
	Curse of Dimensionality
	Local Constancy and Smoothness Regularization
	Manifold Learning
	Manifold Learning
	How Deep Learning Helps
	How Deep Learning Helps
	What you need to know
	슬라이드 번호 34

