

Large Scale Data Analysis Using Deep Learning

Machine Learning Basics - 2

U Kang Seoul National University

U Kang

In This Lecture

- Estimators, bias, and variance
- Maximum likelihood estimation
- Supervised learning algorithm
- Stochastic Gradient Descent (SGD)
- Challenges motivating deep learning

Estimators

- Point estimation: the attempt to provide the single "best" prediction of some quantity of interest
- Let $\{x^{(1)}, ..., x^{(m)}\}$ be a set of m independent and identically distributed (i.i.d.) data points. A point estimator or statistic is any function of the data: $\widehat{\theta_m} = g(x^{(1)}, ..., x^{(m)})$
 - E.g., estimate the average of a random variable

Bias

- Bias of an estimator is defined as bias(θ_m) = E(θ_m) − θ
 An estimator θ_m is unbiased if bias(θ_m) = 0
- E.g., Bernoulli Distribution: $P(x^{(i)}; \theta) = \theta^{x^{(i)}} (1 \theta)^{(1 x^{(i)})}$
 - A common estimator for θ is given by $\widehat{\theta_m} = \frac{1}{m} \sum_{i=1}^m x^{(i)}$

• Is
$$\widehat{\theta_m} = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$
 biased?

Variance

- Variance of an estimator is defined as in the variance of a variable
 - $\Box \quad Var(\hat{\theta}) = E[(\hat{\theta} E[\hat{\theta}])^2]$
- Square root of the variance is called the standard error $SE(\hat{\theta})$
- We want an estimator to have a low variance

Bias – Variance Tradeoff

- The mean squared error (MSE) is tightly connected to bias and variance (called bias-variance decomposition)
 - $\square MSE = E\left[(\widehat{\theta_m} \theta)^2\right] = (bias(\widehat{\theta_m}))^2 + Var(\widehat{\theta_m})$

□ (Pf)

•
$$(bias(\widehat{\theta_m}))^2 = (E\widehat{\theta_m} - \theta)^2 = (E\widehat{\theta_m})^2 - 2\theta E\widehat{\theta_m} + \theta^2$$

•
$$Var(\widehat{\theta_m}) = E(\widehat{\theta_m}^2) - (E\widehat{\theta_m})^2$$

 The tradeoff suggests that to minimize MSE we should consider both bias and variance

Bias and Variance

Maximum Likelihood Estimation

- Consider a set of m examples $X = \{x^{(1)}, \dots, x^{(m)}\}$ drawn from the true but unknown data generating distribution $p_{data}(x)$
- Let p_{model}(x; θ) be a parametric family of our model distribution
- The maximum likelihood estimator for θ is defined as

$$\theta_{ML} = argmax_{\theta} p_{model}(X; \theta)$$

$$= argmax_{\theta} \prod_{i=1}^{m} p_{model}(x^{(i)}; \theta)$$

$$= argmax_{\theta} \sum_{i=1}^{m} \log p_{model}(x^{(i)}; \theta)$$

$$= argmax_{\theta} E_{x \sim \hat{p}_{data}} \log p_{model}(x; \theta)$$

where \hat{p}_{data} is the empirical distribution defined by the training data

E.g., estimating mean of a Gaussian

Maximum Likelihood Estimation

• The maximum likelihood estimator (MLE) for θ is defined as

 $\Box \quad \theta_{ML} = argmax_{\theta} E_{x \sim \hat{p}_{data}} \log p_{model}(x; \theta)$

- MLE is equivalent to minimizing the dissimilarity between the empirical distribution \hat{p}_{data} and the model distribution in terms of KL divergence
 - $\square D_{KL}(\hat{p}_{data}||p_{model}) = E_{x \sim \hat{p}_{data}}[\log \hat{p}_{data}(x) \log p_{model}(x)]$
 - Minimizing the above KL divergence by training the model (finding the best parameters) is equivalent to minimizing $-E_{x\sim \hat{p}_{data}}[\log p_{model}(x)]$
- Note that minimizing D_{KL}(P||Q) with regard to Q is equivalent to mining the cross entropy H(P,Q) with regard to Q
 - Thus, minimizing cross entropy is equal to finding MLE
- Maximum likelihood is an attempt to make the model distribution match the empirical distribution \hat{p}_{data}
 - Ideally, we would like to match p_{data} , but we do not really know it

Conditional Log-Likelihood

- The maximum likelihood estimator (MLE) can be readily generalized to the case where our goal is to estimate a conditional probability P(y|x; θ) in order to predict y given x
- This is in fact the most common situation because it forms the basis for most supervised learning
- The conditional maximum likelihood estimator is given by

$$\exists \ \theta_{ML} = argmax_{\theta} P(Y \mid X; \theta)$$

- If the examples are assumed to be i.i.d., then
- $\Box \quad \theta_{ML} = argmax_{\theta} \sum_{i=1}^{m} \log P(y^{(i)} | x^{(i)}; \theta)$

Bayesian Statistics

- We have discussed frequentist statistics: we want to estimate a fixed but unknown θ
- Bayesian statistics: the parameter θ is not fixed; it is a random variable
- Before observing the data, we represent our knowledge of θ using the prior probability distribution $p(\theta)$
- After observing the data, our belief on θ changes

$$\square P(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

- Prediction using Bayesian estimation is different from that of maximum likelihood estimation
 - $\square P(x^{(m+1)}) = \int p(x^{(m+1)}|\theta) p(\theta|x^{(1)\dots(m)}) d\theta$
 - That is, we use the full posterior distribution of

Maximum A Posteriori (MAP) Estimation

- Although prediction in Bayesian estimation uses full posterior distribution of θ, it is often desirable to have a single point estimate
 - Why? Many operations involving Bayesian posterior is intractable
 - A point estimate offers a tractable approximation
- MAP (Maximum a Posteriori): chooses the point of maximal posterior probability
 - $\Box \quad \theta_{MAP} = argmax_{\theta} \ p(\theta|x) = argmax_{\theta} \log p(x|\theta) + \log p(\theta)$

Supervised Learning Algorithms

- Logistic Regression
- Support Vector Machine
- K Nearest Neighbor
- Decision Tree

Logistic Regression

- Probabilistic supervised learning: estimate p(y|x)
 - We can do this by finding the best parameter vector $\boldsymbol{\theta}$ for a parametric family of distributions $p(y|\boldsymbol{x}; \boldsymbol{\theta})$
- Linear classifier

• I.e., x belongs to class +1 if $w^T x > 0$, and to class -1 if $w^T x < 0$

Logistic Regression (LR)

- Logistic regression is a linear classifier
 - y has two labels (1 and -1)
- Intuitively, we want p(y=1|x) be large if $w^T x$ is large
 - Also, we want p(y=1|x) be small if $w^T x$ is small
 - □ Logistic regression uses sigmoid function σ to squash $w^T x$ into a probability in [0,1]
- The probability of y=1 in logistic regression is given by

$$p(y=1|x;\theta) = \sigma(\theta^T x) = \frac{1}{1 + exp(-\theta^T x)}$$

Support Vector Machine (SVM)

- SVM is similar to logistic regression in that the class is determined by a linear function w^Tx
- However, unlike LR, SVM does not provide probabilities, but only outputs a class identity
- SVM predicts that y=+1 if $w^T x > 0$. Likewise it predicts y=-1 if $w^T x < 0$
- SVM is called maximum margin classifier

K Nearest Neighbor (K-NN)

- Can be used for classification or regression
- Given a new test input x, we want to produce an output y
- We find the k nearest neighbors of x in the training data X
- We then return the average of the corresponding y values
 - For classification, we compute the average of one-hot code vectors with c_y=1 and c_i=0 for all other values of i
- K-NN is a nonparametric learning algorithm: it can achieve very high capacity
 - Given a large training set, K-NN gives high accuracy
- Disadvantage of K-NN
 - It has a high computational cost
 - It may generalize very badly given a small, finite training set
 - It cannot learn that one feature is more discriminative than another

Decision Trees

- Breaks the input space into regions
- E.g., buy_computer ?

Limitation: it cannot correctly find the non-axis-aligned decision boundary

Unsupervised Learning Algorithms

- Unsupervised algorithms experience only "features", but not a supervised signal
- Examples
 - Density estimation
 - Learn to denoise data from some distribution
 - Finding a manifold that the data lies near
 - Clustering the data into groups of related examples

Manifold learning

Unsupervised Learning Algorithms

- Classic unsupervised learning task: find the 'best' representation of the data
 - 'best' means that we look for a simpler representation while preserving as much information of the original data
- 3 common ways of defining a simple representation
 - Low-dimensional representation
 - Sparse representation
 - Independent representation
 - Disentangle the sources of variation underlying the data distribution such that the dimensions of the representation are statistically independent

Principal Component Analysis

PCA disentangles the factors of variation underlying the data

k-means Clustering

- k-means algorithm divides the training set into k different clusters of examples that are near each other
- k-means algorithm
 - □ Initialize k different centroids { $\mu^{(1)}$, ..., $\mu^{(k)}$ }
 - Until convergence
 - Assign each training example to cluster i where i is the index of the nearest centroid $\mu^{(i)}$
 - Each centroid µ⁽ⁱ⁾ is updated to the mean of all training examples assigned to cluster i

Stochastic Gradient Descent (SGD)

- A recurring problem in ML: large training sets are necessary for good generalization, but large training sets are more computationally expensive
- Cost function using cross-entropy:
 - $\Box \quad J(\theta) = E_{x,y \sim \hat{p}_{data}} L(x, y, \theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$ where L is the per-example loss $L(x, y, \theta) = -\log p(y|x; \theta)$
 - Gradient descent requires computing $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
 - The computational cost of the gradient descent is O(m) which can take long for large m
- Insight of SGD: gradient is an expectation which can be approximately estimated using a small set of samples UKang

Stochastic Gradient Descent (SGD)

SGD

- We sample a minibatch of examples $B = \{x^{(1)}, ..., x^{(m')}\}$ drawn uniformly from the training set
- □ The minibatch size m' is typically a small number (1 to few hundred)
- m' is usually fixed as the training set size m grows
- The estimate of the gradient is $g = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
- Then the gradient descent is given by $\theta \leftarrow \theta \epsilon g$
- SGD works well in practice
 - I.e., it often finds a very low value of the cost function quickly enough to be useful

Building a Machine Learning Algorithm

- Simple recipe: combine a specification of
 - a dataset
 - a cost function
 - The most common one is the negative log-likelihood (or cross entropy)
 - an optimization procedure, and
 - a model: p(y|x)

Challenges Motivating Deep Learning

- The simple ML algorithms discussed work well on many problems; however they failed in solving the central problems in AI, such as speech recognition or object recognition
- Deep learning is motivated in part by the failure
- Challenges of generalizing to new examples becomes exponentially more difficult when working with highdimensional data
 - Curse of dimensionality
 - Local constancy and smoothness regularization
 - Manifold learning

Curse of Dimensionality

 The number of possible distinct configurations of a set of variables increases exponentially as the number of variables increases

Local Constancy and Smoothness Regularization

- In order to generalize well, ML algorithms need to be guided by prior beliefs about what kind of function they should learn
- Widely used priors: smoothness prior or local constancy prior
 - The function we learn should not change very much within a small region
 - To distinguish O(k) regions in input space, we would require O(k) examples
 - For very high dimensional data, the required number of examples would be too large

Nearest neighbor algorithm breaks up the input space into regions

Manifold Learning

- Manifold is a connected region: a set of points associated with a neighborhood around each region
 - □ The surface of the earth is a 2-D manifold in 3-D space

Manifold Learning

- Real world objects are not random; they lie in lowdimensional manifolds
 - If you generate a document by picking letters uniformly at random, you would get a meaningful English text with almost 0 probability
 - Sampling pixels uniformly at random gives rise to noisy images

How Deep Learning Helps

- Deep learning finds an effective representation for very high dimensional objects by the following two main ideas
 - Distributed representation
 - Uses composition of factors
 - A vision system can recognize cars, trucks, and birds, and these objects can each be red, green, or blue
 - One way of representing these inputs is to have a separate neuron that activates for each of the nine possible combinations
 - Distributed representation: three neurons for objects, three neurons for colors => total six neurons
 - Allows a small number of features to represent input
 - Deep layers

How Deep Learning Helps

Deep layers

What you need to know

- Maximum likelihood estimation or cross entropy is widely used as cost function
- SGD is a popular and efficient optimization method for many machine learning algorithms including deep learning
- Deep learning solves the problem of previous machine learning algorithms in handling high dimensional data, by finding effective representations

Questions?