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In This Lecture

 Estimators, bias, and variance
 Maximum likelihood estimation
 Supervised learning algorithm
 Stochastic Gradient Descent (SGD)
 Challenges motivating deep learning
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Estimators

 Point estimation: the attempt to provide the single 
“best” prediction of some quantity of interest

 Let {𝑥𝑥(1), … , 𝑥𝑥 𝑚𝑚 } be a set of m independent and 
identically distributed (i.i.d.) data points. A point 
estimator or statistic is any function of the data: 
�𝜃𝜃𝑚𝑚 = 𝑔𝑔(𝑥𝑥(1), … , 𝑥𝑥 𝑚𝑚 )
 E.g., estimate the average of a random variable
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Bias

 Bias of an estimator is defined as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚 = 𝐸𝐸 �𝜃𝜃𝑚𝑚 − 𝜃𝜃
 An estimator �𝜃𝜃𝑚𝑚 is unbiased if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚 = 0

 E.g., Bernoulli Distribution: 𝑃𝑃 𝑥𝑥 𝑖𝑖 ;𝜃𝜃 = 𝜃𝜃𝑥𝑥 𝑖𝑖 (1 − 𝜃𝜃)(1−𝑥𝑥(𝑖𝑖))

 A common estimator for 𝜃𝜃 is given by �𝜃𝜃𝑚𝑚 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑥𝑥 𝑖𝑖

 Is �𝜃𝜃𝑚𝑚 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑥𝑥 𝑖𝑖 biased?
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Variance

 Variance of an estimator is defined as in the variance of a 
variable
 𝑉𝑉𝑉𝑉𝑉𝑉 𝜃̂𝜃 = 𝐸𝐸 (𝜃̂𝜃 − 𝐸𝐸 𝜃̂𝜃 )2

 Square root of the variance is called the standard error SE �𝜃𝜃
 We want an estimator to have a low variance
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Bias – Variance Tradeoff

 The mean squared error (MSE) is tightly connected to bias 
and variance (called bias-variance decomposition)
 MSE = 𝐸𝐸 (�𝜃𝜃𝑚𝑚 − 𝜃𝜃)2 = (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚 )2+𝑉𝑉𝑉𝑉𝑉𝑉(�𝜃𝜃𝑚𝑚)
 (Pf)

 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝜃𝜃𝑚𝑚 )2= (𝐸𝐸�𝜃𝜃𝑚𝑚 − 𝜃𝜃)2= (𝐸𝐸�𝜃𝜃𝑚𝑚)2−2𝜃𝜃𝐸𝐸�𝜃𝜃𝑚𝑚 + 𝜃𝜃2

 𝑉𝑉𝑉𝑉𝑉𝑉 �𝜃𝜃𝑚𝑚 = 𝐸𝐸(�𝜃𝜃𝑚𝑚
2) − (𝐸𝐸�𝜃𝜃𝑚𝑚)2

 The tradeoff suggests that to minimize MSE we should 
consider both bias and variance
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Bias and Variance
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Maximum Likelihood Estimation

 Consider a set of m examples 𝑋𝑋 = {𝑥𝑥(1), … , 𝑥𝑥(𝑚𝑚)} drawn from 
the true but unknown data generating distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

 Let 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥;𝜃𝜃) be a parametric family of our model 
distribution

 The maximum likelihood estimator for 𝜃𝜃 is defined as
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋;𝜃𝜃

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥(𝑖𝑖);𝜃𝜃

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 ∑𝑖𝑖=1𝑚𝑚 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥(𝑖𝑖);𝜃𝜃
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥;𝜃𝜃

where 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the empirical distribution defined by the training data

 E.g., estimating mean of a Gaussian
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Maximum Likelihood Estimation

 The maximum likelihood estimator (MLE) for 𝜃𝜃 is defined as
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥;𝜃𝜃

 MLE is equivalent to minimizing the dissimilarity between the 
empirical distribution 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and the model distribution in terms 
of KL divergence
 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑| 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) − log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)
 Minimizing the above KL divergence by training the model (finding the 

best parameters) is equivalent to minimizing −𝐸𝐸𝑥𝑥~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

 Note that minimizing DKL(P||Q) with regard to Q is equivalent to 
mining the cross entropy H(P,Q) with regard to Q
 Thus, minimizing cross entropy is equal to finding MLE

 Maximum likelihood is an attempt to make the model 
distribution match the empirical distribution 𝑝̂𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 Ideally, we would like to match 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, but we do not really know it
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Conditional Log-Likelihood

 The maximum likelihood estimator (MLE) can be readily 
generalized to the case where our goal is to estimate a 
conditional probability P(y|x;𝜃𝜃) in order to predict y given x

 This is in fact the most common situation because it forms the 
basis for most supervised learning

 The conditional maximum likelihood estimator is given by
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑃𝑃 𝑌𝑌 | 𝑋𝑋;𝜃𝜃
 If the examples are assumed to be i.i.d., then
 𝜃𝜃𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 ∑𝑖𝑖=1𝑚𝑚 log𝑃𝑃 𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖);𝜃𝜃
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Bayesian Statistics

 We have discussed frequentist statistics: we want to estimate a 
fixed but unknown 𝜃𝜃

 Bayesian statistics: the parameter 𝜃𝜃 is not fixed; it is a random 
variable

 Before observing the data, we represent our knowledge of 
𝜃𝜃 using the prior probability distribution p(𝜃𝜃)

 After observing the data, our belief on 𝜃𝜃 changes

 𝑃𝑃 𝜃𝜃 𝑥𝑥 = 𝑝𝑝 𝑥𝑥 𝜃𝜃 𝑝𝑝(𝜃𝜃)
𝑝𝑝(𝑥𝑥)

 Prediction using Bayesian estimation is different from that of 
maximum likelihood estimation
 𝑃𝑃 𝑥𝑥(𝑚𝑚+1) = ∫𝑝𝑝 𝑥𝑥(𝑚𝑚+1) 𝜃𝜃 𝑝𝑝 𝜃𝜃 𝑥𝑥 1 .. 𝑚𝑚 𝑑𝑑𝜃𝜃
 That is, we use the full posterior distribution of 𝜃𝜃
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Maximum A Posteriori (MAP) 
Estimation

 Although prediction in Bayesian estimation uses full posterior 
distribution of 𝜃𝜃, it is often desirable to have a single point 
estimate
 Why? Many operations involving Bayesian posterior is intractable
 A point estimate offers a tractable approximation

 MAP (Maximum a Posteriori): chooses the point of maximal 
posterior probability
 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑝𝑝 𝜃𝜃 𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 log𝑝𝑝(𝑥𝑥|𝜃𝜃) + log𝑝𝑝(𝜃𝜃)
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Supervised Learning Algorithms

 Logistic Regression
 Support Vector Machine
 K Nearest Neighbor 
 Decision Tree
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Logistic Regression

 Probabilistic supervised learning: estimate 𝑝𝑝(𝑦𝑦|𝒙𝒙)
 We can do this by finding the best parameter vector 𝜽𝜽 for a parametric 

family of distributions 𝑝𝑝(𝑦𝑦|𝒙𝒙;𝜽𝜽)

 Linear classifier

 I.e., 𝑥𝑥 belongs to class +1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0, and to class -1 if 𝑤𝑤𝑇𝑇𝑥𝑥 < 0
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Logistic Regression (LR)

 Logistic regression is a linear classifier
 y has two labels (1 and -1)

 Intuitively, we want p(y=1|x) be large if 𝑤𝑤𝑇𝑇𝑥𝑥 is large
 Also, we want p(y=1|x) be small if 𝑤𝑤𝑇𝑇𝑥𝑥 is small
 Logistic regression uses sigmoid function 𝝈𝝈 to squash 𝑤𝑤𝑇𝑇𝑥𝑥 into a 

probability in [0,1]

 The probability of y=1 in logistic regression is given by

 𝑝𝑝 𝑦𝑦 = 1 𝒙𝒙;𝜽𝜽 = 𝝈𝝈 𝜽𝜽𝑻𝑻𝒙𝒙 = 𝟏𝟏
𝟏𝟏+𝒆𝒆𝒆𝒆𝒆𝒆(−𝜽𝜽𝑻𝑻𝒙𝒙)
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Support Vector Machine (SVM)

 SVM is similar to logistic regression in that the class is 
determined by a linear function 𝑤𝑤𝑇𝑇𝑥𝑥

 However, unlike LR, SVM does not provide probabilities, but 
only outputs a class identity

 SVM predicts that y=+1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0. Likewise it predicts y=-1 if 
𝑤𝑤𝑇𝑇𝑥𝑥 < 0

 SVM is called maximum margin classifier  



U Kang 17

K Nearest Neighbor (K-NN)

 Can be used for classification or regression
 Given a new test input x, we want to produce an output y
 We find the k nearest neighbors of x in the training data X
 We then return the average of the corresponding y values

 For classification, we compute the average of one-hot code vectors with 
cy=1 and ci=0 for all other values of i

 K-NN is a nonparametric learning algorithm: it can achieve very 
high capacity
 Given a large training set, K-NN gives high accuracy

 Disadvantage of K-NN
 It has a high computational cost
 It may generalize very badly given a small, finite training set
 It cannot learn that one feature is more discriminative than another
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Decision Trees

 Breaks the input space into regions
 E.g., buy_computer ?

 Limitation: it cannot correctly find the non-axis-aligned 
decision boundary

CR: credit rating
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Unsupervised Learning Algorithms

 Unsupervised algorithms experience only “features”, 
but not a supervised signal

 Examples
 Density estimation
 Learn to denoise data from some distribution
 Finding a manifold that the data lies near
 Clustering the data into groups of related examples

Manifold learning
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Unsupervised Learning Algorithms

 Classic unsupervised learning task: find the ‘best’ 
representation of the data
 ‘best’ means that we look for a simpler representation while 

preserving as much information of the original data

 3 common ways of defining a simple representation
 Low-dimensional representation
 Sparse representation
 Independent representation

 Disentangle the sources of variation underlying the data distribution 
such that the dimensions of the representation are statistically 
independent
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Principal Component Analysis

 PCA disentangles the factors of variation underlying the data
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k-means Clustering

 k-means algorithm divides the training set into k 
different clusters of examples that are near each 
other

 k-means algorithm
 Initialize k different centroids {𝜇𝜇 1 , … , 𝜇𝜇 𝑘𝑘 }
 Until convergence

 Assign each training example to cluster i where i is the index of the 
nearest centroid 𝜇𝜇 𝑖𝑖

 Each centroid 𝜇𝜇 𝑖𝑖 is updated to the mean of all training examples 
assigned to cluster i
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Stochastic Gradient Descent (SGD)

 A recurring problem in ML: large training sets are necessary 
for good generalization, but large training sets are more 
computationally expensive

 Cost function using cross-entropy:
 𝐽𝐽 𝜃𝜃 = 𝐸𝐸𝑥𝑥,𝑦𝑦~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿 𝑥𝑥,𝑦𝑦,𝜃𝜃 = 1

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝐿𝐿(𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 ,𝜃𝜃)

where L is the per-example loss 𝐿𝐿 𝑥𝑥,𝑦𝑦,𝜃𝜃 = − log𝑝𝑝(𝑦𝑦|𝑥𝑥; 𝜃𝜃)

 Gradient descent requires computing ∇𝜃𝜃𝐽𝐽(𝜃𝜃)= 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝛻𝛻𝜃𝜃𝐿𝐿(𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 ,𝜃𝜃)

 The computational cost of the gradient descent is O(m) which can take 
long for large m

 Insight of SGD: gradient is an expectation which can be 
approximately estimated using a small set of samples
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Stochastic Gradient Descent (SGD)

 SGD
 We sample a minibatch of examples 𝐵𝐵 = {𝑥𝑥 1 , … , 𝑥𝑥 𝑚𝑚𝑚 } drawn 

uniformly from the training set
 The minibatch size m’ is typically a small number (1 to few hundred)
 m‘ is usually fixed as the training set size  m grows

 The estimate of the gradient is  𝑔𝑔 = 1
𝑚𝑚′
∑𝑖𝑖=1𝑚𝑚′ 𝛻𝛻𝜃𝜃𝐿𝐿(𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 ,𝜃𝜃)

 Then the gradient descent is given by 𝜃𝜃 ← 𝜃𝜃 − 𝜖𝜖𝑔𝑔

 SGD works well in practice
 I.e., it often finds a very low value of the cost function quickly enough 

to be useful
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Building a Machine Learning 
Algorithm

 Simple recipe: combine a specification of 
 a dataset
 a cost function
 The most common one is the negative log-likelihood (or 

cross entropy)
 an optimization procedure, and
 a model: p(y|x)
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Challenges Motivating Deep Learning

 The simple ML algorithms discussed work well on 
many problems; however they failed in solving the 
central problems in AI, such as speech recognition or 
object recognition

 Deep learning is motivated in part by the failure
 Challenges of generalizing to new examples becomes 

exponentially more difficult when working with high-
dimensional data
 Curse of dimensionality
 Local constancy and smoothness regularization
 Manifold learning
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Curse of Dimensionality

 The number of possible distinct configurations of a set of 
variables increases exponentially as the number of variables 
increases
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Local Constancy and Smoothness 
Regularization

 In order to generalize well, ML algorithms need to be guided by 
prior beliefs about what kind of function they should learn

 Widely used priors: smoothness prior or local constancy prior
 The function we learn should not change very much within a small region
 To distinguish O(k) regions in input space, we would require O(k) examples
 For very high dimensional data, the required number of examples would be 

too large

Nearest neighbor
algorithm breaks up the
input space into regions
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Manifold Learning

 Manifold is a connected region: a set of points associated 
with a neighborhood around each region
 The surface of the earth is a 2-D manifold in 3-D space
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Manifold Learning

 Real world objects are not random; they lie in low-
dimensional manifolds
 If you generate a document by picking letters uniformly at random, you would 

get a meaningful English text with almost 0 probability
 Sampling pixels uniformly at random gives rise to noisy images
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How Deep Learning Helps

 Deep learning finds an effective representation for 
very high dimensional objects by the following two 
main ideas
 Distributed representation
 Uses composition of factors

 A vision system can recognize cars, trucks, and birds, and these 
objects can each be red, green, or blue

 One way of representing these inputs is to have a separate 
neuron that activates for each of the nine possible combinations

 Distributed representation: three neurons for objects, three 
neurons for colors => total six neurons

 Allows a small number of features to represent input
 Deep layers
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How Deep Learning Helps

 Deep layers
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What you need to know

 Maximum likelihood estimation or cross entropy 
is widely used as cost function

 SGD is a popular and efficient optimization 
method for many machine learning algorithms 
including deep learning

 Deep learning solves the problem of previous 
machine learning algorithms in handling high 
dimensional data, by finding effective 
representations
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Questions?
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