
U Kang

Reinforcement Learning

Temporal-Difference Learning

U Kang
Seoul National University

U Kang

In This Lecture

 Overview of TD Learning
 TD Prediction Methods
 TD Control Methods

U Kang

Overview

 Temporal-Difference (TD) Learning
 A central and novel idea to RL
 A combination of MC and DP
 Like MC methods, TD methods can learn directly from raw

experience without a model of the environment
 Like DP, TD methods update estimates based in part on

other learned estimates, without waiting for a final
outcome (they bootstrap)

 The relationship between TD, DP, and Monte Carlo
methods is a recurring theme in the theory of RL
 Related topic: n-step TD and TD(𝜆)

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

TD Prediction

 Both TD and MC methods use experience to solve the prediction
problem

 Given some experience following a policy 𝜋, both methods update their
estimate V of 𝑣𝜋 for the nonterminal states 𝑆𝑡 occurring in that
experience

 MC methods wait until the return following the visit is known, then use
that return as a target for V(𝑆𝑡)

 Constant-𝛼 MC: a simple every-visit MC method suitable for
nonstationary environments

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡]

U Kang

TD Prediction

 Whereas MC methods must wait until the end of the episode to
determine the increment to V(𝑆𝑡) (only then is 𝐺𝑡 known), TD methods
need to wait only until the next time step

 At time t + 1 TD methods immediately form a target and make a useful
update using the observed reward 𝑅𝑡+1 and the estimate V(𝑆𝑡+1)

 The simplest TD method makes the update immediately on transition
to 𝑆𝑡+1 and receiving 𝑅𝑡+1

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡]

 The target for the MC update is 𝐺𝑡, whereas the target for the TD
update is 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)

 This method is called TD(0), or one-step TD; this is a special case of n-
step TD and TD(𝜆)

U Kang

TD Prediction

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

TD Prediction

 TD(0) is a bootstrapping method (bases its update in part on an
existing estimate)

 Value function
𝜐𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠
= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝜐𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

 MC methods uses an estimate of A as a target, whereas TD methods
use an estimate of B as a target

 The MC target is an estimate because the expected value in A is not
known; a sample return is used in place of the real expected return

 The TD target is an estimate for two reasons: 1) it samples the expected
values in B and 2) it uses the current estimate 𝑉(𝑆𝑡+1) instead of the
true 𝑣𝜋(𝑆𝑡+1)

 TD methods combine the sampling of MC with the bootstrapping of DP

A

B

U Kang

TD vs MC

MC TD

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

U Kang

TD Prediction

 The value estimate for the state node at the top of
the backup diagram is updated on the basis of the
one sample transition from it to the immediately
following state

 TD and MC updates are sample updates because
they involve looking ahead to a sample successor
state (or state–action pair), using the value of the
successor and the reward along the way to compute
a backed-up value, and then updating the value of
the original state (or state–action pair) accordingly

 Sample updates differ from the expected updates of
DP methods in that they are based on a single
sample successor rather than on a complete
distribution of all possible successors

Backup diagram

for tabular TD(0)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

TD Prediction

 TD(0): 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡]

 Notice that the TD error at each time is the error in the estimate made
at that time

 Because the TD error depends on the next state and next reward, it is
not actually available until one time step later; 𝛿𝑡 is the error in V(𝑆𝑡),
available at time t + 1

TD error 𝛿𝑡

U Kang

TD Prediction

 TD(0): 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡]

 If the array V does not change during the episode (as it does not in MC
methods), then the MC error can be written as a sum of TD errors

 This identity is not exact if V is updated during the episode (as it is in
TD(0)), but if the step size is small then it may still hold approximately

TD error 𝛿𝑡

U Kang

Example: Driving Home

 Each day as you drive home from work, you try to predict how long it
will take to get home. When you leave your office, you note the time,
the day of week, the weather, and anything else that might be relevant

 Rewards: elapsed times on each leg of the journey
 Return for each state: actual time to go from that state (no discounting)
 Value of each state: expected time to go (‘Predicted Time to Go’ column

gives the current estimated value for each state)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Driving Home

 MC methods
 The red arrows show the changes in

predictions recommended by the constant-𝛼
MC method where 𝛼 = 1

 These are exactly the errors between the
estimated value (predicted time to go) in each
state and the actual return (actual time to go)

 When you exited the highway you thought it
would take only 15 minutes more to get home,
but in fact it took 23 minutes; The error, Gt − V
(St), at this time is eight minutes. If 𝛼 = 0.5,
then the predicted time to go after exiting the
highway would be revised upward by four
minutes

 This is probably too large a change in this case;
the truck was probably just an unlucky break

 In any event, the change can only be made
offline, that is, after you have reached home

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Driving Home

 TD methods
 Is it necessary to wait until the final outcome is

known before learning can begin?
 Suppose on another day you estimate when

leaving your office at 6:00 that it will take 30
minutes to drive home, but become stuck in a
massive traffic jam in highway at 6:25; you now
estimate that it will take another 25 minutes to
get home, for a total of 50 minutes

 TD allows to shift your initial estimate from 30
minutes toward 50

 Each estimate would be shifted toward the
estimate that immediately follows it; each error
is proportional to the change over time of the
prediction, that is, to the temporal differences
in predictions

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Advantages of TD Prediction

 TD methods update their estimates based in part on other estimates;
they learn a guess from a guess—they bootstrap

 Is this a good thing to do?

 What advantages do TD methods have over MC and DP methods?

U Kang

TD vs MC vs DP

MCTD

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

DP

U Kang

Advantages of TD Prediction

 Advantage 1 (TD vs. DP)
 TD methods do not require a model of the environment, of its

reward and next-state probability distributions (unlike DP)

U Kang

Advantages of TD Prediction

 Advantage 2 (TD vs. MC)
 TD methods are naturally implemented in an online, fully incremental

fashion (unlike MC)
 MC: one must wait until the end of an episode
 TD: one need to wait only one time step
 This is often critical - some applications have very long episodes, so

that delaying all learning until the end of the episode is too slow;
other applications are continuing tasks and have no episodes at all

 Advantage 3 (TD vs. MC)
 Some MC methods (off-policy) must ignore or discount episodes on

which experimental actions are taken, which can greatly slow learning
 TD methods are much less susceptible to these problems because

they learn from each transition regardless of what subsequent actions
are taken

U Kang

Advantages of TD Prediction

 But are TD methods sound? Can we still guarantee convergence to the
correct answer?

 Yes! For any fixed policy 𝜋, TD(0) has been proved to converge to 𝑣𝜋 on
average for a constant step-size parameter if it is sufficiently small, and
with probability 1 if the step-size parameter decreases according to the
usual stochastic approximation conditions

 If both TD and MC methods converge asymptotically to the correct
predictions, which method learns faster? Which makes the more efficient
use of limited data?

 This is an open question in the sense that no one has been able to prove
mathematically that one method converges faster than the other

 In practice, however, TD methods have usually been found to converge
faster than constant-𝛼 MC methods on stochastic tasks

U Kang

Example: Random Walk

 Comparison of the predictions of TD(0) and constant-𝛼 MC when
applied to the following Markov Reward Process (MRP)

 MRP is an MDP w.o. actions
 All episodes start in the center state C, then proceed either left or right

by one state on each step, with equal probability
 Episodes terminate either on the extreme left or the extreme right
 When an episode terminates on the right, a reward of +1 occurs; all

other rewards are zero (rewards are undiscounted)
 E.g., an episode: C, 0,B, 0, C, 0,D, 0, E, 1.
 The true value of each state is the probability of terminating on the

right if starting from that state; 𝑣𝜋 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 =
1

6
,
2

6
,
3

6
,
4

6
,
5

6

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Random Walk

 The left graph above shows the values learned after various numbers
of episodes on a single run of TD(0)

 The estimates after 100 episodes are about as close as they ever come
to the true values—with a constant step-size parameter (𝛼 = 0.1), the
values fluctuate indefinitely in response to the outcomes of the most
recent episodes

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Random Walk

 The right graph shows learning curves for the two methods
 The performance measure is the root mean-squared (RMS) error between the

value function learned and the true value function, averaged over the five
states, then averaged over 100 runs

 The approximate value function was initialized to the intermediate value V (s) =
0.5, for all s; TD method is consistently better than the MC method on this task

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Optimality of TD(0)

 Suppose there is available only a finite amount of
experience, say 10 episodes or 100 time steps

 Batch Update
 In this case, a common approach with incremental learning

methods is to present the experience repeatedly until the method
converges upon an answer

 Given an approximate value function, V , the increments are
computed for every time step t at which a nonterminal state is
visited

 Updates are made only after processing each complete batch of
training data

 Then all the available experience is processed again with the new
value function to produce a new overall increment, and so on, until
the value function converges

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡]

U Kang

Optimality of TD(0)

 Batch Update
 Under batch updating, TD(0) converges deterministically to a single

answer independent of the step-size parameter 𝛼, as long as 𝛼 is
chosen to be sufficiently small

 Constant-𝛼 MC method also converges deterministically under the
same conditions, but to a different answer

 Under normal updating the methods do not move all the way to
their respective batch answers, but in some sense they take steps in
these directions

U Kang

Example: Random Walk Under
Batch Updating

 Batch-updating versions of TD(0) and constant-
𝛼 MC for the random walk prediction

 After each new episode, all episodes seen so
far were treated as a batch

 They were repeatedly presented to either TD(0)
or constant-𝛼 MC, with 𝛼 sufficiently small that
the value function converged

 The resulting value function was then
compared with 𝑣𝜋, and the average RMSE
across the five states (and across 100
independent repetitions of the whole
experiment) was plotted

 The batch TD is consistently better than the
batch MC

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Random Walk Under
Batch Updating

 Under batch training, constant-𝛼 MC
converges to values, V (s), that are sample
averages of the actual returns experienced
after visiting each state s

 These are optimal estimates in the sense that
they minimize RMSE from the actual returns in
the training set

 Surprisingly, the batch TD method was able to
perform better according to RMSE

 Why was batch TD able to perform better than
this optimal method?

 MC method is optimal only in a limited way,
and that TD is optimal in a way that is more
relevant to predicting returns

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: You are the Predictor

 Assume you are predicting returns for an unknown MRP
 Suppose you observe the following eight episodes

 The first episode started in state A, transitioned to B with a reward of 0,
and then terminated from B with a reward of 0

 The other seven episodes started from B and terminated immediately
 What would be the best estimates of V(A) and V(B)?
 Everyone would probably agree that the optimal value for V (B) is ¾, by

averaging rewards (6 out of 8 cases the rewards were 1)

U Kang

Example: You are the Predictor

 What is the optimal estimate of V(A)? Two possible answers
 Answer 1 (by TD(0))

 Observe that 100% of the times the process was in state A it traversed immediately to
B (with a reward of 0); and because we have already decided that B has value ¾, A
must have value ¾ as well

 One way of viewing this answer is that it is based on first modeling the Markov
process, and then computing the correct estimates given the model, which indeed in
this case gives V(A) = ¾

 This is the answer given by TD(0)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: You are the Predictor

 What is the optimal estimate of V(A)? Two possible answers
 Answer 2 (by MC)

 The other reasonable answer is simply to observe that we have seen A once and the
return that followed it was 0; we therefore estimate V (A) as 0

 This is the answer that batch MC methods give
 It is also the answer that gives minimum RMSE on the training data (it gives zero

error on the data)
 But still we expect the answer 1 to be better; if the process is Markov, we expect that

the answer 1 will produce lower error on future (test) data, even though the MC
answer is better on the existing (training) data

U Kang

Optimality of TD(0)

 Batch TD(0) vs. batch MC
 Batch MC always finds the estimates that minimize mean-squared error on

the training set, whereas batch TD(0) always finds the estimates that would
be exactly correct for the maximum-likelihood model of the Markov process

 The maximum-likelihood estimate (MLE) of a parameter is the parameter
value whose probability of generating the data is greatest

 In this case, the MLE is the model of the Markov process formed from the
observed episodes: the estimated transition probability from i to j is the
fraction of observed transitions from i that went to j, and the associated
expected reward is the average of the rewards observed on those transitions

 Given this model, we can compute the estimate of the value function that
would be exactly correct if the model were exactly correct

 This is called the certainty-equivalence estimate because it is equivalent to
assuming that the estimate of the underlying process was known with
certainty rather than being approximated

 In general, batch TD(0) converges to the certainty-equivalence estimate

U Kang

Optimality of TD(0)

 Batch TD(0) vs. batch MC
 Why TD methods converge more quickly than MC methods?
 In batch form, TD(0) is faster than MC methods because it computes the true

certainty-equivalence estimate
 Although the nonbatch methods do not achieve either the certainty-

equivalence or the minimum squared-error estimates, they can be
understood as moving roughly in these directions

 Nonbatch TD(0) may be faster than constant-𝛼 MC because it is continuously
moving toward a better estimate

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Sarsa: On-policy TD Control

 Goal: use of TD prediction methods for the control problem
 Approach

 Generalized policy iteration (GPI), using TD methods for the
evaluation or prediction part

 As with MC methods, we face the need to trade off exploration and
exploitation, and approaches fall into on-policy and off-policy ones

U Kang

Sarsa: On-policy TD Control

 Sarsa: On-policy TD control method
 We aim to learn an action-value function rather than a state-value function
 In particular, for an on-policy method we must estimate 𝑞𝜋(𝑠, 𝑎) for the current

behavior policy 𝜋, and for all states s and actions a
 This can be done using essentially the same TD method for learning 𝑣𝜋
 An episode consists of an alternating sequence of states and state–action pairs:

 TD(0) algorithm for action values
𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡]

 This update is done after every transition from a nonterminal state 𝑆𝑡; if 𝑆𝑡+1 is
terminal, then Q(𝑆𝑡+1, 𝐴𝑡+1) is defined as zero

 This rule uses every element of the quintuple of events,
(𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1), that make up a transition from
one state–action pair to the next

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Sarsa: On-policy TD Control

 Sarsa: On-policy TD control method
 Continually estimate 𝑞𝜋 for the behavior policy 𝜋, and at the same

time change 𝜋 toward greediness with respect to 𝑞𝜋

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Sarsa: On-policy TD Control

 Convergence of Sarsa
 The convergence properties of the Sarsa algorithm depend on the

nature of the policy’s dependence on Q
 For example, one could use 𝜖-greedy or 𝜖-soft policies
 Sarsa converges with probability 1 to an optimal policy and action-

value function as long as all state–action pairs are visited an infinite
number of times and the policy converges in the limit to the greedy
policy (e.g., 𝜖-greedy policies with 𝜖 = 1/t)

U Kang

Example: Windy Gridworld

 A standard gridworld with a crosswind running upward through the
middle of the grid

 Actions: up, down, right, and left
 The strength of the wind is given below each column
 An undiscounted episodic task, with constant rewards of −1 until the

goal state is reached

Applying 𝜖-greedy

Sarsa

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Windy Gridworld

 The increasing slope of the graph shows that the
goal was reached more quickly over time; by 8000
time steps, the greedy policy was long since
optimal

 Continued 𝜖-greedy exploration kept the average
episode length at about 17 steps, two more than
the minimum of 15

 MC methods cannot easily be used here because
termination is not guaranteed for all policies; if a
policy was ever found that caused the agent to
stay in the same state, then the next episode
would never end

 Online learning methods such as Sarsa do not
have this problem because they quickly learn
during the episode that such policies are poor, and
switch to something else

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Q-learning: Off-policy TD Control

 Q-learning: one of the early breakthroughs in RL
𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max

𝑎
𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)]

 The learned action-value function, Q, directly approximates 𝑞∗, the
optimal action-value function, independent of the policy being followed

 This dramatically simplifies the analysis of the algorithm and enabled
early convergence proofs

 The policy still has an effect in that it determines which state–action
pairs are visited and updated; however, all that is required for correct
convergence is that all pairs continue to be updated

 Under this assumption and a variant of the usual stochastic
approximation conditions on the sequence of step-size parameters, Q
has been shown to converge with probability 1 to 𝑞∗

U Kang

Q-learning: Off-policy TD Control

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Cliff Walking

 A standard undiscounted, episodic task, with start and goal states, and
the usual actions causing movement up, down, right, and left

 Reward: −1 on all transitions except those into the region marked “The
Cliff”; stepping into this region incurs a reward of −100 and sends the
agent instantly back to the start

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Cliff Walking

 Performance of Sarsa and Q-learning with 𝜖-greedy action selection, 𝜖=0.1
 Q-learning learns values for the optimal policy, that travels right along the edge of

the cliff; unfortunately, this results in its occasionally falling off the cliff because of
the 𝜖-greedy action selection

 Sarsa takes the action selection into account and learns the longer but safer path
through the upper part of the grid

 Although Q-learning actually learns the values of the optimal policy, its online
performance is worse than that of Sarsa, which learns the roundabout policy

 If 𝜖 were gradually reduced, then both methods would asymptotically converge to
the optimal policy

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Expected Sarsa

 Consider the learning algorithm that is just like Q-learning except that
instead of the maximum over next state–action pairs it uses the
expected value, taking into account how likely each action is under the
current policy

 This algorithm “Expected Sarsa” uses the update rule
𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝔼𝜋 𝑄 𝑆𝑡+1, 𝐴𝑡+1 𝑆𝑡+1 − 𝑄 𝑆𝑡, 𝐴𝑡

← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾

𝑎

𝜋 𝑎 𝑆𝑡+1 𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡𝐴𝑡)]

 Given the next state 𝑆𝑡+1, this algorithm moves deterministically in the
same direction as Sarsa moves in expectation

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Expected Sarsa

 Expected Sarsa is more
computationally complex than Sarsa,
but in return, it eliminates the
variance due to the random selection
of 𝐴𝑡+1

 Given the same amount of
experience, Expected Sara performs
slightly better than Sarsa

 In cliff-walking the state transitions
are all deterministic and all
randomness comes from the policy;
in such cases, Expected Sarsa can
safely set 𝛼 = 1 without suffering any
degradation of asymptotic
performance, whereas Sarsa can only
perform well in the long run at a
small value of 𝛼, at which short-term
performance is poor

Cliff-Walking Task

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Expected Sarsa

 In these cliff walking results, Expected Sarsa was used on-policy, but in
general it might work as an off-policy method: it might use a behavior
policy different from the target policy 𝜋

 For example, suppose 𝜋 is the greedy policy while behavior is more
exploratory; then Expected Sarsa is exactly Q-learning

 In this sense Expected Sarsa subsumes and generalizes Q-learning
while reliably improving over Sarsa

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Maximization Bias and Double
Learning

 All the control algorithms that we have discussed so far involve
maximization in the construction of their target policies
 In Q-learning the target policy is the greedy policy given the current action values,

which is defined with a max
 In Sarsa, the policy is often 𝜖-greedy, which also involves a maximization operation

 In these algorithms, a maximum over estimated values is used
implicitly as an estimate of the maximum value, which can lead to a
significant positive bias

 Consider a single state s where there are many actions a whose true
values, q(s, a), are all zero but whose estimated values, Q(s, a), are
uncertain and thus distributed some above and some below zero

 Maximization bias: the maximum of the true values is zero, but the
maximum of the estimates is positive, a positive bias

U Kang

Example: Maximiztion Bias

 The MDP has two non-terminal states A and B; episodes always start in A
 The right action transitions immediately to the terminal state with a

reward and return of zero; the left action transitions to B, also with a
reward of zero, from which there are many possible actions all of which
cause immediate termination with a reward drawn from a normal
distribution with mean −0.1 and variance 1.0

 The expected return for any trajectory starting with left is −0.1, and thus
taking left in state A is always a mistake

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Maximiztion Bias

 Nevertheless, our control methods may favor left because of
maximization bias making B appear to have a positive value

 Q-learning with 𝜖-greedy action selection initially learns to strongly favor
the left action on this example

 Even at asymptote, Q-learning takes the left action about 5% more often
than is optimal at our parameter settings (𝜖 = 0.1, 𝛼 = 0.1, and 𝛾 = 1)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Maximization Bias and Double
Learning

 Are there algorithms that avoid maximization bias?
 Consider a bandit case in which we have noisy estimates of the value of

each of many actions, obtained as sample averages of the rewards
received on all the plays with each action

 There will be a positive maximization bias if we use the maximum of
the estimates as an estimate of the maximum of the true values

 It is due to using the same samples (plays) both to determine the
maximizing action and to estimate its value

U Kang

Maximization Bias and Double
Learning

 Double Learning
 Suppose we divided the plays in two sets and used them to learn two

independent estimates 𝑄1(𝑎) and 𝑄2(𝑎), each an estimate of the true
value 𝑞(𝑎), for all 𝑎 ∈ 𝐴

 We could then use one estimate, say 𝑄1, to determine the maximizing
action 𝐴∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1(𝑎), and the other 𝑄2, to provide the estimate
of its value 𝑄2(𝐴∗) = 𝑄2(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1 𝑎)

 This estimate will then be unbiased in the sense that E 𝑄2 𝐴∗ =

𝑞(𝐴∗)

 We can also repeat the process with the role of the two estimates
reversed to yield a second unbiased estimate 𝑄1(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄2 𝑎)

 Although we learn two estimates, only one estimate is updated on
each play; double learning doubles the memory requirements, but
does not increase the amount of computation per step

U Kang

Maximization Bias and Double
Learning

 Double Learning for full MDP
 Double Q-learning is a double learning algorithm analogous to Q-learning
 Double Q-learning divides the time steps in two, perhaps by flipping a coin on

each step
 If the coin comes up heads, the update is
𝑄1 𝑆𝑡 , 𝐴𝑡 ← 𝑄1 𝑆𝑡, 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑄2 𝑆𝑡+1, argmax

𝑎
𝑄1 𝑆𝑡+1, 𝑎 − 𝑄1 𝑆𝑡, 𝐴𝑡]

 If the coin comes up tails, then the same update is done with 𝑄1 and 𝑄2
switched, so that 𝑄2 is updated; the two approximate value functions are
treated completely symmetrically

 The behavior policy can use both action-value estimates. For example, an 𝜖-
greedy policy for Double Q-learning could be based on the average (or sum)
of the two action-value estimates

U Kang

Maximization Bias and Double
Learning

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Games, Afterstates, and Other
Special Cases

 There are exceptional tasks that are better treated in a specialized way
 Example: Tic-Tac-Toe

 The TD method for learning to play tic-tac-toe (in Ch. 1) learns something much more
like a state-value function, although in general we prefer an action-value function

 The function learned there is neither an action-value function nor a state-value
function in the usual sense

 A conventional state-value function evaluates states in which the agent has the
option of selecting an action, but the state-value function used in tic-tac-toe
evaluates board positions after the agent has made its move

 These are called afterstates, and value functions over these are called afterstate value
functions

 Afterstates are useful when we have knowledge of an initial part of the
environment’s dynamics but not necessarily of the full dynamics

 For example, in games we typically know the immediate effects of our moves; we
know for each possible chess move what the resulting position will be, but not how
our opponent will reply

 Afterstate value functions are a natural way to take advantage of this kind of
knowledge and thereby produce a more efficient learning method

U Kang

Games, Afterstates, and Other
Special Cases

 Why are algorithms using afterstates more efficient?
 A conventional action-value function would map from positions and

moves to an estimate of the value; but many position–move pairs
produce the same resulting position

 A conventional action-value function would have to separately assess
both pairs, whereas an afterstate value function would immediately
assess both equally; any learning about the position–move pair on the
left would immediately transfer to the pair on the right

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Games, Afterstates, and Other
Special Cases

 Afterstates arise in many tasks, not just games
 For example, in queuing tasks there are actions such as assigning

customers to servers, rejecting customers, or discarding information;
in such cases the actions are in fact defined in terms of their immediate
effects, which are completely known

 In general, many principles of RL apply widely to specialized problems
and algorithms

 For example, afterstate methods are still aptly described in terms of
generalized policy iteration, with a policy and (afterstate) value
function interacting in essentially the same way

U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion

U Kang

Conclusion

 TD methods are alternatives to MC methods for solving the prediction
problem

 In both cases, the extension to the control problem is via the idea of
generalized policy iteration (GPI) that we abstracted from dynamic
programming

 This is the idea that approximate policy and value functions should
interact in such a way that they both move toward their optimal values

U Kang

Conclusion

 One of the two processes making up GPI drives the value function to
accurately predict returns for the current policy; this is the prediction
problem

 The other process drives the policy to improve locally (e.g., to be 𝜖-
greedy) with respect to the current value function

 When the first process is based on experience, a complication arises
concerning maintaining sufficient exploration

 We can classify TD control methods according to whether they deal
with this complication by using an on-policy or off-policy approach

 Sarsa is an on-policy method, and Q-learning is an off-policy method;
Expected Sarsa is also an off-policy method

U Kang

Conclusion

 The methods presented in this chapter are today the most widely used
RL methods

 This is probably due to their great simplicity: they can be applied
online, with a minimal amount of computation, to experience
generated from interaction with an environment; they can be
expressed nearly completely by single equations that can be
implemented with small computer programs

U Kang

Questions?

