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Overview

 Temporal-Difference (TD) Learning
 A central and novel idea to RL
 A combination of MC and DP
 Like MC methods, TD methods can learn directly from raw 

experience without a model of the environment
 Like DP, TD methods update estimates based in part on 

other learned estimates, without waiting for a final 
outcome (they bootstrap)

 The relationship between TD, DP, and Monte Carlo 
methods is a recurring theme in the theory of RL
 Related topic: n-step TD and TD(𝜆)
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TD Prediction

 Both TD and MC methods use experience to solve the prediction 
problem

 Given some experience following a policy 𝜋, both methods update their 
estimate V of 𝑣𝜋 for the nonterminal states 𝑆𝑡 occurring in that 
experience

 MC methods wait until the return following the visit is known, then use 
that return as a target for V(𝑆𝑡)

 Constant-𝛼 MC: a simple every-visit MC method suitable for 
nonstationary environments

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡 ]
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TD Prediction

 Whereas MC methods must wait until the end of the episode to 
determine the increment to V(𝑆𝑡) (only then is 𝐺𝑡 known), TD methods 
need to wait only until the next time step

 At time t + 1 TD methods immediately form a target and make a useful 
update using the observed reward 𝑅𝑡+1 and the estimate V(𝑆𝑡+1)

 The simplest TD method makes the update immediately on transition 
to 𝑆𝑡+1 and receiving 𝑅𝑡+1

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡 ]

 The target for the MC update is 𝐺𝑡, whereas the target for the TD 
update is 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)

 This method is called TD(0), or one-step TD; this is a special case of n-
step TD and TD(𝜆)
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TD Prediction

Sutton and Barto, 

Reinforcement 

Learning, 2018
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TD Prediction

 TD(0) is a bootstrapping method (bases its update in part on an 
existing estimate)

 Value function
𝜐𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠
= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝜐𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

 MC methods uses an estimate of A as a target, whereas TD methods 
use an estimate of B as a target

 The MC target is an estimate because the expected value in A is not 
known; a sample return is used in place of the real expected return

 The TD target is an estimate for two reasons: 1) it samples the expected 
values in B and 2) it uses the current estimate 𝑉(𝑆𝑡+1) instead of the 
true 𝑣𝜋(𝑆𝑡+1)

 TD methods combine the sampling of MC with the bootstrapping of DP

A

B
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TD vs MC

MC TD

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf
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TD Prediction

 The value estimate for the state node at the top of 
the backup diagram is updated on the basis of the 
one sample transition from it to the immediately 
following state

 TD and MC updates are sample updates because 
they involve looking ahead to a sample successor 
state (or state–action pair), using the value of the 
successor and the reward along the way to compute 
a backed-up value, and then updating the value of 
the original state (or state–action pair) accordingly

 Sample updates differ from the expected updates of 
DP methods in that they are based on a single 
sample successor rather than on a complete 
distribution of all possible successors

Backup diagram 

for tabular TD(0)

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

TD Prediction

 TD(0): 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡 ]

 Notice that the TD error at each time is the error in the estimate made 
at that time

 Because the TD error depends on the next state and next reward, it is 
not actually available until one time step later; 𝛿𝑡 is the error in V(𝑆𝑡), 
available at time t + 1

TD error 𝛿𝑡
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TD Prediction

 TD(0): 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡 ]

 If the array V does not change during the episode (as it does not in MC 
methods), then the MC error can be written as a sum of TD errors

 This identity is not exact if V is updated during the episode (as it is in 
TD(0)), but if the step size is small then it may still hold approximately

TD error 𝛿𝑡
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Example: Driving Home

 Each day as you drive home from work, you try to predict how long it 
will take to get home. When you leave your office, you note the time, 
the day of week, the weather, and anything else that might be relevant

 Rewards: elapsed times on each leg of the journey
 Return for each state: actual time to go from that state (no discounting)
 Value of each state: expected time to go (‘Predicted Time to Go’ column 

gives the current estimated value for each state)

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

Example: Driving Home

 MC methods
 The red arrows show the changes in 

predictions recommended by the constant-𝛼
MC method where 𝛼 = 1

 These are exactly the errors between the 
estimated value (predicted time to go) in each 
state and the actual return (actual time to go)

 When you exited the highway you thought it 
would take only 15 minutes more to get home, 
but in fact it took 23 minutes; The error, Gt − V 
(St), at this time is eight minutes. If 𝛼 = 0.5, 
then the predicted time to go after exiting the 
highway would be revised upward by four 
minutes

 This is probably too large a change in this case; 
the truck was probably just an unlucky break

 In any event, the change can only be made 
offline, that is, after you have reached home

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Driving Home

 TD methods
 Is it necessary to wait until the final outcome is 

known before learning can begin?
 Suppose on another day you estimate when 

leaving your office at 6:00 that it will take 30 
minutes to drive home, but become stuck in a 
massive traffic jam in highway at 6:25; you now 
estimate that it will take another 25 minutes to 
get home, for a total of 50 minutes

 TD allows to shift your initial estimate from 30 
minutes toward 50

 Each estimate would be shifted toward the 
estimate that immediately follows it; each error 
is proportional to the change over time of the 
prediction, that is, to the temporal differences 
in predictions

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Advantages of TD Prediction

 TD methods update their estimates based in part on other estimates; 
they learn a guess from a guess—they bootstrap

 Is this a good thing to do? 

 What advantages do TD methods have over MC and DP methods? 



U Kang

TD vs MC vs DP

MCTD

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

DP
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Advantages of TD Prediction

 Advantage 1 (TD vs. DP)
 TD methods do not require a model of the environment, of its 

reward and next-state probability distributions (unlike DP)
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Advantages of TD Prediction

 Advantage 2 (TD vs. MC)
 TD methods are naturally implemented in an online, fully incremental 

fashion (unlike MC)
 MC: one must wait until the end of an episode
 TD: one need to wait only one time step
 This is often critical - some applications have very long episodes, so 

that delaying all learning until the end of the episode is too slow;  
other applications are continuing tasks and have no episodes at all

 Advantage 3 (TD vs. MC)
 Some MC methods (off-policy) must ignore or discount episodes on 

which experimental actions are taken, which can greatly slow learning
 TD methods are much less susceptible to these problems because 

they learn from each transition regardless of what subsequent actions 
are taken
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Advantages of TD Prediction

 But are TD methods sound? Can we still guarantee convergence to the 
correct answer? 

 Yes! For any fixed policy 𝜋, TD(0) has been proved to converge to 𝑣𝜋 on 
average for a constant step-size parameter if it is sufficiently small, and 
with probability 1 if the step-size parameter decreases according to the 
usual stochastic approximation conditions

 If both TD and MC methods converge asymptotically to the correct 
predictions, which method learns faster? Which makes the more efficient 
use of limited data? 

 This is an open question in the sense that no one has been able to prove 
mathematically that one method converges faster than the other

 In practice, however, TD methods have usually been found to converge 
faster than constant-𝛼 MC methods on stochastic tasks
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Example: Random Walk

 Comparison of the predictions of TD(0) and constant-𝛼 MC when 
applied to the following Markov Reward Process (MRP)

 MRP is an MDP w.o. actions
 All episodes start in the center state C, then proceed either left or right 

by one state on each step, with equal probability
 Episodes terminate either on the extreme left or the extreme right
 When an episode terminates on the right, a reward of +1 occurs; all 

other rewards are zero (rewards are undiscounted)
 E.g., an episode: C, 0,B, 0, C, 0,D, 0, E, 1.
 The true value of each state is the probability of terminating on the 

right if starting from that state; 𝑣𝜋 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 =
1
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Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Random Walk

 The left graph above shows the values learned after various numbers 
of episodes on a single run of TD(0)

 The estimates after 100 episodes are about as close as they ever come 
to the true values—with a constant step-size parameter (𝛼 = 0.1), the 
values fluctuate indefinitely in response to the outcomes of the most 
recent episodes

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Random Walk

 The right graph shows learning curves for the two methods
 The performance measure is the root mean-squared (RMS) error between the 

value function learned and the true value function, averaged over the five 
states, then averaged over 100 runs

 The approximate value function was initialized to the intermediate value V (s) = 
0.5, for all s; TD method is consistently better than the MC method on this task

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

Outline

TD Prediction
Advantages of TD Prediction Methods
Optimality of TD(0)
Sarsa: On-policy TD Control
Q-learning: Off-policy TD Control
Expected Sarsa
Maximization Bias and Double Learning
Games, Afterstates, and Other Special Cases
Conclusion



U Kang

Optimality of TD(0)

 Suppose there is available only a finite amount of 
experience, say 10 episodes or 100 time steps

 Batch Update 
 In this case, a common approach with incremental learning 

methods is to present the experience repeatedly until the method 
converges upon an answer

 Given an approximate value function, V , the increments are 
computed for every time step t at which a nonterminal state is 
visited

 Updates are made only after processing each complete batch of 
training data

 Then all the available experience is processed again with the new 
value function to produce a new overall increment, and so on, until 
the value function converges

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡 ]
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Optimality of TD(0)

 Batch Update 
 Under batch updating, TD(0) converges deterministically to a single 

answer independent of the step-size parameter 𝛼, as long as 𝛼 is 
chosen to be sufficiently small

 Constant-𝛼 MC method also converges deterministically under the 
same conditions, but to a different answer

 Under normal updating the methods do not move all the way to 
their respective batch answers, but in some sense they take steps in 
these directions
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Example: Random Walk Under 
Batch Updating

 Batch-updating versions of TD(0) and constant-
𝛼 MC for the random walk prediction

 After each new episode, all episodes seen so 
far were treated as a batch

 They were repeatedly presented to either TD(0) 
or constant-𝛼 MC, with 𝛼 sufficiently small that 
the value function converged

 The resulting value function was then 
compared with 𝑣𝜋, and the average RMSE 
across the five states (and across 100 
independent repetitions of the whole 
experiment) was plotted

 The batch TD is consistently better than the 
batch MC

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Random Walk Under 
Batch Updating

 Under batch training, constant-𝛼 MC 
converges to values, V (s), that are sample 
averages of the actual returns experienced 
after visiting each state s

 These are optimal estimates in the sense that 
they minimize RMSE from the actual returns in 
the training set

 Surprisingly, the batch TD method was able to 
perform better according to RMSE

 Why was batch TD able to perform better than 
this optimal method?

 MC method is optimal only in a limited way, 
and that TD is optimal in a way that is more 
relevant to predicting returns

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: You are the Predictor

 Assume you are predicting returns for an unknown MRP
 Suppose you observe the following eight episodes

 The first episode started in state A, transitioned to B with a reward of 0, 
and then terminated from B with a reward of 0

 The other seven episodes started from B and terminated immediately
 What would be the best estimates of V(A) and V(B)?
 Everyone would probably agree that the optimal value for V (B) is ¾, by 

averaging rewards (6 out of 8 cases the rewards were 1)
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Example: You are the Predictor

 What is the optimal estimate of V(A)? Two possible answers
 Answer 1 (by TD(0))

 Observe that 100% of the times the process was in state A it traversed immediately to 
B (with a reward of 0); and because we have already decided that B has value ¾, A 
must have value ¾ as well

 One way of viewing this answer is that it is based on first modeling the Markov 
process, and then computing the correct estimates given the model, which indeed in 
this case gives V(A) = ¾

 This is the answer given by TD(0)

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: You are the Predictor

 What is the optimal estimate of V(A)? Two possible answers
 Answer 2 (by MC)

 The other reasonable answer is simply to observe that we have seen A once and the 
return that followed it was 0; we therefore estimate V (A) as 0

 This is the answer that batch MC methods give
 It is also the answer that gives minimum RMSE on the training data (it gives zero 

error on the data)
 But still we expect the answer 1 to be better; if the process is Markov, we expect that 

the answer 1 will produce lower error on future (test) data, even though the MC 
answer is better on the existing (training) data
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Optimality of TD(0)

 Batch TD(0) vs. batch MC
 Batch MC always finds the estimates that minimize mean-squared error on 

the training set, whereas batch TD(0) always finds the estimates that would 
be exactly correct for the maximum-likelihood model of the Markov process

 The maximum-likelihood estimate (MLE) of a parameter is the parameter 
value whose probability of generating the data is greatest

 In this case, the MLE is the model of the Markov process formed from the 
observed episodes: the estimated transition probability from i to j is the 
fraction of observed transitions from i that went to j, and the associated 
expected reward is the average of the rewards observed on those transitions

 Given this model, we can compute the estimate of the value function that 
would be exactly correct if the model were exactly correct

 This is called the certainty-equivalence estimate because it is equivalent to 
assuming that the estimate of the underlying process was known with 
certainty rather than being approximated

 In general, batch TD(0) converges to the certainty-equivalence estimate
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Optimality of TD(0)

 Batch TD(0) vs. batch MC
 Why TD methods converge more quickly than MC methods?
 In batch form, TD(0) is faster than MC methods because it computes the true 

certainty-equivalence estimate
 Although the nonbatch methods do not achieve either the certainty-

equivalence or the minimum squared-error estimates, they can be 
understood as moving roughly in these directions

 Nonbatch TD(0) may be faster than constant-𝛼 MC because it is continuously 
moving toward a better estimate
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Sarsa: On-policy TD Control

 Goal: use of TD prediction methods for the control problem
 Approach

 Generalized policy iteration (GPI), using TD methods for the 
evaluation or prediction part

 As with MC methods, we face the need to trade off exploration and 
exploitation, and approaches fall into on-policy and off-policy ones
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Sarsa: On-policy TD Control

 Sarsa: On-policy TD control method
 We aim to learn an action-value function rather than a state-value function
 In particular, for an on-policy method we must estimate 𝑞𝜋(𝑠, 𝑎) for the current 

behavior policy 𝜋, and for all states s and actions a
 This can be done using essentially the same TD method for learning 𝑣𝜋
 An episode consists of an alternating sequence of states and state–action pairs:

 TD(0) algorithm for action values
𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡 ]

 This update is done after every transition from a nonterminal state 𝑆𝑡; if 𝑆𝑡+1 is 
terminal, then Q(𝑆𝑡+1, 𝐴𝑡+1) is defined as zero

 This rule uses every element of the quintuple of events, 
(𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1), that make up a transition from 
one state–action pair to the next

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Sarsa: On-policy TD Control

 Sarsa: On-policy TD control method
 Continually estimate 𝑞𝜋 for the behavior policy 𝜋, and at the same 

time change 𝜋 toward greediness with respect to 𝑞𝜋

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Sarsa: On-policy TD Control

 Convergence of Sarsa
 The convergence properties of the Sarsa algorithm depend on the 

nature of the policy’s dependence on Q
 For example, one could use 𝜖-greedy or 𝜖-soft policies
 Sarsa converges with probability 1 to an optimal policy and action-

value function as long as all state–action pairs are visited an infinite 
number of times and the policy converges in the limit to the greedy 
policy (e.g., 𝜖-greedy policies with 𝜖 = 1/t)
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Example: Windy Gridworld

 A standard gridworld with a crosswind running upward through the 
middle of the grid

 Actions: up, down, right, and left
 The strength of the wind is given below each column
 An undiscounted episodic task, with constant rewards of −1 until the 

goal state is reached

Applying 𝜖-greedy 

Sarsa

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Windy Gridworld

 The increasing slope of the graph shows that the 
goal was reached more quickly over time; by 8000 
time steps, the greedy policy was long since 
optimal

 Continued 𝜖-greedy exploration kept the average 
episode length at about 17 steps, two more than 
the minimum of 15

 MC methods cannot easily be used here because 
termination is not guaranteed for all policies; if a 
policy was ever found that caused the agent to 
stay in the same state, then the next episode 
would never end

 Online learning methods such as Sarsa do not 
have this problem because they quickly learn 
during the episode that such policies are poor, and 
switch to something else

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Q-learning: Off-policy TD Control

 Q-learning: one of the early breakthroughs in RL
𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max

𝑎
𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)]

 The learned action-value function, Q, directly approximates 𝑞∗, the 
optimal action-value function, independent of the policy being followed

 This dramatically simplifies the analysis of the algorithm and enabled 
early convergence proofs

 The policy still has an effect in that it determines which state–action 
pairs are visited and updated; however, all that is required for correct 
convergence is that all pairs continue to be updated

 Under this assumption and a variant of the usual stochastic 
approximation conditions on the sequence of step-size parameters, Q 
has been shown to converge with probability 1 to 𝑞∗
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Q-learning: Off-policy TD Control

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Cliff Walking

 A standard undiscounted, episodic task, with start and goal states, and 
the usual actions causing movement up, down, right, and left

 Reward: −1 on all transitions except those into the region marked “The 
Cliff”; stepping into this region incurs a reward of −100 and sends the 
agent instantly back to the start

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Cliff Walking

 Performance of Sarsa and Q-learning with 𝜖-greedy action selection, 𝜖=0.1
 Q-learning learns values for the optimal policy, that travels right along the edge of 

the cliff; unfortunately, this results in its occasionally falling off the cliff because of 
the 𝜖-greedy action selection

 Sarsa takes the action selection into account and learns the longer but safer path 
through the upper part of the grid

 Although Q-learning actually learns the values of the optimal policy, its online 
performance is worse than that of Sarsa, which learns the roundabout policy

 If 𝜖 were gradually reduced, then both methods would asymptotically converge to 
the optimal policy

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Expected Sarsa

 Consider the learning algorithm that is just like Q-learning except that 
instead of the maximum over next state–action pairs it uses the 
expected value, taking into account how likely each action is under the 
current policy

 This algorithm “Expected Sarsa” uses the update rule
𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝔼𝜋 𝑄 𝑆𝑡+1, 𝐴𝑡+1 𝑆𝑡+1 − 𝑄 𝑆𝑡, 𝐴𝑡

← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾

𝑎

𝜋 𝑎 𝑆𝑡+1 𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡𝐴𝑡)]

 Given the next state 𝑆𝑡+1, this algorithm moves deterministically in the 
same direction as Sarsa moves in expectation

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Expected Sarsa

 Expected Sarsa is more 
computationally complex than Sarsa, 
but in return, it eliminates the 
variance due to the random selection 
of 𝐴𝑡+1

 Given the same amount of 
experience, Expected Sara performs 
slightly better than Sarsa

 In cliff-walking the state transitions 
are all deterministic and all 
randomness comes from the policy; 
in such cases, Expected Sarsa can 
safely set 𝛼 = 1 without suffering any 
degradation of asymptotic 
performance, whereas Sarsa can only 
perform well in the long run at a 
small value of 𝛼, at which short-term 
performance is poor

Cliff-Walking Task

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Expected Sarsa

 In these cliff walking results, Expected Sarsa was used on-policy, but in 
general it might work as an off-policy method: it might use a behavior 
policy different from the target policy 𝜋

 For example, suppose 𝜋 is the greedy policy while behavior is more 
exploratory; then Expected Sarsa is exactly Q-learning

 In this sense Expected Sarsa subsumes and generalizes Q-learning 
while reliably improving over Sarsa
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Maximization Bias and Double 
Learning

 All the control algorithms that we have discussed so far involve 
maximization in the construction of their target policies
 In Q-learning the target policy is the greedy policy given the current action values, 

which is defined with a max
 In Sarsa, the policy is often 𝜖-greedy, which also involves a maximization operation

 In these algorithms, a maximum over estimated values is used 
implicitly as an estimate of the maximum value, which can lead to a 
significant positive bias

 Consider a single state s where there are many actions a whose true 
values, q(s, a), are all zero but whose estimated values, Q(s, a), are 
uncertain and thus distributed some above and some below zero

 Maximization bias: the maximum of the true values is zero, but the 
maximum of the estimates is positive, a positive bias
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Example: Maximiztion Bias

 The MDP has two non-terminal states A and B; episodes always start in A
 The right action transitions immediately to the terminal state with a 

reward and return of zero; the left action transitions to B, also with a 
reward of zero, from which there are many possible actions all of which 
cause immediate termination with a reward drawn from a normal 
distribution with mean −0.1 and variance 1.0

 The expected return for any trajectory starting with left is −0.1, and thus 
taking left in state A is always a mistake

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Maximiztion Bias

 Nevertheless, our control methods may favor left because of 
maximization bias making B appear to have a positive value

 Q-learning with 𝜖-greedy action selection initially learns to strongly favor 
the left action on this example

 Even at asymptote, Q-learning takes the left action about 5% more often 
than is optimal at our parameter settings (𝜖 = 0.1, 𝛼 = 0.1, and 𝛾 = 1)

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Maximization Bias and Double 
Learning

 Are there algorithms that avoid maximization bias? 
 Consider a bandit case in which we have noisy estimates of the value of 

each of many actions, obtained as sample averages of the rewards 
received on all the plays with each action

 There will be a positive maximization bias if we use the maximum of 
the estimates as an estimate of the maximum of the true values

 It is due to using the same samples (plays) both to determine the 
maximizing action and to estimate its value
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Maximization Bias and Double 
Learning

 Double Learning
 Suppose we divided the plays in two sets and used them to learn two 

independent estimates 𝑄1(𝑎) and 𝑄2(𝑎), each an estimate of the true 
value 𝑞(𝑎), for all 𝑎 ∈ 𝐴

 We could then use one estimate, say 𝑄1, to determine the maximizing 
action 𝐴∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1(𝑎), and the other 𝑄2, to provide the estimate 
of its value 𝑄2(𝐴∗) = 𝑄2(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1 𝑎 )

 This estimate will then be unbiased in the sense that E 𝑄2 𝐴∗ =

𝑞(𝐴∗)

 We can also repeat the process with the role of the two estimates 
reversed to yield a second unbiased estimate 𝑄1(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄2 𝑎 )

 Although we learn two estimates, only one estimate is updated on 
each play; double learning doubles the memory requirements, but 
does not increase the amount of computation per step
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Maximization Bias and Double 
Learning

 Double Learning for full MDP
 Double Q-learning is a double learning algorithm analogous to Q-learning
 Double Q-learning divides the time steps in two, perhaps by flipping a coin on 

each step
 If the coin comes up heads, the update is
𝑄1 𝑆𝑡 , 𝐴𝑡 ← 𝑄1 𝑆𝑡, 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑄2 𝑆𝑡+1, argmax

𝑎
𝑄1 𝑆𝑡+1, 𝑎 − 𝑄1 𝑆𝑡, 𝐴𝑡 ]

 If the coin comes up tails, then the same update is done with 𝑄1 and 𝑄2
switched, so that 𝑄2 is updated; the two approximate value functions are 
treated completely symmetrically

 The behavior policy can use both action-value estimates. For example, an 𝜖-
greedy policy for Double Q-learning could be based on the average (or sum) 
of the two action-value estimates
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Maximization Bias and Double 
Learning

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Games, Afterstates, and Other 
Special Cases

 There are exceptional tasks that are better treated in a specialized way
 Example: Tic-Tac-Toe

 The TD method for learning to play tic-tac-toe (in Ch. 1) learns something much more 
like a state-value function, although in general we prefer an action-value function

 The function learned there is neither an action-value function nor a state-value 
function in the usual sense

 A conventional state-value function evaluates states in which the agent has the 
option of selecting an action, but the state-value function used in tic-tac-toe 
evaluates board positions after the agent has made its move

 These are called afterstates, and value functions over these are called afterstate value 
functions

 Afterstates are useful when we have knowledge of an initial part of the 
environment’s dynamics but not necessarily of the full dynamics

 For example, in games we typically know the immediate effects of our moves; we 
know for each possible chess move what the resulting position  will be, but not how 
our opponent will reply

 Afterstate value functions are a natural way to take advantage of this kind of 
knowledge and thereby produce a more efficient learning method
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Games, Afterstates, and Other 
Special Cases

 Why are algorithms using afterstates more efficient?
 A conventional action-value function would map from positions and 

moves to an estimate of the value; but many position–move pairs 
produce the same resulting position

 A conventional action-value function would have to separately assess 
both pairs, whereas an afterstate value function would immediately 
assess both equally; any learning about the position–move pair on the 
left would immediately transfer to the pair on the right

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Games, Afterstates, and Other 
Special Cases

 Afterstates arise in many tasks, not just games
 For example, in queuing tasks there are actions such as assigning 

customers to servers, rejecting customers, or discarding information;  
in such cases the actions are in fact defined in terms of their immediate 
effects, which are completely known

 In general, many principles of RL apply widely to specialized problems 
and algorithms

 For example, afterstate methods are still aptly described in terms of 
generalized policy iteration, with a policy and (afterstate) value 
function interacting in essentially the same way
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Conclusion

 TD methods are alternatives to MC methods for solving the prediction 
problem

 In both cases, the extension to the control problem is via the idea of 
generalized policy iteration (GPI) that we abstracted from dynamic 
programming

 This is the idea that approximate policy and value functions should 
interact in such a way that they both move toward their optimal values
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Conclusion

 One of the two processes making up GPI drives the value function to 
accurately predict returns for the current policy; this is the prediction 
problem

 The other process drives the policy to improve locally (e.g., to be 𝜖-
greedy) with respect to the current value function

 When the first process is based on experience, a complication arises 
concerning maintaining sufficient exploration

 We can classify TD control methods according to whether they deal 
with this complication by using an on-policy or off-policy approach

 Sarsa is an on-policy method, and Q-learning is an off-policy method; 
Expected Sarsa is also an off-policy method
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Conclusion

 The methods presented in this chapter are today the most widely used 
RL methods

 This is probably due to their great simplicity: they can be applied 
online, with a minimal amount of computation, to experience 
generated from interaction with an environment; they can be 
expressed nearly completely by single equations that can be 
implemented with small computer programs
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Questions?


