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Today’s Lecture

 More algorithms for streams:
 (1) Filtering a data stream: Bloom filters

 Select elements with property x from stream

 (2) Counting distinct elements: Flajolet-Martin
 Number of distinct elements in the last k elements 

of the stream
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Outline

Filtering Data Stream
Counting Distinct Elements
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Motivating Applications

 Example: Email spam filtering
 We know 1 billion “good” email addresses
 If an email comes from one of these, it is NOT spam

 Publish-subscribe systems
 You are collecting lots of messages (news articles)
 People express interest in certain sets of keywords
 Determine whether each message matches user’s 

interest
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Filtering Data Streams

 Each element of data stream is a tuple
 Given a list of keys S
 Determine which tuples of stream are in S

 Obvious solution: Hash table
 But suppose we do not have enough memory to store 

all of S in a hash table
 E.g., we might be processing millions of filters 

on the same stream
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First Cut Solution (1)

 Given a set of keys S that we want to filter
 Create a bit array B of n bits, initially all 0s
 Choose a hash function h with range [0,n)
 Hash each member of s∈ S to one of 

n buckets, and set that bit to 1, i.e., B[h(s)]=1
 Hash each element a of the stream and output 

only those that hash to bit that was set to 1
 Output a if B[h(a)] == 1
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First Cut Solution (2)

 Creates false positives but no false negatives
 If the item is in S we surely output it, if not we may still 

output it

Item

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least 
one of the items in S hashed to.

Hash 
func

h

Drop the item.
It hashes to a bucket set 
to 0 so it is surely not in S.

Bit array B
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First Cut Solution (3)

 |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely hashes to a 
bucket that has the bit set to 1, 
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so about 
1/8th of the addresses not in S get through to the 
output (false positives)
 Actually, less than 1/8th, because more than one address 

might hash to the same bit
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Analysis: Throwing Darts (1)

 More accurate analysis for the number of false 
positives 

 Consider: If we throw m darts into n equally 
likely targets, what is the probability that 
a target gets at least one dart?

 In our case:
 Targets = bits/buckets
 Darts = hash values of items
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Analysis: Throwing Darts (2)

 We have m darts, n targets
 What is the probability that a target gets at least 

one dart?

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n( / n)

Equivalent
Equals 1/e
as n →∞

1 – e–m/n
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Analysis: Throwing Darts (3)

 Fraction of 1s in the array B =
= probability of false positive = 1 – e-m/n

 Example: 109 darts, 8∙109 targets
 Fraction of 1s in B = 1 – e-1/8 = 0.1175

 Compare with our earlier estimate: 1/8 = 0.125
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Bloom Filter

 Consider: |S| = m, |B| = n
 Use k independent hash functions h1 ,…, hk

 Initialization:
 Set B to all 0s
 Hash each element s∈ S using each hash function hi, set 

B[hi(s)] = 1 (for each i = 1,.., k)

 Run-time:
 When a stream element with key x arrives

 If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
 That is, x hashes to a bucket set to 1 for every hash function hi(x)

 Otherwise discard the element x

(note: we have a 
single array B!)
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Bloom Filter -- Analysis

 What fraction of the bit vector B are 1s?
 Throwing k∙m darts at n targets
 So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k hash 
element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k
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Bloom Filter – Analysis (2)

 m = 1 billion, n = 8 billion
 k = 1: (1 – e-1/8) = 0.1175
 k = 2: (1 – e-1/4)2 = 0.0493

 What happens as we 
keep increasing k?

 “Optimal” value of k: n/m ln(2)
 In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

 Error at k = 6: (1 – e-1/6)2 = 0.0235
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Bloom Filter: Wrap-up

 Bloom filters guarantee no false negatives, and 
use limited memory
 Great for pre-processing before more 

expensive checks

 Suitable for hardware implementation
 Hash function computations can be parallelized

 Is it better to have 1 big B or k small Bs?
 It is the same: (1 – e-km/n)k  vs. (1 – e-m/(n/k))k

 But keeping 1 big B is simpler
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Outline

Filtering Data Stream
Counting Distinct Elements
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Motivating Applications

 How many different words are found among the 
Web pages being crawled at a site?
 Unusually low or high numbers could indicate artificial 

pages (spam?)

 How many different Web pages does each 
customer request in a week?

 How many distinct products have we sold in the 
last week?



18U Kang

Counting Distinct Elements

 Problem:
 Data stream consists of a universe of elements chosen 

from a set of size N
 Maintain a count of the number of distinct elements 

seen so far

 Obvious approach:
Maintain the set of elements seen so far
 That is, keep a hash table of all the distinct elements 

seen so far
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Using Small Storage

 Real problem: What if we do not have space 
to maintain the set of elements seen so far?

 Estimate the count in an unbiased way

 Accept that the count may have a little error, but 
limit the probability that the error is large
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Flajolet-Martin Approach

 Hash each item x to a bit, using exponential 
distribution
 ½ map to bit 0, ¼ map to bit 1, …

 Let R be the position of the least ‘0’ bit
 [Flajolet, Martin] : the number of distinct items is 

2R/φ, where φ is a constant
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Intuition

 Hash each item x to a bit, using exponential 
distribution: ½ map to bit 0, ¼ map to bit 1, …

 Intuition
 The 0th bit is accessed with prob. 1/2 
 The 1st bit is accessed with prob. 1/4
 … The kth bit is accessed with prob. O(1/2k)

 Thus, if the kth bit is set, then we know that an 
event with prob. O(1/2k) happened
 => We inserted distinct items O(2k) times
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Improving Accuracy

 Hash each item x to a bit, using exponential 
distribution: ½ map to bit 0, ¼ map to bit 1, …

 Map each item to k different bitstrings, and we 
compute the average least ‘0’ bit position b: # of 
items = 2b/φ
 => decrease the variance

 The final estimate: 2b / (0.77351 * bias)
 b : average least zero bit in the bitmask
 bias : 1+.31/k for k different mappings
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Random Hash Function

 Hash each item x to a bit, using exponential distribution
 ½ map to bit 0, ¼ map to bit 1, …

 How can we get this function?
 Typically, a hash function maps an item  to a random bucket

 Answer: use linear hash functions.  Pick random (ai,, bi)
and then the hash function is:
 lhashi(x) = ai * x + bi
 This gives uniform distribution over the bits

 To make this exponential, define
 hashi(x) = least zero bit index in lhashi(x) (in binary format)
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Storage Requirement

 Flajolet-Martin:
 Let R be the position of the least ‘0’ bit
 The number of distinct items is 2R/φ, where φ is a 

constant

 How much storage do we need?
 R bits are required to count a set with 2R/φ = O(2R) 

distinct items.
 Thus, given a set with N distinct items, we need only 

O(log N) bits 
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Questions?


	슬라이드 번호 1
	Today’s Lecture
	Outline
	Motivating Applications
	Filtering Data Streams
	First Cut Solution (1)
	First Cut Solution (2)
	First Cut Solution (3)
	Analysis: Throwing Darts (1)
	Analysis: Throwing Darts (2)
	Analysis: Throwing Darts (3)
	Bloom Filter
	Bloom Filter -- Analysis
	Bloom Filter – Analysis (2)
	Bloom Filter: Wrap-up
	Outline
	Motivating Applications
	Counting Distinct Elements
	Using Small Storage
	Flajolet-Martin Approach
	Intuition
	Improving Accuracy
	Random Hash Function
	Storage Requirement
	슬라이드 번호 25

