
1U Kang

Introduction to Data Mining

Lecture #7: Mining Data Streams-2

U Kang
Seoul National University

2U Kang

Today’s Lecture

 More algorithms for streams:
 (1) Filtering a data stream: Bloom filters

 Select elements with property x from stream

 (2) Counting distinct elements: Flajolet-Martin
 Number of distinct elements in the last k elements

of the stream

3U Kang

Outline

Filtering Data Stream
Counting Distinct Elements

4U Kang

Motivating Applications

 Example: Email spam filtering
 We know 1 billion “good” email addresses
 If an email comes from one of these, it is NOT spam

 Publish-subscribe systems
 You are collecting lots of messages (news articles)
 People express interest in certain sets of keywords
 Determine whether each message matches user’s

interest

5U Kang

Filtering Data Streams

 Each element of data stream is a tuple
 Given a list of keys S
 Determine which tuples of stream are in S

 Obvious solution: Hash table
 But suppose we do not have enough memory to store

all of S in a hash table
 E.g., we might be processing millions of filters

on the same stream

6U Kang

First Cut Solution (1)

 Given a set of keys S that we want to filter
 Create a bit array B of n bits, initially all 0s
 Choose a hash function h with range [0,n)
 Hash each member of s∈ S to one of

n buckets, and set that bit to 1, i.e., B[h(s)]=1
 Hash each element a of the stream and output

only those that hash to bit that was set to 1
 Output a if B[h(a)] == 1

7U Kang

First Cut Solution (2)

 Creates false positives but no false negatives
 If the item is in S we surely output it, if not we may still

output it

Item

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least
one of the items in S hashed to.

Hash
func

h

Drop the item.
It hashes to a bucket set
to 0 so it is surely not in S.

Bit array B

8U Kang

First Cut Solution (3)

 |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely hashes to a
bucket that has the bit set to 1,
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so about
1/8th of the addresses not in S get through to the
output (false positives)
 Actually, less than 1/8th, because more than one address

might hash to the same bit

9U Kang

Analysis: Throwing Darts (1)

 More accurate analysis for the number of false
positives

 Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

 In our case:
 Targets = bits/buckets
 Darts = hash values of items

10U Kang

Analysis: Throwing Darts (2)

 We have m darts, n targets
 What is the probability that a target gets at least

one dart?

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n(/ n)

Equivalent
Equals 1/e
as n →∞

1 – e–m/n

11U Kang

Analysis: Throwing Darts (3)

 Fraction of 1s in the array B =
= probability of false positive = 1 – e-m/n

 Example: 109 darts, 8∙109 targets
 Fraction of 1s in B = 1 – e-1/8 = 0.1175

 Compare with our earlier estimate: 1/8 = 0.125

12U Kang

Bloom Filter

 Consider: |S| = m, |B| = n
 Use k independent hash functions h1 ,…, hk

 Initialization:
 Set B to all 0s
 Hash each element s∈ S using each hash function hi, set

B[hi(s)] = 1 (for each i = 1,.., k)

 Run-time:
 When a stream element with key x arrives

 If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
 That is, x hashes to a bucket set to 1 for every hash function hi(x)

 Otherwise discard the element x

(note: we have a
single array B!)

13U Kang

Bloom Filter -- Analysis

 What fraction of the bit vector B are 1s?
 Throwing k∙m darts at n targets
 So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k hash
element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k

14U Kang

Bloom Filter – Analysis (2)

 m = 1 billion, n = 8 billion
 k = 1: (1 – e-1/8) = 0.1175
 k = 2: (1 – e-1/4)2 = 0.0493

 What happens as we
keep increasing k?

 “Optimal” value of k: n/m ln(2)
 In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

 Error at k = 6: (1 – e-1/6)2 = 0.0235

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

Fa
ls

e
po

si
tiv

e
pr

ob
.

15U Kang

Bloom Filter: Wrap-up

 Bloom filters guarantee no false negatives, and
use limited memory
 Great for pre-processing before more

expensive checks

 Suitable for hardware implementation
 Hash function computations can be parallelized

 Is it better to have 1 big B or k small Bs?
 It is the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

 But keeping 1 big B is simpler

16U Kang

Outline

Filtering Data Stream
Counting Distinct Elements

17U Kang

Motivating Applications

 How many different words are found among the
Web pages being crawled at a site?
 Unusually low or high numbers could indicate artificial

pages (spam?)

 How many different Web pages does each
customer request in a week?

 How many distinct products have we sold in the
last week?

18U Kang

Counting Distinct Elements

 Problem:
 Data stream consists of a universe of elements chosen

from a set of size N
 Maintain a count of the number of distinct elements

seen so far

 Obvious approach:
Maintain the set of elements seen so far
 That is, keep a hash table of all the distinct elements

seen so far

19U Kang

Using Small Storage

 Real problem: What if we do not have space
to maintain the set of elements seen so far?

 Estimate the count in an unbiased way

 Accept that the count may have a little error, but
limit the probability that the error is large

20U Kang

Flajolet-Martin Approach

 Hash each item x to a bit, using exponential
distribution
 ½ map to bit 0, ¼ map to bit 1, …

 Let R be the position of the least ‘0’ bit
 [Flajolet, Martin] : the number of distinct items is

2R/φ, where φ is a constant

21U Kang

Intuition

 Hash each item x to a bit, using exponential
distribution: ½ map to bit 0, ¼ map to bit 1, …

 Intuition
 The 0th bit is accessed with prob. 1/2
 The 1st bit is accessed with prob. 1/4
 … The kth bit is accessed with prob. O(1/2k)

 Thus, if the kth bit is set, then we know that an
event with prob. O(1/2k) happened
 => We inserted distinct items O(2k) times

22U Kang

Improving Accuracy

 Hash each item x to a bit, using exponential
distribution: ½ map to bit 0, ¼ map to bit 1, …

 Map each item to k different bitstrings, and we
compute the average least ‘0’ bit position b: # of
items = 2b/φ
 => decrease the variance

 The final estimate: 2b / (0.77351 * bias)
 b : average least zero bit in the bitmask
 bias : 1+.31/k for k different mappings

23U Kang

Random Hash Function

 Hash each item x to a bit, using exponential distribution
 ½ map to bit 0, ¼ map to bit 1, …

 How can we get this function?
 Typically, a hash function maps an item to a random bucket

 Answer: use linear hash functions. Pick random (ai,, bi)
and then the hash function is:
 lhashi(x) = ai * x + bi
 This gives uniform distribution over the bits

 To make this exponential, define
 hashi(x) = least zero bit index in lhashi(x) (in binary format)

24U Kang

Storage Requirement

 Flajolet-Martin:
 Let R be the position of the least ‘0’ bit
 The number of distinct items is 2R/φ, where φ is a

constant

 How much storage do we need?
 R bits are required to count a set with 2R/φ = O(2R)

distinct items.
 Thus, given a set with N distinct items, we need only

O(log N) bits

25U Kang

Questions?

	슬라이드 번호 1
	Today’s Lecture
	Outline
	Motivating Applications
	Filtering Data Streams
	First Cut Solution (1)
	First Cut Solution (2)
	First Cut Solution (3)
	Analysis: Throwing Darts (1)
	Analysis: Throwing Darts (2)
	Analysis: Throwing Darts (3)
	Bloom Filter
	Bloom Filter -- Analysis
	Bloom Filter – Analysis (2)
	Bloom Filter: Wrap-up
	Outline
	Motivating Applications
	Counting Distinct Elements
	Using Small Storage
	Flajolet-Martin Approach
	Intuition
	Improving Accuracy
	Random Hash Function
	Storage Requirement
	슬라이드 번호 25

