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In This Lecture

 Challenge of Unstructured Modeling

 Using Graphs to Describe Model Structure

 Sampling from Graphical Models

 Advantages of Structured Modeling

 Learning about Dependencies

 Inference and Approximate Inference

 Deep Learning Approach to Structured PM
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Probabilistic Model

 Goal of deep learning: scale machine learning to the 
kinds of challenges needed to solve artificial intelligence

 Classification

 Discards most of the information in the input and produces a 
single output (or a probability distribution over values of that 
single output)

 It is possible to ask probabilistic models to do many 
other tasks, which are often more expensive than 
classification

 Producing multiple output values

 Complete understanding of the entire structure of the input



U Kang 5

Probabilistic Model

 Examples of expensive tasks

 Density estimation

 Given an input x, estimate the true density p(x) under the 
data generating distribution

 Requires a complete understanding of the entire input

 Denoising

 Given a damaged x’, return an estimate of the correct x

 Requires multiple outputs and an understanding of the entire 
input
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Probabilistic Model

 Examples of expensive tasks

 Missing value imputation

 Given the observations of some elements of x, return 
estimates or a probability distribution over some or all of the 
unobserved elements of x

 Requires multiple outputs and a complete understanding of 
the entire input

 Sampling

 Generate samples from distribution p(x). E.g., speech 
synthesis

 Requires multiple output values and a good model of the 
entire input
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Challenges

 Modeling a distribution over a random vector x containing n 
discrete variables capable of taking on k values each
 Naïve approach for representing P(x) requires a lookup table with kn

entries

 Problems of lookup table based approach
 Memory

 Statistical efficiency: requires exponential number of training data points 
to fit

 Runtime for inference: e.g., computing marginal distribution P(x1) requires 
summing up large entries

 Runtime for sampling: e.g., sampling some value u~ U(0,1) and iterating 
through the table until the cumulative probability is u is inefficient
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Challenges

 Problem with the table-based approach
 Explicitly model every possible kind of interactions

 Structured probabilistic models provide a formal framework for 
modeling only limited interactions between random variables
 This allows the models to have significantly fewer parameters and 

therefore be reliably estimated from less data

 These smaller models also have dramatically reduced computational cost 
in terms of storing the model, performing inference in the model, and 
drawing samples from the model
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Probabilistic Graphical Model

 Use graphs to represent interaction between random variables

 Nodes - random variables

 Edges - statistical dependencies between these variables
 Correlations relationships

 Causality relationships

 2 categories of graphical models
 Directed graphical model (=Belief network, Bayesian network)

 Undirected graphical model (=Markov network, Markov random field)
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Directed Graphical Model

 Edges are directed

 Each direction indicates which variable’s probability distribution 
is defined in terms of the others
 E.g., an arrow from a to b means that the distribution of b depends on a

 A directed graphical model defined on variables x is defined by a 
directed acyclic graph G whose vertices are the random variables 
in the model, and a set of local conditional probability 
distributions 𝑝(𝑥𝑖|𝑃𝑎𝐺(𝑥𝑖)) where 𝑃𝑎𝐺(𝑥𝑖) gives the parents of 
𝑥𝑖 in G

 The probability distribution over x is given by

𝑝 𝑥 = ς𝑖 𝑝(𝑥𝑖|𝑃𝑎𝐺(𝑥𝑖))
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Directed Graphical Model

 Example: relay race

 Alice’s finishing time 𝑡0 influences Bob’s finishing time 𝑡1, because Bob 
does not get to start running until Alice finishes

 Likewise, Bob’s finishing time 𝑡1 influences Carol’s finishing time 𝑡2

 𝑝 𝑡0, 𝑡1, 𝑡2 = 𝑝 𝑡0 𝑝 𝑡1 𝑡0 𝑝(𝑡2|𝑡1)
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Directed Graphical Model

 Example: relay race

 𝑝 𝑡0, 𝑡1, 𝑡2 = 𝑝 𝑡0 𝑝 𝑡1 𝑡0 𝑝(𝑡2|𝑡1)

 Assume we discretize time into 100 possible values

 Table based approach: requires 999,999 values

 Graphical model: 99 + 99*100 + 99*100 = 19,899 values 

 Using graphical model reduced the number of parameters more than 50 
times!
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Directed Graphical Model

 Table based approach vs graphical model
 To model n discrete variables each having k values, the cost of the single 

table approach scales like O(𝑘𝑛)

 A directed graphical model where m is the maximum number of variables 
appearing in a single conditional probability distribution, then the cost of 
the graphical model scales like O(𝑘𝑚)

 As long as we can design a model such that m << n, we get dramatic 
savings
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Undirected Graphical Model

 Directed models are most naturally applicable to situations 
where there is a clear causality

 Undirected models are appropriate where we might not clearly 
define the causation
 Example: modeling health condition

 ℎ𝑟: your roommate’s health

 ℎ𝑦: your health

 ℎ𝑐: your work colleague’s health

ℎ𝑟 ℎ𝑦 ℎ𝑐
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Undirected Graphical Model

 An undirected graphical model is defined on an 
undirected graph G

 For each clique C in the graph, a non-negative factor 
(or clique potential) 𝜙(𝐶) measures the affinity of 
the variables in that clique

 An unnormalized probability distribution is given by

෤𝑝 𝐱 =ෑ

𝐶∈𝐺

𝜙 𝐶
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Undirected Graphical Model

 Example

 This graph implies that p(a,b,c,d,e,f) can be written 
as                         

for an appropriate choice of the 𝜙 function; 

Z is called the partition function
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Undirected Graphical Model

 Unlike in a Bayesian network, there is little structure 
to the definition of the cliques, so there is nothing to 
guarantee that multiplying them together will yield 
a valid probability distribution
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The Partition Function (1)

 A probability distribution must sum to 1

 The unnormalized probability distributions can 
be normalized as follows:

𝑝 𝐱 =
1

𝑍
෤𝑝 𝐱

 We call a constant 𝑍 the partition function:

𝑍 = න ෤𝑝 𝐱 𝑑𝐱
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The Partition Function (2)

 𝑍 is an integral or sum over all possible joint 
assignments of the state 𝐱

 Thus it is usually intractable to compute

 Therefore, we resort to approximations (details 
in chapter 18)
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The Partition Function (3)

 It is possible that 𝑍 does not exist

 For example, suppose a single variable 𝑥 ∈ ℝ

 The clique potential is given as 𝜙 𝑥 = 𝑥2

 Then, the potential function 𝑍 is defined as

𝑍 = න𝑥2𝑑𝑥

 Since it diverges, it is not a probability distribution
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Energy-Based Models (1)

 Many undirected models assume that
∀𝑥, ෤𝑝 𝐱 > 0

 A convenient way to enforce this assumption is 
to use an energy-based model (EBM)

෤𝑝 𝐱 = exp −𝐸 𝐱 ,

where 𝐸 𝑥 is known as the energy function

 Note that exp(𝑧) is positive for all 𝑧; by learning 
the energy function, we can use unconstrained 
optimization since we do not need to impose 
non-negative probability for any setting
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Energy-Based Models (2)

 energy-based model (EBM)

෤𝑝 𝐱 = exp −𝐸 𝐱

 Any distribution given by the above equation is 
an example of Boltzman distribution; for this 
reason, many energy-based models are called 
Boltzman machines
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Energy-Based Models (3)

 The following shows an example:

 It implies that 𝐸 a, b, c, d, e, f can be
𝐸a,b a, b + ⋯+ 𝐸e,f e, f

 We can obtain the 𝜙 functions as

𝜙a,b a, b = exp −𝐸 a, b
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Separation (1)

 The edges in a graphical model tell us direct interactions

 We often need to know indirect interactions

 More formally, we want to know conditional
independences between the variables

 Conditional independence implied by undirected graph 
is called separation

 A set of variables A is separated by a set of variables B 
given a third set of variables S if the graph structure 
implies that A is independent from B given S



U Kang 26

Separation (2)

 Two variables 𝑎 and 𝑏 are not separated when 
they are connected by a path involving only 
unobserved variables

 Two variables 𝑎 and 𝑏 are separated when

 No path exists between them

 All paths contain an observed variable

 Paths of only unobserved var. are “active”

 Paths including an observed var. are “inactive”
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Separation (3)

 The following shows an example:

 (a) a and b are not separated

 The path is active because s is not observed

 (b) a and b are separated given s

 The path is inactive because s is observed
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Separation (4)

 The following shows another example:

 Here b is shaded to indicate that it is observed

 a and c are separated from each other given b

 But, a and d are not separated given b

 Since there is a second, active path between them
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D-Separation (1)

 Similar concepts of separation apply to directed 
models

 These concepts are referred to as d-separation

 The “d” stands for “dependence”

 A set of variables A is d-separated by a set of 
variables B given a third set of variables S if 
the graph structure implies that A is 
independent from B given S
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D-Separation (2)

 The following shows an example:

 (a) This kind of path is blocked if s is observed

 (b) a and b are connected by a common cause s

 This kind of path is also blocked if s is observed

 If s is not observed, than a and b are dependent
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D-Separation (3)

 The following shows another example:

 (c) Variables a and b are both parents of s

 This is called a V-structure, or the collider case

 The path actually active when s is observed

 (d) That is the same in this case (descendant)
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D-Separation (4)

 Given the empty set:

 a and b are d-separated

 Given c:

 a and b are not d-sep.

 a and e are d-separated 

 d and e are d-separated 

 Given d:

 a and b are not d-sep.
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Factor Graphs (1)

 Factor graphs are another graphical models

 A factor graph is a bipartite undirected graph

 Some of the nodes are drawn as circles

 These correspond to random variables

 The rest of the nodes are drawn as squares

 These correspond to factors 𝜙
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Factor Graphs (2)

 The following show examples:

 (Left) An undirected network of a, b, and c

 (Center) A factor graph having one factor

 (Right) Another factor graph having three factors
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Questions?


