
U Kang

Reinforcement Learning

n-step Bootstrapping

U Kang
Seoul National University

U Kang

In This Lecture

 Unification of MC and TD methods
 n-step methods

U Kang

Overview

 Goal: unify the Monte Carlo (MC) methods and the one-step temporal
difference (TD) methods

 Neither MC methods nor one-step TD methods are always the best
 n-step TD methods generalize both methods so that one can shift from

one to the other smoothly as needed to meet the demands of a
particular task

 n-step methods span a spectrum with MC methods at one end and one-
step TD methods at the other; the best methods are often intermediate
between the two extremes

U Kang

Outline

n-step TD Prediction
n-step Sarsa
n-step Off-policy Learning
n-step Tree Backup
Conclusion

U Kang

n-step TD Prediction

 What methods lie between MC and TD methods?
 Consider estimating 𝑣𝜋 from sample episodes generated using 𝜋
 MC methods perform an update for each state based on the entire

sequence of observed rewards from that state until the end of the
episode

 The update of one-step TD methods, on the other hand, is based on
just the one next reward, bootstrapping from the value of the state one
step later as a proxy for the remaining rewards

 An intermediate method would perform an update based on an
intermediate number of rewards: more than one, but less than all of
them until termination

 E.g., a two-step update would be based on the first two rewards and
the estimated value of the state two steps later

U Kang

n-step TD Prediction

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

n-step TD Prediction

 n-step TD methods: temporal difference extends over n steps
 n-step TD methods are still TD methods because they still change an

earlier estimate based on how it differs from a later estimate

 Consider the update of the estimated value of state 𝑆𝑡 as a result of the
state–reward sequence, 𝑆𝑡, 𝑅𝑡+1, 𝑆𝑡+1, 𝑅𝑡+2, …, 𝑅𝑇, 𝑆𝑇

 MC updates the estimate of 𝑣𝜋(𝑆𝑡) in the direction of the complete
return:

 In MC update, the target is the return

Target of the update

𝐺𝑡 ሶ= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯+ 𝛾𝑇−𝑡−1RT

U Kang

n-step TD Prediction

 In one-step TD, the target is the one-step return: the first reward plus
the discounted estimated value of the next state

 𝑉𝑡 is the estimate at time t of 𝑣𝜋
 𝐺𝑡:𝑡+1 is a truncated return for time t using rewards up until time t+1, with the

discounted estimate γ𝑉𝑡(𝑆𝑡+1) taking the place of the other terms γ𝑅𝑡+2 + γ2𝑅𝑡+3 +
⋯+ γ𝑇−𝑡−1𝑅𝑇 of the full return

 The target for a two-step update is the two-step return:

 The target for an arbitrary n-step update is the n-step return:

where 𝑛 ≥ 1 and 0 ≤ 𝑡 < 𝑇 − 𝑛

 If 𝑡 + 𝑛 ≥ 𝑇, then all the missing terms are taken as zero, and the n-step return is
equal to the ordinary full return (𝐺𝑡:𝑡+𝑛 = 𝐺𝑡 if 𝑡 + 𝑛 ≥ 𝑇)

𝐺𝑡:𝑡+1 ሶ= 𝑅𝑡+1 + 𝛾𝑉𝑡(𝑆𝑡+1)

𝐺𝑡:𝑡+2 ሶ= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑉𝑡+1(𝑆𝑡+2)

𝐺𝑡:𝑡+𝑛 ሶ= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉𝑡+𝑛−1(𝑆𝑡+𝑛)

U Kang

n-step TD Prediction

 Note that n-step returns for n > 1 involve future rewards and states
that are not available at the time of transition from t to t + 1. No real
algorithm can use the n-step return until after it has seen 𝑅𝑡+𝑛 and
computed 𝑉𝑡+𝑛−1

 The first time these are available is t + n; the natural state-value
learning algorithm for using n-step returns is

while the values of all other states remain unchanged: 𝑉𝑡+𝑛 𝑠 =
𝑉𝑡+𝑛−1(𝑠) for all 𝑠 ≠ 𝑆𝑡
 Note that no changes at all are made during the first n − 1 steps of

each episode; to make up for that, an equal number of additional
updates are made at the end of the episode, after termination and
before starting the next episode

𝑉𝑡+𝑛 𝑆𝑡 ሶ= 𝑉𝑡+𝑛−1 𝑆𝑡 + 𝛼 𝐺𝑡:𝑡+𝑛 − 𝑉𝑡+𝑛−1 𝑆𝑡 , 0 ≤ 𝑡 < 𝑇

U Kang

n-step TD Prediction

Let n=3, T=6

t = 0 1 2 3 4 5 6

𝜏 = 0 1 2 3 4 5

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

n-step TD Prediction

 The n-step return uses the value function 𝑉𝑡+𝑛−1 to correct for the
missing rewards beyond 𝑅𝑡+𝑛

 Error reduction property of n-step returns: their expectation is
guaranteed to be a better estimate of 𝑣𝜋 than 𝑉𝑡+𝑛−1 is, in a worst-
state sense; the worst error of the expected n-step return is
guaranteed to be less than or equal to 𝛾𝑛 times the worst error under
𝑉𝑡+𝑛−1, for all 𝑛 ≥ 1

 Because of the error reduction property, all n-step TD methods can be
shown to converge to the correct predictions

max
𝑠
ȁ𝔼𝜋 𝐺𝑡:𝑡+𝑛 𝑆𝑡 = 𝑠 − 𝑣𝜋 𝑠 ȁ ≤ 𝛾𝑛max

𝑠
𝑉𝑡+𝑛−1 𝑠 − 𝑣𝜋 𝑠

U Kang

Example: n-step TD Methods on
the Random Walk

 Suppose the first episode progressed directly from the center state, C, to the
right, through D and E, and then terminated on the right with a return of 1

 The estimated values of all the states started at an intermediate value, V (s) =
0.5

 As a result of this experience, a one-step method would change only the
estimate for the last state, V (E), which would be incremented toward 1, the
observed return

 A two-step method, on the other hand, would increment the values of the two
states preceding termination: V (D) and V (E) both would be incremented
toward 1

 A three-step method, or any n-step method for n > 2, would increment the
values of all three of the visited states toward 1, all by the same amount

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: n-step TD Methods on
the Random Walk

 Which value of n is better?
 Results of a simple empirical test

for a larger random walk process,
with 19 states instead of 5

 The performance measure for each
parameter setting, shown on the
vertical axis, is the square-root of
the average squared error between
the predictions at the end of the
episode for the 19 states and their
true values, then averaged over the
first 10 episodes and 100
repetitions of the whole experiment

 Methods with an intermediate value
of n worked best

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

n-step TD Prediction
n-step Sarsa
n-step Off-policy Learning
n-step Tree Backup
Conclusion

U Kang

n-step Sarsa

 How can n-step methods be used not just for prediction, but for
control?

 n-step Sarsa: the n-step version of Sarsa
 Main idea of n-step Sarsa: simply switch states for actions (state–action

pairs) and then use an 𝜖-greedy policy

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

n-step Sarsa

 Redefine n-step returns (update targets) in terms of estimated action
values:

with 𝐺𝑡:𝑡+𝑛 = 𝐺𝑡 if 𝑡 + 𝑛 ≥ 𝑇

 Then, the update algorithm is

while the values of all other states remain unchanged: 𝑄𝑡+𝑛 𝑠, 𝑎 =
𝑄𝑡+𝑛−1 𝑠, 𝑎 for all s, a such that 𝑠 ≠ 𝑆𝑡 or 𝑎 ≠ 𝐴𝑡

𝐺𝑡:𝑡+𝑛 ሶ= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1Rt+n + 𝛾𝑛𝑄𝑡+𝑛−1 𝑆𝑡+𝑛, 𝐴𝑡+𝑛 , 𝑛 ≥ 1, 0 ≤ 𝑡 < 𝑇 − 𝑛

𝑄𝑡+𝑛 𝑆𝑡 , 𝐴𝑡 ሶ= 𝑄𝑡+𝑛−1 𝑆𝑡, 𝐴𝑡 + 𝛼 𝐺𝑡:𝑡+𝑛 − 𝑄𝑡+𝑛−1 𝑆𝑡, 𝐴𝑡 , 0 ≤ 𝑡 < 𝑇

U Kang

n-step Sarsa

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Gridworld

 Speedup of policy learning due to the use of n-step methods
 G is a location of high reward
 The values were all initially 0, and all rewards were zero except for a

positive reward at G
 The one-step method strengthens only the last action of the sequence

of actions that led to the high reward
 The n-step method strengthens the last n actions of the sequence, so

that much more is learned from the one episode

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

n-step TD Prediction
n-step Sarsa
n-step Off-policy Learning
n-step Tree Backup
Conclusion

U Kang

n-step Off-policy Learning

 Recall that off-policy learning is learning the value function for one
policy 𝜋, while following another policy b

 Often, 𝜋 is the greedy policy for the current action-value function
estimate, and b is a more exploratory policy, perhaps 𝜖-greedy

 In n-step methods, returns are constructed over n steps, so we are
interested in the relative probability of just those n actions

 A simple off-policy version of n-step TD is to weight the update for time
t by 𝜌𝑡:𝑡+𝑛−1

 𝜌𝑡:𝑡+𝑛−1 is the importance sampling ratio: the relative probabilities
under the two policies of taking the n actions from 𝐴𝑡 to 𝐴𝑡+𝑛−1

𝑉𝑡+𝑛 𝑆𝑡 ሶ= 𝑉𝑡+𝑛−1 𝑆𝑡 + 𝛼𝜌𝑡:𝑡+𝑛−1 𝐺𝑡:𝑡+𝑛 − 𝑉𝑡+𝑛−1 𝑆𝑡 , 0 ≤ 𝑡 < 𝑇

𝜌𝑡:ℎ ሶ= ෑ

𝑘=𝑡

min(ℎ,𝑇−1)
𝜋(𝐴𝑘ȁ𝑆𝑘)

𝑏(𝐴𝑘ȁ𝑆𝑘)

U Kang

n-step Off-policy Learning

 If any one of the actions would never be taken by 𝜋 (i.e., 𝜋 𝐴𝑘 𝑆𝑘 =
0), then the n-step return should be given zero weight and be totally
ignored

 On the other hand, if by chance an action is taken such that 𝜋 would
take with much greater probability than b does, then this will increase
the weight that would otherwise be given to the return

 This makes sense because that action is characteristic of 𝜋 (and
therefore we want to learn about it) but is selected only rarely by b and
thus rarely appears in the data; to make up for this we have to over-
weight it when it does occur

 If the two policies are actually the same (the on-policy case) then the
importance sampling ratio is always 1

U Kang

n-step Off-policy Learning

 Similarly, n-step Sarsa update can be completely replaced by a simple
off-policy form:

for 0 ≤ 𝑡 < 𝑇

 The importance sampling ratio here starts and ends one step later than
for n-step TD, since we are updating a state–action pair

 We do not have to care how likely we were to select the action; now
that we have selected it we want to learn fully from what happens, with
importance sampling only for subsequent actions

𝑄𝑡+𝑛 𝑆𝑡 , 𝐴𝑡 ሶ= 𝑄𝑡+𝑛−1 𝑆𝑡, 𝐴𝑡 + 𝛼𝜌𝑡+1:𝑡+𝑛[𝐺𝑡:𝑡+𝑛 − 𝑄𝑡+𝑛−1 𝑆𝑡 , 𝐴𝑡]

U Kang

n-step Off-policy Learning

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

n-step Off-policy Learning

 Off-policy version of n-step Expected Sarsa
 Use the same update as that of n-step Sarsa except that the

importance sampling ratio would have one less factor in it
 The update equation would use 𝜌𝑡+1:𝑡+𝑛−1 instead of 𝜌𝑡+1:𝑡+𝑛, and

of course it would use the Expected Sarsa version of the n-step
return

 This is because in Expected Sarsa all possible actions are taken into
account in the last state; the one actually taken has no effect and
does not have to be corrected for

U Kang

Outline

n-step TD Prediction
n-step Sarsa
n-step Off-policy Learning
n-step Tree Backup
Conclusion

U Kang

n-step Tree Backup

 Is off-policy learning possible without importance
sampling?

 Q-learning and Expected Sarsa do this for the one-
step case, but is there a corresponding multi-step
algorithm?

 Answer: tree-backup algorithm

U Kang

n-step Tree Backup

 The figure shows three sample states and rewards, and two sample
actions; these are the random variables representing the events
occurring after the initial state–action pair 𝑆𝑡, 𝐴𝑡

 Hanging off to the sides of each state are the actions that were not
selected (for the last state, all the actions are considered to have not
(yet) been selected)

 Because we have no sample data for the unselected actions, we
bootstrap and use the estimates of their values in forming the target
for the update

 So far we have always updated the estimated value of the node at the
top of the diagram toward a target combining the rewards along the
way (appropriately discounted) and the estimated values of the nodes
at the bottom

 In the tree-backup update, the target includes all these things plus the
estimated values of the dangling action nodes hanging off the sides,
at all levels

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

n-step Tree Backup

 The update is from the estimated action values of the leaf
nodes of the tree; the action nodes in the interior,
corresponding to the actual actions taken, do not
participate

 Each leaf node contributes to the target with a weight
proportional to its probability of occurring under the
target policy 𝜋

 Each first-level action a contributes with a weight of
𝜋(𝑎ȁ𝑆𝑡+1), except that the action actually taken, 𝐴𝑡+1,
does not contribute at all; its probability 𝜋(𝐴𝑡+1ȁ𝑆𝑡+1) is
used to weight all the second-level action values

 Each non-selected second-level action 𝑎′ contributes with
weight 𝜋(𝐴𝑡+1ȁ𝑆𝑡+1)𝜋(𝑎′ȁ𝑆𝑡+2); each third-level action 𝑎′′
contributes with weight
𝜋(𝐴𝑡+1ȁ𝑆𝑡+1)𝜋(𝐴𝑡+2ȁ𝑆𝑡+2)𝜋(𝑎

′′ȁ𝑆𝑡+3), and so on
Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

n-step Tree Backup

 One-step tree backup return (target): the same as that of Expected
Sarsa

for 𝑡 < 𝑇 − 1

 Two-step tree backup return:

for 𝑡 < 𝑇 − 2

𝐺𝑡:𝑡+1 ሶ= 𝑅𝑡+1 + 𝛾

𝑎

𝜋 𝑎 𝑆𝑡+1 𝑄𝑡 𝑆𝑡+1, 𝑎

𝐺𝑡:𝑡+2 ሶ= 𝑅𝑡+1 + 𝛾

𝑎≠𝐴𝑡+1

𝜋 𝑎 𝑆𝑡+1 𝑄𝑡+1 𝑆𝑡+1, 𝑎

= 𝑅𝑡+1 + 𝛾

𝑎≠𝐴𝑡+1

𝜋 𝑎 𝑆𝑡+1 𝑄𝑡+1 𝑆𝑡+1, 𝑎 + 𝛾𝜋 𝐴𝑡+1 𝑆𝑡1 𝐺𝑡+1:𝑡+2,

+𝛾𝜋 𝐴𝑡+1 𝑆𝑡+1 (𝑅𝑡+2 + 𝛾

𝑎

𝜋 𝑎 𝑆𝑡+2 𝑄𝑡+1(𝑆𝑡+2, 𝑎))

U Kang

n-step Tree Backup

 General recursive definition of the tree-backup n-step return:

for 𝑡 < 𝑇 − 1, 𝑛 ≥ 2

 This target is used with the usual action-value update rule from n-step
Sarsa:

 for 0 ≤ 𝑡 < 𝑇, while the values of all other state-action pairs remain
unchanged: 𝑄𝑡+𝑛 𝑠, 𝑎 = 𝑄𝑡+𝑛−1 𝑠, 𝑎 , for all 𝑠, 𝑎 such that 𝑠 ≠ 𝑆𝑡 or
𝑎 ≠ 𝐴𝑡

𝐺𝑡:𝑡+𝑛 ሶ= 𝑅𝑡+1 + 𝛾

𝑎≠𝐴𝑡+1

𝜋 𝑎 𝑆𝑡+1 𝑄𝑡+𝑛−1 𝑆𝑡+1, 𝑎 + 𝛾𝜋 𝐴𝑡+1 𝑆𝑡+1 𝐺𝑡+1:𝑡+𝑛

𝑄𝑡+𝑛 𝑆𝑡 , 𝐴𝑡 ሶ= 𝑄𝑡+𝑛−1 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝐺𝑡:𝑡+𝑛 − 𝑄𝑡+𝑛−1 𝑆𝑡 , 𝐴𝑡]

U Kang

n-step Tree Backup

Sutton and Barto,

Reinforcement

Learning, 2018

Let n=3, T=6

t = 0 1 2 3 4 5 6

𝜏 = 0 1 2 3 4 5

U Kang

Outline

n-step TD Prediction
n-step Sarsa
n-step Off-policy Learning
n-step Tree Backup
Conclusion

U Kang

Conclusion

 We discussed a range of temporal-difference learning
methods that lie in between the one-step TD methods and
the MC methods

 Methods that involve an intermediate amount of
bootstrapping are important because they will typically
perform better than either extreme

U Kang

Conclusion

 n-step methods look ahead to the next n rewards, states, and actions
 All n-step methods involve a delay of n time steps before updating, as

only then are all the required future events known
 A further drawback is that they involve more computation per time

step than previous methods
 Compared to one-step methods, n-step methods also require more

memory to record the states, actions, rewards, and sometimes other
variables over the last n time steps

 Later, we will see how multi-step TD methods can be implemented with
minimal memory and computational complexity using eligibility traces,
but there will always be some additional computation beyond one-step
methods; such costs can be well worth paying to escape the tyranny of
the single time step

U Kang

Conclusion

 Although n-step methods are more complex than those
using eligibility traces, they have the great benefit of being
conceptually clear

 Two approaches to off-policy learning in the n-step case
 Method based on importance sampling: conceptually simple but can

be of high variance; if the target and behavior policies are very
different it probably needs some new algorithmic ideas before it can
be efficient and practical

 Method based on tree-backup updates: the natural extension of Q-
learning to the multi-step case with stochastic target policies; it
involves no importance sampling

U Kang

Exercise

 (Question 1)
 Suppose that we have an agent moving around the grid-world, where

the available actions are {‘𝑈𝑃’, ‘𝐷𝑂𝑊𝑁’, ‘𝐿𝐸𝐹𝑇’, ‘𝑅𝐼𝐺𝐻𝑇’}. 𝑆1 and 𝑆9
denote the initial state and the terminal state respectively. With the
initialized action-value 𝑄 = 0 for all state action pair and the random
𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy 𝜋, we sampled a trajectory as follows:

 𝑆1, 𝑅𝐼𝐺𝐻𝑇,−1, 𝑆2, 𝐷𝑂𝑊𝑁,−1, 𝑆5, 𝐷𝑂𝑊𝑁,−1, 𝑆8, 𝑅𝐼𝐺𝐻𝑇,+10, 𝑆9
 Assuming 𝛾 = 0.9 𝑎𝑛𝑑 𝛼 = 0.5, use 2-step Sarsa for estimating each of

𝑄 𝑆1, 𝑅𝐼𝐺𝐻𝑇 , 𝑄 𝑆2, 𝐷𝑂𝑊𝑁 ,𝑄 𝑆5, 𝐷𝑂𝑊𝑁 , 𝑎𝑛𝑑 𝑄 𝑆8, 𝑅𝐼𝐺𝐻𝑇 .

U Kang

Exercise

 (Answer)
 2-step Sarsa for estimating Q≈ 𝑞𝜋
 𝑆1, 𝑅𝐼𝐺𝐻𝑇,−1, 𝑆2, 𝐷𝑂𝑊𝑁,−1, 𝑆5, 𝐷𝑂𝑊𝑁,−1, 𝑆8, 𝑅𝐼𝐺𝐻𝑇,+10, 𝑆9
 Update Return: 𝐺𝑡:𝑡+2 ሶ= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑄𝑡+2−1 𝑆𝑡+2, 𝐴𝑡+2
 Update 𝑄: 𝑄𝑡+2 𝑆𝑡 , 𝐴𝑡 ሶ= 𝑄𝑡+2−1 𝑆𝑡, 𝐴𝑡 + 𝛼[𝐺𝑡:𝑡+2 − 𝑄𝑡+2−1 𝑆𝑡, 𝐴𝑡]

 where, 𝛾 = 0.9, 𝛼 = 0.5, and 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠, 𝑎 ∈ 𝑆, 𝐴 are given.

 𝑄 𝑆1, 𝑅𝐼𝐺𝐻𝑇 =
−1+0.9 −1 +0.92 0 −0

2
= −0.95

 𝑄 𝑆2, 𝐷𝑂𝑊𝑁 =
−1+0.9 −1 +0.92 0 −0

2
= −0.95

 𝑄 𝑆5, 𝐷𝑂𝑊𝑁 =
−1+0.9 10 −0

2
= 4

 𝑄 𝑆8, 𝑅𝐼𝐺𝐻𝑇 =
+10+0.9 0 −0

2
= 5

U Kang

Questions?

