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Introduction to Data Mining

Lecture #8: Mining Data Streams-3

U Kang
Seoul National University
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. Outline

®» [0 Estimating Moments
[0 Counting Frequent Items
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Generalization: Moments

m Suppose a stream has elements chosen
from a set A of N values

m Let m; be the number of times value i/ occurs in the
stream

m The kKt moment is ZieA (mi )k

m Eg., forastream(x,v,X,V,z 2z 2 X, z),
0 The 2"9momentis 32+ 22+ 42=29
0 (x appears 3 times, y appears 2 times, z appears 4 times)
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Special Cases

ZieA(mi)k

m 0'"moment = number of distinct elements

0 The problem considered in the last lecture

m 15! moment = count of the numbers of elements
= length of the stream

0 Easy to compute

m 2"9 moment = surprise number S =
a measure of how uneven the distribution is

U Kang



Example: Surprise Number

m Stream of length 100
m 11 distinct values

m Iltem counts: 10,9,9,9,9,9,9,9,9,9, 9 Surprise
$=910

m [tem counts:90,1,1,1,1,1,1,1,1,1,1 Surprise
$=8,110
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Problem Definition

m Q: Given a stream, how can we estimate k-th
moments efficiently, with small memory space?

m A: AMS method
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AMS Method

m AMS method works for all moments
m Gives an unbiased estimate
m We first concentrate on the 2" moment S

m We pick and keep track of many variables X:
0 For each variable X we store X.el and X.val

m X.el corresponds to the item i
m  X.val corresponds to the count of item i

0 Note this requires a count in main memory,
so number of Xs is limited

= Our goal is to compute S = Y, m?
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One Random Variable (X)

m How to set X.val and X.el?

o Assume stream has length n (we relax this later)

a Pick some random time t (t<n) to start,
so that any time is equally likely

a If the stream have itemiattime t, we set X.el =i

2 Then we maintain count ¢ (X.val = ¢) of the number of is i
n the stream starting from the chosen time t
Then the estimate of the 2"¥ moment (Zim%) is:
S=f(X) =n2-c-1)
= Note, we will keep track of multiple Xs, (X;, X,,... X;)
and our final estimate will be § = %Z}‘zl f(X;)

U Kang 8



o

4
43
y

b

Y HRD
- Expectation Analysis
Count: 12 3 M,
—0—0—0—0—0—0—0 - >
Stream: a a b b b a b a

= 2" momentis S = Y, m?
m C,.. number of times item at time t appears
from time t onwards (¢,=m,, c,=m -1, c;=m,)

1
[ E[f(X)] — ; ?=1 n(ZCt — 1) mi\totalcountof

item i in the stream
(we are assuming

1 stream has length n
=-%n(1+3+5++2m;—1) ras lengih )

/ Time t when Time t when Time t when
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Expectation Analysis

Count: 1 2 3 My
—_— == — o
Stream: a a b b b a b a

n E[f(X)] ==%;n (1+3+5+ - +2m; — 1)
o Little side calculation: (1 +34+54+-4+2m; — 1) =
P 2i— 1) = 2Dy = (m, )2

« Then E[f(X)] =~ ¥; n (n;)?

m So, E[f(X)] = X;(m)* =S
m We have the second moment (in expectation)!
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Higher-Order Moments
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m For estimating k' moment we essentially use the
same algorithm but change the estimate:

a For k=2 we used n (2-c - 1)
0 Fork=3weuse:n(3:c?-3c+1) (where c=X.val)

s Why?
0 For k=2: Rememberwehad (1 +3+5+ -+ 2m; — 1)
and we showed terms 2¢-1 (for c=1,...,m) sum to m?
s m? =3 c? = Yiti(c— 1D =3¥t(2c — 1)
m So0:2c—1=c*—-(c—1)*
a0 Fork=3:c3-(c-1)3=3c%-3c+1
= Generally: Estimate = n (c* — (c — 1)¥)
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Combining Samples

m |n practice:
0 Compute f(X) = n(2c- 1) for
as many variables X as you can fit in memory
0 Average them

m Problem: Streams never end

0 We assumed there was a number n,
the number of positions in the stream

0 But real streams go on forever, so n is
a variable — the number of inputs seen so far

U Kang
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Streams Never End: Fixups

(1) f(X)=n (2c-1) have n as a factor —
keep n separately; just hold the count cin X

(2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:

Objective: Each starting time t is selected with
probability k/n

Solution: (fixed-size sampling = reservoir sampling!)
m Choose the first k times for k variables

m  When the nt" element arrives (n > k), choose it with
probability k/n

m |f you choose it, throw one of the previously stored variables
X out, with equal probability
U Kang 13
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V] Estimating Moments
®» [0 Counting Frequent Items
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Counting Itemsets

m New Problem: Given a stream, how can we find
recent frequent items (= which appear more
than s times in the window) efficiently?

U Kang 15



i
v

%

g = <(¢L

] |
<

v

4

NS
Ex
e

Counting ltemsets

m New Problem: Given a stream, which items appe

ar more than s times in the window?

m Possible solution: Think of the stream of baskets

as one binary stream per item

o 1 =item present; 0 = not present

0 Use DGIM to estimate counts of 1s for all items

1001010110001011

0

10101010101011

0

1010101010111

0

1010101110101

P
<

000

101

10010

N

U Kang

16



Extensions

m In principle, you could count frequent pairs or
even larger sets the same way

o One stream per itemset

a E.g., for a basket {i, j, k}, assume 7 independent str
eams: (i) (j) (k) (i, j) (i, k) (i, k) (i, j, k)

m Drawback:
o Number of itemsets is way too big

U Kang
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@) Exponentially Decaying Windows

m Exponentially decaying windows: A heuristic for
selecting likely frequent item(sets)

o What are “currently” most popular movies?
m [nstead of computing the raw count in last N elements
m Compute a smooth aggregation over the whole stream
m If streamis a,, a,,... and we are taking the sum of
the stream, take the answer at time t to be: =
t t—i
Zi=1 a;(1-c)
m Cis aconstant, presumably tiny, like 10 or 10-°
s When new a,, arrives:
Multiply current sum by (1-c) and add a,,,

U Kang 18
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Example: Counting Items

m If each a;is an “item” we can compute the charact
eristic function of each possible
item x as an Exponentially Decaying Window
0 Thatis: Y, 8;- (1 — )t
where 6,=1 if a;=x, and 0 otherwise

2 Imagine that for each item x we have a binary stream (1
if x appears, 0 if x does not appear)

o New item x arrives:

s Multiply all counts by (1-c) Note: Assume we are
m Add +1 to count for element x interested in

= Remove all items whose weights < s items with weights >=s

m Call this sum the “weight” of item x

U Kang 19
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Example: Counting Items

Time: 1 2 3 4 5 6 7
" —0—0—0—0—00—0— 00—
Stream: X 'y X zZ X zZ X
t
z 5;-(1—c)t Assume ¢ = 0.2,
i=1 Keep items with weights >= 1/2
(T1) x: 1

T5) x: 1.312+1, y: 0.8*0.64=0.512, z: 0.8*1

)
(T6) x: 0.8%2.312, y: 0.8*0.512, 2:0.8*0.8

T7) x: 0.8%1.8496+1, z: 0.8*%0.64
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Sliding vs. Decaying Windows

1/c
= Important property: Sum over all weights ). ,(1

U Kang
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Example: Counting Items

m What are “currently” most popular movies?

m Suppose we want to find movies of weight > %5

0 Important property: Sum over all weights Y..(1 — ¢)tis
1/[1-(1-c¢c)] =1/c

m Thus:

a There cannot be more than 2/c movies with
weight > %

m So, 2/cis a limit on the number of
movies being counted at any time (if we remove
movies whose weight <= )

U Kang 22



4
43
y

)

4
55&"'
— {’d

PSS
O\L}" T
YT
(| EE

s

Extension to Iltemsets

Assume at each time we are given an itemset
E.g., {i, J, k}, ik, x}, {i,j}

m Count (some) itemsets in an E.D.W.
o What are currently “hot” itemsets?

0 Problem: Too many itemsets to keep counts of
all of them in memory

U Kang 23



= Extension to Itemsets

m Count (some) itemsets in an E.D.W.
o What are currently “hot” itemsets?

0 Problem: Too many itemsets to keep counts of
all of them in memory

m When a basket B comes in:
2 Multiply all counts by (1-c)
0 For uncounted items in B, create new count

o Add 1 to count of any item in B and to any itemset
contained in B that is already being counted

2 Remove items and itemsets whose counts < %

0 Initiate new counts (next slide)
U Kang 24
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Initiation of New Counts

m Start a count for an itemset S €B if every proper

subset of §$ had a count prior to arrival of basket
B

0 Intuitively: If all subsets of S are being counted this me

ans they are “frequent/hot” and thus S has a potential
to be “hot”

m Example:

o Start counting S={i, j} iff both i and j were counted prio
r to seeing B

a Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were al
| counted prior to seeing B

U Kang 25



Summary - Stream Mining

m Important tools for stream mining

d

C O O DO

Sampling from Data Stream (Reservoir Sampling)

Querying Over Sliding Windows (DGIM method for cou
nting the number of 1s or sums in the window)

Filtering a Data Stream (Bloom Filter)
Counting Distinct Elements (Flajolet-Martin)
Estimating Moments (AMS method; surprise number)

Counting Frequent Itemsets (exponentially decaying w
indows)
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Questions?
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