
1U Kang

Introduction to Data Mining

Lecture #8: Mining Data Streams-3

U Kang
Seoul National University

2U Kang

Outline

Estimating Moments
Counting Frequent Items

3U Kang

Generalization: Moments

 Suppose a stream has elements chosen
from a set A of N values

 Let mi be the number of times value i occurs in the
stream

 The kth moment is

 E.g., for a stream (x, y, x, y, z, z, z, x, z),
 The 2nd moment is 32 + 22 + 42 = 29
 (x appears 3 times, y appears 2 times, z appears 4 times)

∑∈Ai
k

im)(

4U Kang

Special Cases

 0thmoment = number of distinct elements
 The problem considered in the last lecture

 1st moment = count of the numbers of elements
= length of the stream
 Easy to compute

 2nd moment = surprise number S =
a measure of how uneven the distribution is

∑∈Ai
k

im)(

5U Kang

Example: Surprise Number

 Stream of length 100
 11 distinct values

 Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 Surprise
S = 910

 Item counts: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1 Surprise
S = 8,110

6U Kang

Problem Definition

 Q: Given a stream, how can we estimate k-th
moments efficiently, with small memory space?

 A: AMS method

7U Kang

AMS Method

 AMS method works for all moments
 Gives an unbiased estimate
 We first concentrate on the 2nd moment S
 We pick and keep track of many variables X:
 For each variable X we store X.el and X.val

 X.el corresponds to the item i
 X.val corresponds to the count of item i

 Note this requires a count in main memory,
so number of Xs is limited

 Our goal is to compute 𝑺𝑺 = ∑𝒊𝒊𝒎𝒎𝒊𝒊
𝟐𝟐

[Alon, Matias, and Szegedy

8U Kang

One Random Variable (X)

 How to set X.val and X.el?
 Assume stream has length n (we relax this later)
 Pick some random time t (t<n) to start,

so that any time is equally likely
 If the stream have item i at time t, we set X.el = i
 Then we maintain count c (X.val = c) of the number of is i

n the stream starting from the chosen time t
 Then the estimate of the 2nd moment (∑𝒊𝒊𝒎𝒎𝒊𝒊

𝟐𝟐) is:
𝑺𝑺 = 𝒇𝒇(𝑿𝑿) = 𝒏𝒏 (𝟐𝟐 · 𝒄𝒄 – 𝟏𝟏)

 Note, we will keep track of multiple Xs, (X1, X2,… Xk)
and our final estimate will be 𝑺𝑺 = 𝟏𝟏

𝒌𝒌
∑𝒋𝒋=𝟏𝟏𝒌𝒌 𝒇𝒇(𝑿𝑿𝒋𝒋)

9U Kang

Expectation Analysis

 2nd moment is 𝑺𝑺 = ∑𝒊𝒊𝒎𝒎𝒊𝒊
𝟐𝟐

 ct … number of times item at time t appears
from time t onwards (c1=ma , c2=ma-1, c3=mb)

 𝑬𝑬 𝒇𝒇(𝑿𝑿) = 𝟏𝟏
𝒏𝒏
∑𝒕𝒕=𝟏𝟏𝒏𝒏 𝒏𝒏(𝟐𝟐𝒄𝒄𝒕𝒕 − 𝟏𝟏)

= 𝟏𝟏
𝒏𝒏
∑𝒊𝒊 𝒏𝒏 (𝟏𝟏 + 𝟑𝟑 + 𝟓𝟓 + ⋯+ 𝟐𝟐𝒎𝒎𝒊𝒊 − 𝟏𝟏)

Time t when
the last i is
seen (ct=1)

Time t when
the penultimate
i is seen (ct=2)

Time t when
the first i is
seen (ct=mi)

Group times
by the value
seen

a a a a

1 32 ma

b b b b

Count:

Stream:

mi … total count of
item i in the stream

(we are assuming
stream has length n)

10U Kang

Expectation Analysis

 𝐸𝐸 𝑓𝑓(𝑋𝑋) = 1
𝑛𝑛
∑𝑖𝑖 𝑛𝑛 (1 + 3 + 5 + ⋯+ 2𝑚𝑚𝑖𝑖 − 1)

 Little side calculation: 1 + 3 + 5 + ⋯+ 2𝑚𝑚𝑖𝑖 − 1 =
∑𝑖𝑖=1
𝑚𝑚𝑖𝑖 (2𝑖𝑖 − 1) = 2𝑚𝑚𝑖𝑖 𝑚𝑚𝑖𝑖+1

2
− 𝑚𝑚𝑖𝑖 = (𝑚𝑚𝑖𝑖)2

 Then 𝑬𝑬 𝒇𝒇(𝑿𝑿) = 𝟏𝟏
𝒏𝒏
∑𝒊𝒊 𝒏𝒏 𝒎𝒎𝒊𝒊

𝟐𝟐

 So, 𝐄𝐄 𝐟𝐟(𝐗𝐗) = ∑𝒊𝒊 𝒎𝒎𝒊𝒊
𝟐𝟐 = 𝑺𝑺

 We have the second moment (in expectation)!

a a a a

1 32 ma

b b b bStream:

Count:

11U Kang

Higher-Order Moments

 For estimating kth moment we essentially use the
same algorithm but change the estimate:
 For k=2 we used n (2·c – 1)
 For k=3 we use: n (3·c2 – 3c + 1) (where c=X.val)

 Why?
 For k=2: Remember we had 1 + 3 + 5 + ⋯+ 2𝑚𝑚𝑖𝑖 − 1

and we showed terms 2c-1 (for c=1,…,m) sum to m2

 𝑚𝑚2 = ∑𝑐𝑐=1𝑚𝑚 𝑐𝑐2 − ∑𝑐𝑐=1𝑚𝑚 𝑐𝑐 − 1 2 =∑𝑐𝑐=1𝑚𝑚 (2𝑐𝑐 − 1)
 So: 𝟐𝟐𝒄𝒄 − 𝟏𝟏 = 𝒄𝒄𝟐𝟐 − 𝒄𝒄 − 𝟏𝟏 𝟐𝟐

 For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

 Generally: Estimate = 𝑛𝑛 (𝑐𝑐𝑘𝑘 − 𝑐𝑐 − 1 𝑘𝑘)

12U Kang

Combining Samples

 In practice:
 Compute 𝒇𝒇(𝑿𝑿) = 𝒏𝒏(𝟐𝟐 𝒄𝒄 – 𝟏𝟏) for

as many variables X as you can fit in memory
 Average them

 Problem: Streams never end
 We assumed there was a number n,

the number of positions in the stream
 But real streams go on forever, so n is

a variable – the number of inputs seen so far

13U Kang

Streams Never End: Fixups

 (1) f(X)= n (2c-1) have n as a factor –
keep n separately; just hold the count c in X

 (2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:

 Objective: Each starting time t is selected with
probability k/n

 Solution: (fixed-size sampling = reservoir sampling!)
 Choose the first k times for k variables
 When the nth element arrives (n > k), choose it with

probability k/n
 If you choose it, throw one of the previously stored variables

X out, with equal probability

14U Kang

Outline

Estimating Moments
Counting Frequent Items

15U Kang

Counting Itemsets

 New Problem: Given a stream, how can we find
recent frequent items (= which appear more
than s times in the window) efficiently?

16U Kang

Counting Itemsets

 New Problem: Given a stream, which items appe
ar more than s times in the window?

 Possible solution: Think of the stream of baskets
as one binary stream per item
 1 = item present; 0 = not present
 Use DGIM to estimate counts of 1s for all items

1001010110001011010101010101011010101010101110101010111010100010110010
N

17U Kang

Extensions

 In principle, you could count frequent pairs or
even larger sets the same way
 One stream per itemset
 E.g., for a basket {i, j, k}, assume 7 independent str

eams: (i) (j) (k) (i, j) (i, k) (j, k) (i, j, k)

 Drawback:
 Number of itemsets is way too big

18U Kang

Exponentially Decaying Windows

 Exponentially decaying windows: A heuristic for
selecting likely frequent item(sets)
 What are “currently” most popular movies?

 Instead of computing the raw count in last N elements
 Compute a smooth aggregation over the whole stream

 If stream is a1, a2,… and we are taking the sum of
the stream, take the answer at time t to be: =
∑𝒊𝒊=𝟏𝟏𝒕𝒕 𝒂𝒂𝒊𝒊 𝟏𝟏 − 𝒄𝒄 𝒕𝒕−𝒊𝒊

 c is a constant, presumably tiny, like 10-6 or 10-9

 When new at+1 arrives:
Multiply current sum by (1-c) and add at+1

19U Kang

Example: Counting Items

 If each ai is an “item” we can compute the charact
eristic function of each possible
item x as an Exponentially Decaying Window
 That is: ∑𝒊𝒊=𝟏𝟏𝒕𝒕 𝜹𝜹𝒊𝒊 ⋅ 𝟏𝟏 − 𝒄𝒄 𝒕𝒕−𝒊𝒊

where δi=1 if ai=x, and 0 otherwise
 Imagine that for each item x we have a binary stream (1

if x appears, 0 if x does not appear)
 New item x arrives:

 Multiply all counts by (1-c)
 Add +1 to count for element x
 Remove all items whose weights < s

 Call this sum the “weight” of item x

Note: Assume we are
interested in
items with weights >= s

20U Kang

Example: Counting Items

 (T1) x: 1
 (T2) x: 0.8*1, y: 1
 (T3) x: 0.8*0.8 + 1, y: 0.8*1
 (T4) x: 0.8*1.64, y: 0.8*0.8, z = 1
 (T5) x: 1.312+1, y: 0.8*0.64=0.512, z: 0.8*1
 (T6) x: 0.8*2.312, y: 0.8*0.512, z:0.8*0.8

 Remove y
 (T7) x: 0.8*1.8496+1, z: 0.8*0.64
 …

x y z

1 32

x z x x

Time:

Stream:

4 5 6 7

Assume c = 0.2,
Keep items with weights >= 1/2

�
𝒊𝒊=𝟏𝟏

𝒕𝒕

𝜹𝜹𝒊𝒊 ⋅ 𝟏𝟏 − 𝒄𝒄 𝒕𝒕−𝒊𝒊

21U Kang

Sliding vs. Decaying Windows

 Important property: Sum over all weights ∑𝒕𝒕(𝟏𝟏
1/c

. . .

22U Kang

Example: Counting Items

 What are “currently” most popular movies?
 Suppose we want to find movies of weight > ½
 Important property: Sum over all weights ∑𝑡𝑡 1 − 𝑐𝑐 𝑡𝑡 is

1/[1 – (1 – c)] = 1/c

 Thus:
 There cannot be more than 2/c movies with

weight > ½

 So, 2/c is a limit on the number of
movies being counted at any time (if we remove
movies whose weight <= ½)

23U Kang

Extension to Itemsets

 Assume at each time we are given an itemset
 E.g., {i, j, k}, {k, x}, {i,j}

 Count (some) itemsets in an E.D.W.
 What are currently “hot” itemsets?
 Problem: Too many itemsets to keep counts of

all of them in memory

24U Kang

Extension to Itemsets

 Count (some) itemsets in an E.D.W.
 What are currently “hot” itemsets?
 Problem: Too many itemsets to keep counts of

all of them in memory

 When a basket B comes in:
 Multiply all counts by (1-c)
 For uncounted items in B, create new count
 Add 1 to count of any item in B and to any itemset

contained in B that is already being counted
 Remove items and itemsets whose counts < ½
 Initiate new counts (next slide)

25U Kang

Initiation of New Counts

 Start a count for an itemset S ⊆ B if every proper
subset of S had a count prior to arrival of basket
B
 Intuitively: If all subsets of S are being counted this me

ans they are “frequent/hot” and thus S has a potential
to be “hot”

 Example:
 Start counting S={i, j} iff both i and j were counted prio

r to seeing B
 Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were al

l counted prior to seeing B

26U Kang

Summary – Stream Mining

 Important tools for stream mining
 Sampling from Data Stream (Reservoir Sampling)
 Querying Over Sliding Windows (DGIM method for cou

nting the number of 1s or sums in the window)
 Filtering a Data Stream (Bloom Filter)
 Counting Distinct Elements (Flajolet-Martin)
 Estimating Moments (AMS method; surprise number)
 Counting Frequent Itemsets (exponentially decaying w

indows)

27U Kang

Questions?

	슬라이드 번호 1
	Outline
	Generalization: Moments
	Special Cases
	Example: Surprise Number
	Problem Definition
	AMS Method
	One Random Variable (X)
	Expectation Analysis
	Expectation Analysis
	Higher-Order Moments
	Combining Samples
	Streams Never End: Fixups
	Outline
	Counting Itemsets
	Counting Itemsets
	Extensions
	Exponentially Decaying Windows
	Example: Counting Items
	Example: Counting Items
	Sliding vs. Decaying Windows
	Example: Counting Items
	Extension to Itemsets
	Extension to Itemsets
	Initiation of New Counts
	Summary – Stream Mining
	슬라이드 번호 27

