Redox reactions

- Electron transfer reactions
 - Redox couples & half reactions
 - One component is reduced (accepts electron(s))
 - One component is oxidized (donates electron(s))

$$A + e^- \leftrightarrow A^*$$

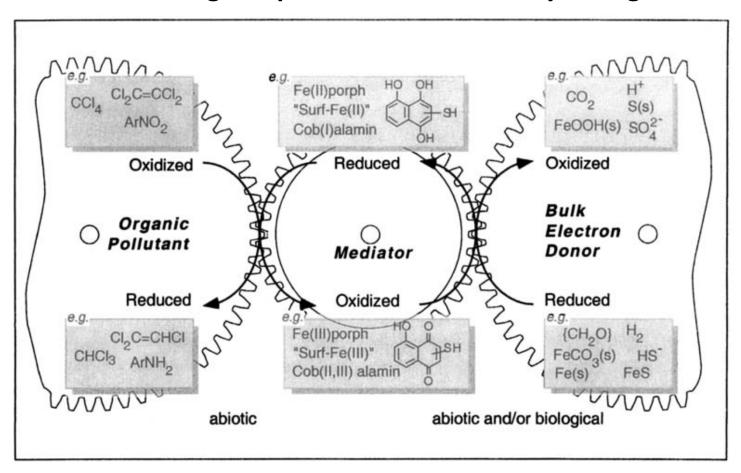
 $B + e^- \leftrightarrow B^*$
 $B + A^* \rightarrow B^* + A$

Most natural organic compounds are (primarily) electron donors

Most important biotic reactions

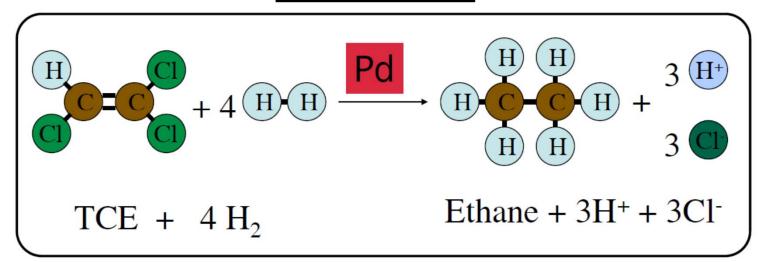
- Primary energy source
 - Cell maintenance
 - Cell growth

ex) glucose oxidation mediated by microorganisms


$$\frac{1}{4}CO_2 + H^+ + e^- \to \frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O \tag{A}$$

$$\frac{1}{4}O_2 + H^+ + e^- \to \frac{1}{2}H_2O \tag{B}$$

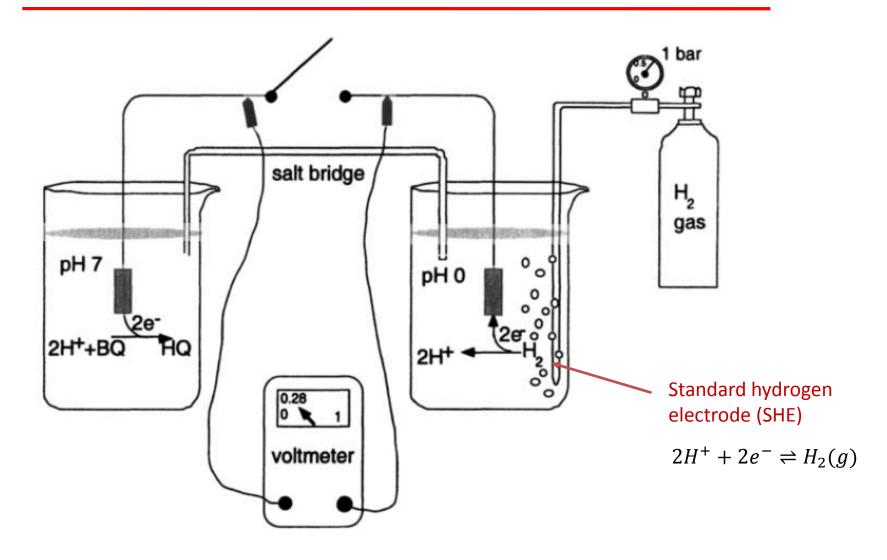
24 x [(B)-(A)]
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$


- Photochemical reactions
 - Will discuss later
- Redox reactions also occur abiotically in the dark
 - May involve mediators/catalysts
 - Although the reaction itself is abotic, biological molecules can be involved

Reduction of organic pollutants mediated by biological molecules

Pd-catalyzed hydrodehalogenation

Net Reaction:



Rapid reduction of TCE at the surface of Pd

 Consider a reversible reactions to convert 1,4-benzoquinone (BQ) to hydroquinone (HQ):

- Use reduction potentials for evaluating the free energy of the half reaction
 - Perform the reaction at the surface of an inert electrode (ex: platinum, graphite)
 - At the other side, another inert electrode is immersed in an aqueous solution maintained at pH 0 (i.e., $\{H^+\}=1$) and bubbled with molecular hydrogen $(p_{H_2}=1\ bar)$ standard hydrogen electrode (SHE)

Overall reaction:

$$BQ + H_2(g) + 2H^+ \rightleftharpoons HQ + 2H^+$$
1 bar pH=7 pH=0
(at SHE) (prev. (at SHE) example)

With half reactions:

- BQ
$$\leftrightarrow$$
 HQ electrode: $BQ + 2H^+ + 2e^- \rightleftharpoons HQ$

- SHE:
$$2H^+ + 2e^- \rightleftharpoons H_2(g)$$

Relationship between the electrical potential and the free energy

– Assuming electrochemical equilibrium at the electrode surface, then the potential difference, ΔE , is directly related to the free energy change, $\Delta_r G$ of the reaction:

$$\Delta_r G = -nF\Delta E$$

n = number of electrons transferred

= 96.5 kJ/mole-V

F = Faraday constant, 96485 Coulomb/mole

At the SHE

 We assign a zero value of electrical potential, and thus, a zero value of a standard free energy change:

$$H^+ + e^- \rightleftharpoons \frac{1}{2}H_2(g)$$
 $\Delta E^0 = 0 V, \quad \Delta_r G = 0 kJ/mol$

– Then, the electrical potential change of the half reaction, $BQ + 2H^+ + 2e^- \rightleftharpoons HQ$, can be directly measured by the electrical potential change at the galvanic cell

The electrical potential relative to SHE, E_H

$$\Delta_r G = -nFE_H$$

• The E_H value for any conditions other than the "standard" state

$$E_H = E_H^0 - \frac{RT}{nF} lnQ_r = E_H^0 - \frac{2.303RT}{nF} logQ_r$$

- E_H^0 = standard redox potential or standard reduction potential (E_H at 25°C with unit (1) activities for all reaction components)
- $-Q_r$ = reaction quotient

Conditions for $E_H^0 \& E_H^0$ (W)

- E_H^0
 - All reaction components have unit activities
- $E_H^o(W)$
 - E_H under typical natural water conditions:
 - pH = 7
 - $[Cl^-] = 10^{-3} \text{ M}; [Br^-] = 10^{-5} \text{ M}$
 - Organic oxidant and reductant have unit activities

$\Delta_r G^0 \& \Delta_r G^0$ (W) and $E_H^0 \& E_H^0$ (W)

Q: Consider the half reaction in aqueous solution (denitrification):

$$2NO_3^- + 12H^+ + 10e^- \rightleftharpoons N_2(g) + 6H_2O$$

Calculate the E_H^0 , E_H^0 (W), and $\Delta_r G^0$ (W) values of the reaction. Initiate with the calculation of $\Delta_r G^0$ using the enthalpy of formation for each species:

$$\Delta_f G^0{}_{NO_3^-}(aq) = -111.3 \, kJ/mole$$
 $\Delta_f G^0{}_{H^+}(aq) = 0 \, kJ/mole$
 $\Delta_f G^0{}_{e^-}(aq) = 0 \, kJ/mole$
 $\Delta_f G^0{}_{N_2}(g) = 0 \, kJ/mole$
 $\Delta_f G^0{}_{N_2}(g) = -237.2 \, kJ/mole$

Table 14.2 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25 °C of Some Redox Couples that Are Important in Natural Redox Processes (The reactions are ordered in decreasing $E_{\rm H}^0(W)$ values.) ^a

	Halfreaction		Water @ pH=7		
	Oxidized Species Reduced Species	$E_{\rm H}^0$ (V)	E _H ⁰ (W) (V)	$\Delta_{ m r} G^0({ m W})/n^c \ ({ m kJ}\cdot{ m mol}^{-1})$	
(1a)	$O_2(g) + 4 H^+ + 4 e^- = 2 H_2O$	+1.23	+0.81	-78.3	
(1b)	$O_2(aq) + 4 H^+ + 4 e^- = 2 H_2O$	+1.19	+0.77	-74.3	
(2)	$2 \text{ NO}_{3}^{-} + 12 \text{ H}^{+} + 10 \text{ e}^{-} = \text{N}_{2}(\text{g}) + 6 \text{ H}_{2}\text{O}$	+1.24	+0.74	-72.1	
(3)	$MnO_2(s) + HCO_3^- (10^{-3}) + 3 H^+ + 2 e^- = MnCO_3(s) + 2 H_2O$		+0.53 b	-50.7 ^b	
(4)	$NO_3^- + 2 H^+ + 2 e^- = NO_2^- + H_2O$	+0.85	+0.43	-41.6	
(5)	$NO_3^- + 10 \text{ H}^+ + 8 \text{ e}^- = NH_4^+ + 3 \text{ H}_2\text{O}$	+0.88	+0.36	-35.0	
(6)	$FeOOH(s) + HCO_3^- (10^{-3} M) + 2 H^+ + e^- = FeCO_3(s) + 2 H_2O$		$-0.05^{\ b}$	+ 4.8 ^b	
(7)	CH_3COCOO^- (pyruvate) + 2 H^+ + 2 e^- = $CH_3CHOHCOO^-$ (lactate)		-0.19	+17.8	
(8a)	$HCO_3^- + 9 H^+ + 8 e^- = CH_4(aq) + 3 H_2O$	+0.21	-0.20	+19.3	
(8b)	$CO_2(g) + 8 H^+ + 8 e^- = CH_4(g) + 2 H_2O$	+0.17	-0.24	+23.6	
(9)	$SO_4^{2-} + 9 H^+ + 8 e^- = HS^- + 4 H_2O$	+0.25	-0.22	+20.9	
(10)	$S(s) + 2 H^{+} + 2 e^{-} = H_2 S(aq)$	+0.14	-0.27	+26.0	
(11a)	$2 H^{+} + 2 e^{-} = H_{2}(aq)$	+0.08	-0.33	+31.8	
(11b)	$2 H^+ + 2 e^- = H_2(g)$	0.00	-0.41	+40.0	
(12)	$6 \text{ CO}_2(g) + 24 \text{ H}^+ + 24 \text{ e}^- = \text{C}_6\text{H}_{12}\text{O}_6(\text{glucose}) + 6 \text{ H}_2\text{O}$	-0.01	-0.43	+41.0	

^a Note that most of the electron transfer reactions involving these redox couples are biologically mediated. Data from Thauer et al. (1977) and Stumm and Morgan (1995). ^b Note that these values correspond to [HCO $_3^-$] = 10⁻³ M. ^c n = number of electrons transferred.

The overall free energy change of a redox reaction:

Reduction: EA + $e^- \rightarrow$ reduced EA $\Delta_{red}G^0$

Oxidation: ED \rightarrow oxidized ED + $e^ \Delta_{oxi}G^0$

EA + ED \rightarrow reduced EA + oxidized ED $\Delta_r G^0$

$$\Delta_r G^0 = \Delta_{red} G^0 + \Delta_{oxi} G^0$$

- Under the standard conditions:
 - Negative $\Delta_r G^0$: <u>favorable</u> reaction
 - Large $|\Delta_r G^0|$ (with $\Delta_r G^0 < 0$): strong <u>driving force</u> for the forward reaction, makes the reversible reaction difficult
 - Note: this is thermodynamics, <u>NOT</u> kinetics!

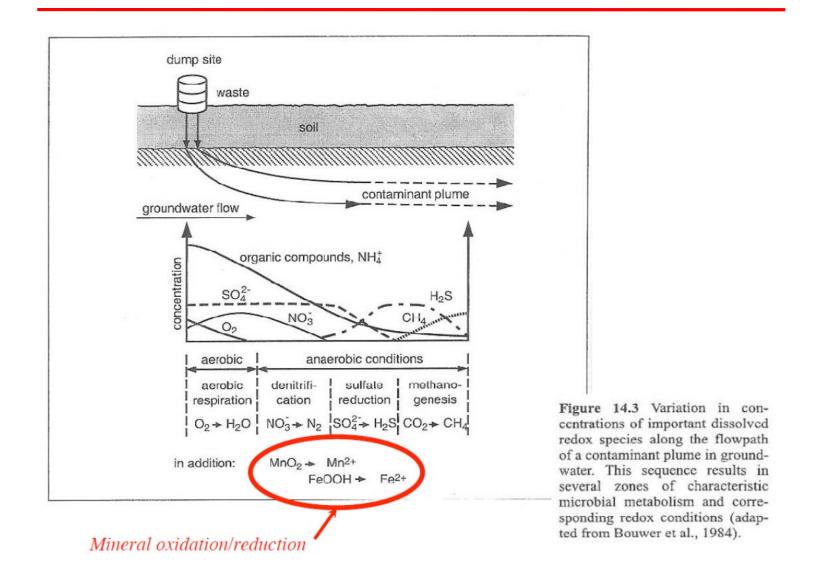
A simple redox reaction

$$\Delta G^{0}(W)/e^{-}$$
, kJ/mole

$$\mathbf{A} \qquad 2H^{+} + 2e^{-} \iff H_{2}(g)$$

B
$$O_2(g) + 4H^+ + 4e^- \leftrightarrow 2H_2O$$

B-2A
$$2H_2(g) + O_2(g) \leftrightarrow 2H_2O$$


$$\Delta_r G^0 = 4 \times (-78.3 - 40.0)$$

= -473.2 kJ/mole O_2

$$= -473.2 \, kJ/mole \, O_2$$

$$\Delta_r G^0 = -RT ln(K_{eq})$$

$$K_{eq} = \frac{1}{P_{O_2} P_{H_2}^2} = e^{-(\Delta G_r^0/RT)} = e^{191} = 10^{83}$$

Oxidation cascade

Oxidation cascade – why?

$$C_{6}H_{12}O_{6} + 6O_{2} \Rightarrow 6CO_{2} + 6H_{2}O$$

$$C_{6}H_{12}O_{6} + 4.8NO_{3}^{-} + 4.8H^{+} \Rightarrow 6CO_{2} + 2.4N_{2} + 8.4H_{2}O$$

$$C_{6}H_{12}O_{6} + 24FeOOH(s) + 24HCO_{3}^{-} + 24H^{+}$$

$$\Rightarrow 6CO_{2} + 24FeCO_{3} + 42H_{2}O$$

$$C_{6}H_{12}O_{6} + 3SO_{4}^{2-} + 3H^{+} \Rightarrow 6CO_{2} + 3HS^{-} + 6H_{2}O$$

$$C_{6}H_{12}O_{6} \Rightarrow 3CO_{2} + 3CH_{4}$$

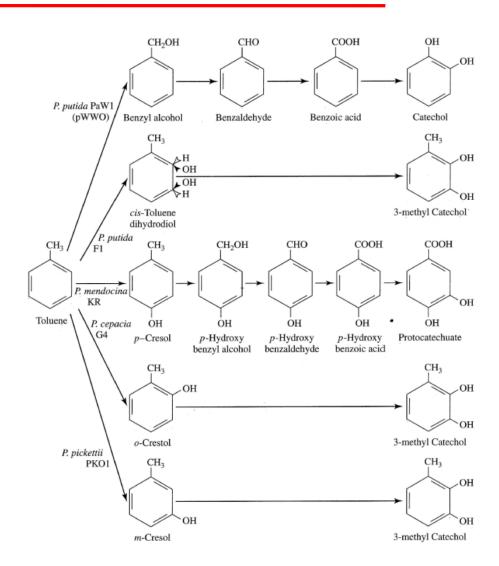
Oxidation cascade – why?

Electron Acceptor	∆G/mole glucose oxidized, kJ
$O_2 \rightarrow H_2O$	-2863.2
$NO_3^- \rightarrow N_2$	-2714.4
Fe ³⁺ → Fe ²⁺	-868.8
SO ₄ ²⁻ → S ²⁻	-482.4
Methanogenesis	-417.6

The electron acceptor that generates the most energy get used up first

More energy/unit substrate means that more of the substrate can be used to make new cells

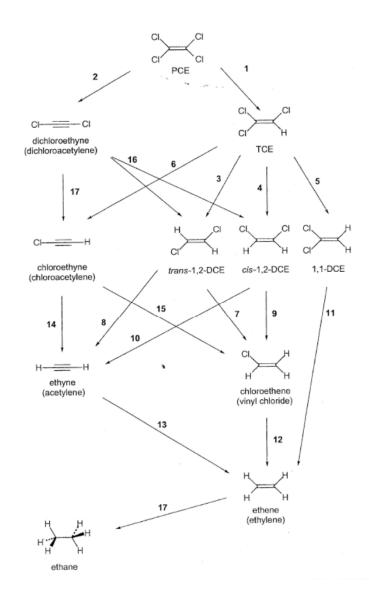
Note: the system analyzed here is pH = 7 with $[HCO_3^{-1}] = 10^{-3}$ M


Oxygen cascade: implications

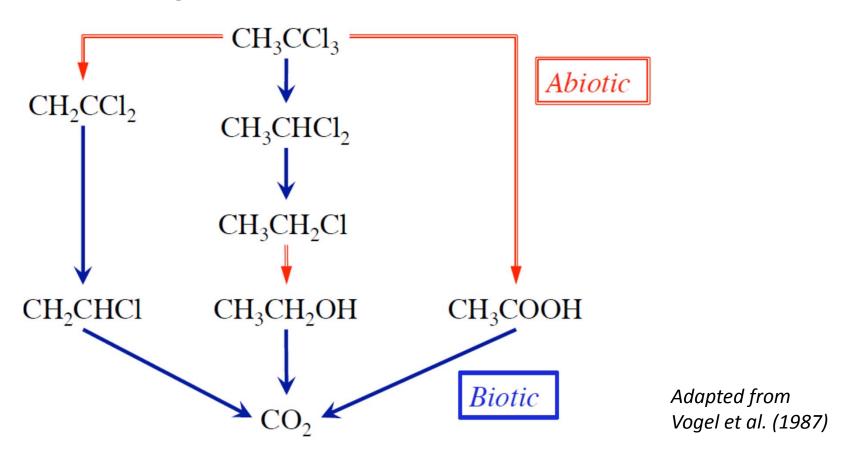
- Different electron acceptor different microbial community
 - Different enzymes
 - Different pathways
- Compound fate may depend on microbial community
 - Different transformation rates
 - Different products

Redox reactions – multiple pathways

 Aerobic microbial transformation of toluene


Five different aerobic biodegradation pathways for toluene, each initiated through the activity of a mono- or dioxygenase together with molecular oxygen. (Mikesell et al., 1993)

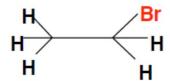
Redox reactions – multiple pathways


 Anaerobic PCE reaction pathways with zero valent iron (Fe⁰)

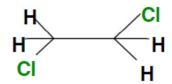
Hypothesized reaction sequence for reduction of chlorinated ethenes and related compounds by Fe⁰. Adapted from Arnold and Roberts (2000).

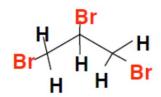
Redox reactions – multiple pathways

Methanogenic TCA transformations


Heavily used:

- As solvents
- As pesticides
- For fire control


Halogens affect:


- Size
- C oxidation state

BROMOETHANE

1,2-DICHLOROETHANE

DBCP

CFC-113

TRICHLOROETHYLENE

1,1,1-TRICHLOROETHANE

Table 14.3 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25°C of Some Organic Redox Couples in Aqueous Solution (The reactions are ordered in decreasing $E_{\rm H}(W)$ values.) ^a

		Halfreaction		,		
0	xidized Species		Reduced Species	E _H ⁰ (V)	$E_{H}^{0}(W)^{b}$ (V)	$\Delta_r G^0(W) / n^c$ $(kJ \cdot mol^{-1})$
(1)	CCI ₃ —CCI ₃ +2e	=	Cl ₂ C=CCl ₂ + 2Cl	+ 0.95	+ 1.13	- 109.0
(2)	CBr ₄ + H+ + 2e-	=	CHBr ₃ + Br	+ 0.89	+ 0.83	- 80.1
(3)	CCI ₄ + H+ + 2e ⁻	, =	CHCl ₃ +Cl	+ 0.79	+ 0.67	- 64.7
(4)	CHBr ₃ + H+ + 2e ⁻	=	$CH_2Br_2 + Br$	+ 0.67	+ 0.61	- 58.9
(5)	Cl ₂ C=CCl ₂ + H+ + 2e	-	Cl ₂ C=CHCl + Cl	+ 0.70	+ 0.58	- 56.0
(6)	CHCl ₃ + H+ + 2e-	=	CH ₂ Cl ₂ + Cl	+ 0.68	+ 0.56	- 54.0 _.
(7)	CI ₆ + H+ + 2e-	=	CI ₅ + CI	+ 0.68	+ 0.56	- 54.0

^a Estimated from thermodynamic data Dean (1985); Vogel et al. (1987); Krop et al. (1994); Roberts et al. (1996); Totten and Roberts (2001). ^b [H⁺] = 10^{-7} , {Cl⁻} = 10^{-3} , {Br⁻} = 10^{-5} . ^c n = number of electrons transferred.

Table 14.3 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25°C of Some Organic Redox Couples in Aqueous Solution (The reactions are ordered in decreasing $E_{\rm H}(W)$ values.) ^a

	Halfreact	tion				
	Oxidized Species		Reduced Species	E _H ⁰ (V)	$E_{H}^{0}(W)^{b}$ (V)	$\Delta_r G^0(W)/n^{-6}$ $(kJ \cdot mol^{-1})$
(8)	CI + H+ + 2e-	=	+ CI*	+ 0.54	+ 0.42	- 40.5
(9)	NO ₂ + 6H+ + 6e	=	\sim NH ₂ + 2H ₂ O	+ 0.83	+ 0.42	- 40.5
(10)	O + 2H+ + 2e	=	но-Он	+ 0.70	+ 0.28	- 27.0
(11)	H ₃ C—S—CH ₃ + 2H+ + 2e·	=	H ₃ C- S- CH ₃ + H ₂ O	+ 0.57	+ 0.16	- 15.4
(12)	N=N	=	2 NH ₂	+ 0.31	- 0.10	+ 9.7
(13)	CH ₃ - S - CH ₃ + 2H ⁺ + 2e ⁻	,=	H ₃ C-S-CH _{3 + H₂O}	+ 0.17	- 0.24	+ 23.2
(14)	R- S- S-R + 2H+ + 2e. (cystine)	=	2R-SH (cysteine)	+ 0.02	- 0.39	+ 37.6

^a Estimated from thermodynamic data Dean (1985); Vogel et al. (1987); Krop et al. (1994); Roberts et al. (1996); Totten and Roberts (2001). ^b [H⁺] = 10^{-7} , {Cl⁻} = 10^{-3} , {Br⁻} = 10^{-5} . ^c n = number of electrons transferred.

ex) Reductive dechlorination of C₂Cl₆

Eq. (1) of Table 14.3:

$$C_2Cl_6 + 2e^- \rightarrow C_2Cl_4 + 2Cl^-$$

 E_{H}^{0} , V

 $\Delta_r G^0$, kJ/mole

$$=-nFE_{H}^{0}$$

Couple with Eq. 11b of Table 14.2:

$$2H^+ + 2e^- \rightarrow H_2$$

0

0

Overall reaction:

$$C_2Cl_6 + H_2 \rightarrow C_2Cl_4 + 2H^+ + 2Cl^-$$

$$\Delta_r G^0 = -183.4 - 0 = -183.4 \, kJ/mole \, C_2 C l_6$$

ex) Reductive dechlorination of C₂Cl₆

$$\Delta_r G^0 = -RT ln K_{eq}$$

$$K_{eq} = e^{-\Delta_r G^0/RT} = 1.4 \times 10^{32} = \frac{[C_2 C l_4][H^+]^2 [C l^-]^2}{[C_2 C l_6] P_{H_2}}$$

Using $[H^+] = 10^{-7} M \& [Cl^-] = 10^{-3} M$:

$$\frac{[C_2Cl_4]}{[C_2Cl_6]P_{H_2}} = 1.4 \times 10^{52}$$

For any reasonable partial pressure of H_2 , the amount of C_2Cl_6 remaining at equilibrium is infinitesimal. Thermodynamically the reaction goes all the way to the right.