
U Kang

Reinforcement Learning

Planning and Learning with
Tabular Methods

U Kang
Seoul National University

U Kang

In This Lecture

 Unified view of planning and learning
 Model-based methods and model-free methods
 Planning at decision time

U Kang

Overview

 Develop a unified view of RL methods that require a model of the
environment, such as dynamic programming and heuristic search, and
methods that can be used without a model, such as MC and TD methods

 These are respectively called model-based and model-free RL methods
 Model-based methods rely on planning as their primary component,

while model-free methods primarily rely on learning
 Despite their differences, there are also great similarities in them; the

heart of both kinds of methods is the computation of value functions
 Moreover, all the methods are based on looking ahead to future events,

computing a backed-up value, and then using it as an update target for
an approximate value function

 Integration of model-based and model-free methods

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Models and Planning

 Model of the environment: anything that an agent can use to predict
how the environment will respond to its actions

 Given a state and an action, a model produces a prediction of the
resultant next state and next reward

 Two types: distribution models and sample models
 Distribution models

 Produce a description of all possibilities and their probabilities
 E.g., in modeling the sum of dices, produce all possible sums and their probabilities

of occurring
 Used in DP

 Sample models
 Produce just one of the possibilities, sampled according to the probabilities
 E.g., in modeling the sum of dices, produce an individual sum drawn according to

this probability distribution
 Used in blackjack example of MC

U Kang

Models and Planning

 Distribution models are stronger than sample models in that they can
always be used to produce samples

 However, in many applications it is much easier to obtain sample
models than distribution models

 E.g., dices
 Sample models: it is easy to write a computer program to simulate the dice rolls and

return the sum
 Distribution models: it is harder and more error-prone to figure out all the possible

sums and their probabilities

U Kang

Models and Planning

 Models can be used to mimic or simulate experience
 Given a starting state and action, a sample model produces a possible

transition, and a distribution model generates all possible transitions
weighted by their probabilities of occurring

 Given a starting state and a policy, a sample model could produce an
entire episode, and a distribution model could generate all possible
episodes and their probabilities

 In either case, we say the model is used to simulate the environment
and produce simulated experience

U Kang

Models and Planning

 Planning: any computational process that takes a model as input and
produces or improves a policy for interacting with the modeled
environment

 In RL, we focus on state-space planning: search through the state
space for an optimal policy or an optimal path to a goal; actions cause
transitions from state to state, and value functions are computed over
states

U Kang

Models and Planning

 Unified view: all state-space planning methods share a common
structure

 Main idea 1: they involve computing value functions as a key
intermediate step toward improving the policy

 Main idea 2: they compute value functions by updates or backup
operations applied to simulated experience

 E.g., DP
 Make sweeps through the space of states, generating for each state the

distribution of possible transitions
 Each distribution is then used to compute a backed-up value (update target)

and update the state’s estimated value

U Kang

Models and Planning

 The heart of both learning and planning methods is the estimation of
value functions by backing-up update operations
 Difference: planning uses simulated experience generated by a model,

while learning methods use real experience generated by the environment
 This common structure means that many ideas and algorithms can be

transferred between planning and learning
 In many cases a learning algorithm can be substituted for the key

update step of a planning method; learning methods require only
experience as input, and in many cases they can be applied to
simulated experience just as well as to real experience

U Kang

Models and Planning

 Random-sample one-step tabular Q-planning
 Planning method based on one-step tabular Q-learning and on random samples

from a sample model
 Converges to the optimal policy for the model under the same conditions that one-

step tabular Q-learning converges to the optimal policy for the real environment
(each state–action pair must be selected an infinite number of times in Step 1, and 𝛼
must decrease appropriately over time)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Models and Planning

U Kang

Models and Planning

 Planning in small, incremental steps
 Enables planning to be interrupted or redirected at any time with

little wasted computation, a key requirement for efficiently
intermixing planning with acting and with learning of the model

 Planning in very small steps may be the most efficient approach
even on pure planning problems if the problem is too large to be
solved exactly

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 When planning is done online, while interacting with the environment,
a number of interesting issues arise

 New information gained from the interaction may change the model
and thereby interact with planning; it may be desirable to customize
the planning process to the states or decisions currently under
consideration, or expected in the near future

 The available computational resources may need to be divided
between decision making and model learning

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 Two roles of real experience within a planning agent
 Model learning: improve the model (to make it more accurately match the

real environment)
 Direct RL: directly improve the value function and policy

 Experience can improve value functions and policies either directly or
indirectly via the model

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 Both direct and indirect methods have advantages and disadvantages
 Indirect methods: often make fuller use of a limited amount of

experience and thus achieve a better policy with fewer environmental
interactions

 Direct methods: much simpler, and are not affected by biases in the
design of the model

 Some have argued that indirect methods are always superior to direct
ones, while others have argued that direct methods are responsible for
most human and animal learning

 However, they have similarities as well: e.g., DP and TD are related,
even though DP was designed for planning and TD was for model-free
learning

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 Dyna-Q includes all of the processes: planning, acting, model-learning,
and direct RL—all occurring continually

 Planning: random-sample one-step tabular Q-planning method
 Direct RL: one-step tabular Q-learning
 Model-learning: table-based, and assumes the environment is

deterministic. After each transition 𝑆𝑡, 𝐴𝑡 → 𝑅𝑡+1, 𝑆𝑡+1, the model
records in its table entry for 𝑆𝑡, 𝐴𝑡, the prediction 𝑅𝑡+1, 𝑆𝑡+1 that will
deterministically follow. Thus, if the model is queried with a state–
action pair that has been experienced before, it simply returns the last-
observed next state and next reward as its prediction

 During planning, the Q-planning algorithm randomly samples only from
state–action pairs that have previously been experienced, so the model is
never queried with a pair about which it has no information

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 Dyna architecture

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 The central column represents the basic interaction
between agent and environment

 The arrow on the left: direct RL on real experience to
improve the value function and the policy

 Right side: the model is learned from real experience and
gives rise to simulated experience

 Search control: the process that selects the starting
states and actions for the simulated experiences
generated by the model

 Planning is achieved by applying RL methods to the
simulated experiences just as if they had really happened

 The same RL method is used both for learning from real
experience and for planning from simulated experience

 Learning and planning are deeply integrated; they share
almost all the same machinery, differing only in the
source of their experience

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 In Dyna-Q, the acting, model-learning, and direct RL processes require
little computation; the remaining time in each step can be devoted to
the planning process, which is inherently computation-intensive

 In the pseudocode below, Model(s, a) denotes the contents of the
(predicted next state and reward) for state–action pair (s, a)

 Without (e) and (f), the algorithm would be one-step tabular Q-learning

→ direct RL
→ model-learning
→ planning

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Simple Dyna Maze

U Kang

Example: Dyna Maze

 There are four actions, up, down,
right, and left, which take the agent
deterministically to the
corresponding neighboring states,
except when movement is blocked
by an obstacle or the edge of the
maze, in which case the agent
remains where it is

 Reward is zero on all transitions,
except those into the goal state, on
which it is +1; after reaching the
goal state (G), the agent returns to
the start state (S) to begin a new
episode

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Dyna Maze

 The curves show the number of steps taken
by the agent to reach the goal in each
episode, averaged over 30 repetitions of the
experiment

 After the first episode, performance
improved for all values of n, but much more
rapidly for larger values

 Recall that the n = 0 agent is a nonplanning
agent, using only direct RL (one-step tabular
Q-learning); this was by far the slowest
agent on this problem, despite the fact that
the parameter values (𝛼 and 𝜖) were
optimized for it. The nonplanning agent took
about 25 episodes to reach (𝜖-)optimal
performance, whereas the n = 5 agent took
about five episodes, and the n = 50 agent
took only three episodes

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Dyna Maze

 Why does the planning agents found the solution so much faster than the
nonplanning agent?

 Without planning (n = 0), each episode adds only one additional step to the
policy, and so only one step (the last) has been learned so far

 With planning, the agent learns for many steps during an episode

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Dyna: Integrated Planning,
Acting, and Learning

 In Dyna-Q, learning and planning are accomplished by exactly the
same algorithm, operating on real experience for learning and on
simulated experience for planning

 Both proceed as fast as they can. The agent is always reactive and
always deliberative, responding instantly to the latest sensory
information and yet always planning in the background

 Also ongoing in the background is the model-learning process. As new
information is gained, the model is updated to better match reality. As
the model changes, the ongoing planning process will gradually
compute a different way of behaving to match the new model.

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

When the Model is Wrong

 Models may be incorrect
 The environment is stochastic and only a limited number of samples have

been observed
 The model was learned using function approximation that has generalized

imperfectly
 The environment has changed and its new behavior has not yet been

observed
 When the model is incorrect, the planning process is likely to compute

a suboptimal policy
 In some cases, the suboptimal policy computed by planning quickly

leads to the discovery and correction of the modeling error

U Kang

Example: Blocking Maze

 Initially, there is a short path from start to goal, to the right of the
barrier

 After 1000 time steps, the short path is “blocked,” and a longer path is
opened up along the left-hand side of the barrier

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Blocking Maze

 Average cumulative reward for a Dyna-Q
agent and an enhanced Dyna-Q+ agent

 The first part of the graph shows that both
Dyna agents found the short path within 1000
steps

 When the environment changed, the graphs
become flat, indicating a period during which
the agents obtained no reward because they
were wandering around behind the barrier;
after a while, however, they found the new
opening and the new optimal behavior

 Greater difficulties arise when the
environment changes to become better than
it was before, and yet the formerly correct
policy does not reveal the improvement; in
these cases the modeling error may not be
detected for a long time, if ever

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Shortcut Maze

 Initially, the optimal path is to go around the left side of the barrier
(upper left)

 After 3000 steps, however, a shorter path is opened up along the right
side, without disturbing the longer path (upper right)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Shortcut Maze

 The regular Dyna-Q agent never
switched to the shortcut; in fact, it
never realized that it existed

 Its model said that there was no
shortcut, so the more it planned, the
less likely it was to step to the right
and discover it

 Even with an 𝜖-greedy policy, it is
very unlikely that an agent will take
so many exploratory actions as to
discover the shortcut

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

When the Model is Wrong

 The general problem here is another version of the conflict between
exploration and exploitation

 In a planning context, exploration means trying actions that improve
the model, whereas exploitation means behaving in the optimal way
given the current model

 We want the agent to explore to find changes in the environment, but
not so much that performance is greatly degraded

 There is no solution that is both perfect and practical, but simple
heuristics are often effective; Dyna-Q+ agent that did solve the shortcut
maze uses such heuristic

U Kang

When the Model is Wrong

 Dyna-Q+ agent keeps track for each state–action pair of how many
time steps have elapsed since the pair was last tried in a real
interaction with the environment

 The more time that has elapsed, the greater (we might presume) the
chance that the dynamics of this pair has changed and that the model
of it is incorrect

 To encourage behavior that tests long-untried actions, a special “bonus
reward” is given on simulated experiences involving these actions

 In particular, if the modeled reward for a transition is 𝑟, and the
transition has not been tried in 𝜏 time steps, then planning updates are
done as if that transition produced a reward of 𝑟 + 𝑘 𝜏, for some small
𝑘

 This encourages the agent to keep testing all accessible state
transitions and even to find long sequences of actions in order to carry
out such tests

U Kang

When the Model is Wrong

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Prioritized Sweeping

 In the Dyna agents presented before, simulated transitions are started
in state–action pairs selected uniformly at random from all previously
experienced pairs

 Planning can be much more efficient if simulated transitions and
updates are focused on particular state–action pairs

 E.g., second episode of the maze task

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Prioritized Sweeping

 At the beginning of the second episode, only the state–action pair leading
directly into the goal has a positive value; the values of all other pairs are still
zero

 It is pointless to perform updates along almost all transitions, because they take
the agent from one zero-valued state to another, and thus the updates would
have no effect

 Only an update along a transition into the state just prior to the goal, or from it,
will change any values

 If simulated transitions are generated uniformly, then many wasteful updates
will be made before stumbling onto one of these useful ones

 As planning progresses, the region of useful updates grows, but planning is still
far less efficient than it would be if focused where it would do the most good

 In the much larger problems that are our real objective, the number of states is
so large that an unfocused search would be extremely inefficient

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Prioritized Sweeping

 Backward focusing of planning computations
 Search might be usefully focused by working backward from goal states
 Of course, we do not really want to use any methods specific to the idea of “goal

state”. We want methods that work for general reward functions: work back not just
from goal states but from any state whose value has changed

 Suppose that the values are initially correct given the model
 Suppose now that the agent discovers a change in the environment and changes its

estimated value of one state, either up or down
 This will imply that the values of many other states should also be changed, but the

only useful one-step updates are those of actions that lead directly into the one state
whose value has been changed

 If the values of these actions are updated, then the values of the predecessor states
may change in turn. If so, then actions leading into them need to be updated, and
then their predecessor states may have changed. In this way one can work backward
from arbitrary states that have changed in value, either performing useful updates or
terminating the propagation

U Kang

Prioritized Sweeping

 Prioritized Sweeping
 As the frontier of useful updates propagates backward, it often grows rapidly,

producing many state–action pairs that could usefully be updated
 But not all of these will be equally useful. The values of some states may have

changed a lot, whereas others may have changed little
 The predecessor pairs of those that have changed a lot are more likely to also change

a lot
 In a stochastic environment, variations in estimated transition probabilities also

contribute to variations in the sizes of changes and in the urgency with which pairs
need to be updated. It is natural to prioritize the updates according to a measure of
their urgency, and perform them in order of priority

 A queue is maintained of every state–action pair whose estimated value would
change nontrivially if updated, prioritized by the size of the change

 When the top pair in the queue is updated, the effect on each of its predecessor pairs
is computed; if the effect is greater than some small threshold, then the pair is
inserted in the queue with the new priority

 In this way the effects of changes are efficiently propagated backward until
quiescence

U Kang

Prioritized Sweeping

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Prioritized Sweeping

U Kang

Example: Prioritized Sweeping on
Mazes

 Prioritized sweeping dramatically increases the speed at which optimal
solutions are found in maze tasks, often by a factor of 5 to 10

 Prioritized sweeping maintained a decisive advantage over
unprioritized Dyna-Q

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Prioritized Sweeping for
Rod Maneuvering

 Maneuver a rod around some awkwardly
placed obstacles within a limited rectangular
work space to a goal position in the fewest
number of steps

 The rod can be translated along its long axis
or perpendicular to that axis, or it can be
rotated in either direction around its center

 This problem has four actions and 14,400
potential states (some of these are
unreachable because of the obstacles); This
problem is probably too large to be solved
with unprioritized methods

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Expected vs. Sample Updates

 We have discussed different kinds of value-function updates
 One-step updates: vary primarily along three binary dimensions
 Dim 1: whether they update state values or action values
 Dim 2: whether they estimate the value for the optimal policy or for an

arbitrary given policy
 These two dimensions give rise to four classes of updates for

approximating the four value functions, 𝑞∗, 𝑣∗, 𝑞𝜋, 𝑣𝜋
 Dim 3: whether the updates are expected updates, considering all

possible events that might happen, or sample updates, considering a
single sample of what might happen

U Kang

Expected vs. Sample Updates

 These three binary dimensions give rise to
eight cases, seven of which correspond to
specific algorithms

 Any of these one-step updates can be used
in planning methods

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Expected vs. Sample Updates

 In the absence of a distribution model, expected updates are not
possible, but sample updates can be done using sample transitions
from the environment or a sample model

 Are expected updates preferable to sample updates?
 Expected updates certainly yield a better estimate because they are

uncorrupted by sampling error, but they also require more
computation, and computation is often the limiting resource in
planning

 To properly assess the relative merits of expected and sample updates
for planning we must control for their different computational
requirements

U Kang

Expected vs. Sample Updates

 Consider the expected and sample updates for approximating 𝑞∗, and
the special case of discrete states and actions, a table-lookup
representation of the approximate value function Q, and a model in the
form of estimated dynamics, Ƹ𝑝(𝑠′, 𝑟|𝑠, 𝑎)

 The expected update for a state–action pair, s, a, is:

 The corresponding sample update for s, a, given a sample next state S’
and reward R (from the model), is the Q-learning-like update:

where 𝛼 is the usual positive step-size parameter

𝑄 𝑠, 𝑎 ←

𝑠′,𝑟

Ƹ𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)]

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 + 𝛾max
𝑎′

𝑄 𝑆′, 𝑎′ − 𝑄(𝑠, 𝑎)]

U Kang

Expected vs. Sample Updates

 If only one next state is possible, then the expected and sample updates
given above are identical (taking 𝛼=1)

 For many possible next states, there may be significant differences
 In favor of the expected update is that it is an exact computation,

resulting in a new Q(s, a) whose correctness is limited only by the
correctness of the Q(s’, a’) at successor states. The sample update is in
addition affected by sampling error

 On the other hand, the sample update is cheaper computationally
because it considers only one next state, not all possible next states. In
practice, the computation required by update operations is usually
dominated by the number of state–action pairs at which Q is evaluated

U Kang

Expected vs. Sample Updates

 For a particular starting pair, s, a, let b be the branching factor (i.e., the
number of possible next states, s’, for which Ƹ𝑝 𝑠′ 𝑠, 𝑎 > 0. Then an
expected update of this pair requires roughly b times as much
computation as a sample update

 If there is enough time to complete an expected update, then the
resulting estimate is generally better than that of b sample updates
because of the absence of sampling error

 But if there is insufficient time to complete an expected update, then
sample updates are always preferable because they at least make some
improvement in the value estimate with fewer than b updates

U Kang

Expected vs. Sample Updates

 Given a unit of computational effort, is it better devoted to a few expected
updates or to b times as many sample updates?

 For moderately large b the error falls dramatically with a tiny fraction of b
updates

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Expected vs. Sample Updates

 In a real problem, the values of the successor states would be estimates
that are themselves updated

 By causing estimates to be more accurate sooner, sample updates will
have a second advantage in that the values backed up from the
successor states will be more accurate

 These results suggest that sample updates are likely to be superior to
expected updates on problems with large stochastic branching factors
and too many states to be solved exactly

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Trajectory Sampling

 Compare two ways of distributing updates
 Approach 1: exhaustive sweeps (from DP)

 Perform sweeps through the entire state (or state–action) space, updating
each state (or state–action pair) once per sweep

 This is problematic on large tasks because there may not be time to
complete even one sweep

 In many tasks the vast majority of the states are irrelevant because they are
visited only under very poor policies or with very low probability

 Exhaustive sweeps implicitly devote equal time to all parts of the state
space rather than focusing where it is needed; but it is not necessary to do
that

 In principle, updates can be distributed in any way one likes (to assure
convergence, all states or state–action pairs must be visited in the limit an
infinite number of times)

U Kang

Trajectory Sampling

 Approach 2: trajectory sampling
 Sample from the state or state–action space according to some distribution
 One could sample uniformly, as in the Dyna-Q agent, but this would suffer

from some of the same problems as exhaustive sweeps
 More appealing is to distribute updates according to the on-policy

distribution, that is, according to the distribution observed when following
the current policy

 One advantage of this distribution is that it is easily generated; one simply
interacts with the model, following the current policy

 In an episodic task, one starts in a start state (or according to the starting-
state distribution) and simulates until the terminal state; in a continuing
task, one starts anywhere and just keeps simulating. In either case, sample
state transitions and rewards are given by the model, and sample actions
are given by the current policy

 Trajectory sampling simulates explicit individual trajectories and performs
updates at the state or state-action pairs encountered along the way

U Kang

Trajectory Sampling

 Intuition of on-policy distribution of updates
 If you are learning to play chess, you study positions that might arise in real

games, not random positions of chess pieces
 One might expect on-policy focusing to significantly improve the speed of

planning

 But, what are the experimental results?
 Focusing on the on-policy distribution could be beneficial because it causes

vast, uninteresting parts of the space to be ignored, or it could be
detrimental because it causes the same old parts of the space to be
updated over and over

U Kang

Trajectory Sampling

 Experiment to assess the effect of on-policy distribution
 Use entirely one-step expected tabular updates
 Uniform case: cycle through all state–action pairs, updating each in place
 On-policy case: simulate episodes, all starting in the same state, updating

each state–action pair that occurred under the current 𝜖-greedy policy
(𝜖=0.1)

 The tasks were undiscounted episodic tasks, generated randomly
 From each of the |S| states, two actions were possible, each of which

resulted in one of b next states, all equally likely, with a different random
selection of b states for each state–action pair

 The branching factor, b, was the same for all state–action pairs
 On all transitions there was a 0.1 probability of transition to the terminal

state, ending the episode. The expected reward on each transition was
selected from a Gaussian distribution with mean 0 and variance 1

U Kang

Trajectory Sampling

 Top figure: results averaged over 200
sample tasks with 1000 states and
branching factors of 1, 3, and 10
 In all cases, sampling according to the on-

policy distribution resulted in faster planning
initially and retarded planning in the long run

 The effect was stronger, and the initial period
of faster planning was longer, at smaller
branching factors

 Bottom figure: results for a branching factor
of 1 for tasks with 10,000 states
 The advantage of on-policy focusing is large

and long-lasting
 The effects are stronger as the number of

states increases

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Trajectory Sampling

 In the short term, sampling according to the on-policy distribution
helps by focusing on states that are near descendants of the start state

 If there are many states and a small branching factor, this effect will be
large and long-lasting

 In the long run, focusing on the on-policy distribution may hurt
because the commonly occurring states all already have their correct
values; sampling them is useless, whereas sampling other states may
actually perform some useful work

 This presumably is why the exhaustive, unfocused approach does
better in the long run, at least for small problems

 These results are not conclusive because they are only for problems
generated in a particular, random way, but they do suggest that
sampling according to the on-policy distribution can be a great
advantage for large problems, in particular for problems in which a
small subset of the state–action space is visited under the on-policy
distribution

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Real-time DP

 Real-time dynamic programming (RTDP): an on-policy trajectory-
sampling version of the value-iteration algorithm of dynamic
programming (DP)

 Because it is closely related to conventional sweep-based policy
iteration, RTDP illustrates in a particularly clear way some of the
advantages that on-policy trajectory sampling can provide

 RTDP updates the values of states visited in actual or simulated
trajectories by means of expected tabular value-iteration updates

𝑣𝑘+1 𝑠 ሶ= max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

U Kang

Real-time DP

 RTDP is an example of an asynchronous DP algorithm
 Asynchronous DP algorithms are not organized in terms of systematic

sweeps of the state set; they update state values in any order
whatsoever, using whatever values of other states happen to be
available

 In RTDP, the update order is dictated by the order states are visited in
real or simulated trajectories

U Kang

Real-time DP

 If trajectories can start only from a designated set of start states, and if you are
interested in the prediction problem for a given policy, then on-policy
trajectory sampling allows the algorithm to completely skip states that cannot
be reached by the given policy from any of the start states: such states are
irrelevant to the prediction problem

 For a control problem, where the goal is to find an optimal policy, there might
well be states that cannot be reached by any optimal policy from any of the
start states, and there is no need to specify optimal actions for these irrelevant
states

 What is needed is an optimal partial policy: a policy that is optimal for the
relevant states but can specify arbitrary actions, or even be undefined, for the
irrelevant states

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Real-time DP

 For certain types of problems satisfying reasonable conditions, RTDP is
guaranteed to find a policy that is optimal on the relevant states
without visiting every state infinitely often, or even without visiting
some states at all

 This can be a great advantage for problems with very large state sets,
where even a single sweep may not be feasible

 The tasks for which this result holds are undiscounted episodic tasks
for MDPs with absorbing goal states that generate zero rewards

 At every step of a real or simulated trajectory, RTDP selects a greedy
action (breaking ties randomly) and applies the expected value-
iteration update operation to the current state. It can also update the
values of an arbitrary collection of other states at each step

U Kang

Real-time DP

 For these problems, with each episode beginning in a state randomly
chosen from the set of start states and ending at a goal state, RTDP
converges with probability 1 to a policy that is optimal for all the
relevant states if
 1) the initial value of every goal state is zero
 2) there exists at least one policy that guarantees that a goal state will be

reached with probability 1 from any start state
 3) all rewards for transitions from non-goal states are strictly negative
 4) all the initial values are equal to, or greater than, their optimal values

(which can be satisfied by simply setting the initial values of all states to 0)
 Tasks having these properties are examples of stochastic optimal path

problems
 Example: 1) minimum-time control tasks, where each time step required to

reach a goal produces a reward of −1, and 2) Golf whose objective is to hit
the hole with the fewest strokes

U Kang

Example: RTDP on Simple Maze

U Kang

Example: RTDP on Racetrack

 A stochastic optimal path problem
 An agent has to learn how to drive a car around a

turn, and cross the finish line as quickly as
possible while staying on the track

 Start states are all the zero-speed states on the
starting line; the goal states are all the states that
can be reached in one time step by crossing the
finish line from inside the track

 Each episode begins in a randomly selected start
state and ends when the car crosses the finish
line

 Rewards are −1 for each step until the car
crosses the finish line. If the car hits the track
boundary, it is moved back to a random start
state, and the episode continues

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: RTDP on Racetrack

 Consider a racetrack with 9,115 states reachable from start states by
any policy, only 599 of which are relevant, meaning that they are
reachable from some start state via some optimal policy

 How well do DP and RTDP solve this problem?
 Conventional DP: value iteration using exhaustive sweeps of the state

set, with values updated one state at a time in place, meaning that the
update for each state uses the most recent values of the other states

 Initial values were all zero for each run of both methods
 DP was judged to have converged when the maximum change in a

state value over a sweep was less than 10−4, and RTDP was judged to
have converged when the average time to cross the finish line over 20
episodes appeared to stabilize at an asymptotic number of steps

 This version of RTDP updated only the value of the current state on
each step

U Kang

Example: RTDP on Racetrack

 Both methods produced policies averaging between 14 and 15 steps to
cross the finish line, but RTDP required only roughly half of the updates
that DP did

 This is the result of RTDP’s on-policy trajectory sampling: while the
value of every state was updated in each sweep of DP, RTDP focused
updates on fewer states

 In an average run, RTDP updated the values of 98.45% of the states no
more than 100 times and 80.51% of the states no more than 10 times;
the values of about 290 states were not updated at all

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Real-time DP

 Another advantage of RTDP is that as the value function approaches the
optimal value function 𝑣∗, the policy used by the agent to generate trajectories
approaches an optimal policy because it is always greedy with respect to the
current value function

 This is in contrast to the situation in conventional value iteration
 In practice, value iteration terminates when the value function changes by only

a small amount in a sweep. At this point, the value function closely
approximates 𝑣∗, and a greedy policy is close to an optimal policy

 However, it is possible that policies that are greedy with respect to the latest
value function were optimal, long before value iteration terminates

 For this racetrack, a close-to-optimal policy emerged after 15 sweeps of value
iteration, or after 136,725 value-iteration updates. This is considerably less
than the 252,784 updates DP needed to converge to 𝑣∗, but still more than the
127,600 updates RTDP required

 RTDP achieved nearly optimal control with about 50% of the computation
required by sweep-based value iteration

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Planning at Decision Time

 Planning can be used in at least two ways
 Option 1: background planning

 Use planning to gradually improve a policy or value function on the basis of
simulated experience obtained from a model (either a sample or a
distribution model)

 Example: dynamic programming and Dyna
 Selecting actions is then a matter of comparing the current state’s action

values obtained from a table in the tabular case we have thus far
considered, or by evaluating a mathematical expression in the approximate
methods

 Well before an action is selected for any current state 𝑆𝑡, planning has
played a part in improving the table entries, or the mathematical
expression, needed to select the action for many states, including 𝑆𝑡

 Used this way, planning is not focused on the current state

U Kang

Planning at Decision Time

 Option 2: decision-time planning
 The other way to use planning is to begin and complete it after

encountering each new state 𝑆𝑡, as a computation whose output is the
selection of a single action 𝐴𝑡

 On the next step planning begins anew with 𝑆𝑡+1 to produce 𝐴𝑡+1, etc.
 The simplest, and almost degenerate, example of this use of planning is

when only state values are available, and an action is selected by comparing
the values of model-predicted next states for each action (e.g., tic-tac-toe)

 More generally, planning used in this way can look much deeper than one-
step-ahead and evaluate action choices leading to many different predicted
state and reward trajectories

 Unlike Option 1, Option 2 focuses on a particular state

U Kang

Planning at Decision Time

 Even when planning is only done at decision time, we can still view it as
proceeding from simulated experience to updates and values, and
ultimately to a policy

 It is just that now the values and policy are specific to the current state
and the action choices available there, so much so that the values and
policy created by the planning process are typically discarded after
being used to select the current action

 In many applications this is not a problem because there are many
states and we are unlikely to return to the same state for a long time

 In general, one may want to do a mix of both: focus planning on the
current state and store the results of planning, since one might return
to the same state later

U Kang

Planning at Decision Time

 Decision-time planning is most useful in applications in which fast
responses are not required

 In chess playing programs, for example, one may be permitted
seconds or minutes of computation for each move, and strong
programs may plan dozens of moves ahead within this time

 On the other hand, if low latency action selection is the priority, then
one is generally better off doing planning in the background to
compute a policy that can then be rapidly applied to each newly
encountered state

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Heuristic Search

 The classical state-space planning methods in AI are decision-time
planning methods collectively known as heuristic search

 In heuristic search, for each state encountered, a large tree of possible
continuations is considered

 The approximate value function is applied to the leaf nodes and then
backed up toward the current state at the root

 The backing up within the search tree is just the same as in the
expected updates with maxes (those for 𝑣∗ and 𝑞∗)

 The backing up stops at the state–action nodes for the current state
 Once the backed-up values of these nodes are computed, the best of

them is chosen as the current action, and then all backed-up values are
discarded

U Kang

Heuristic Search

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Heuristic Search

 In conventional heuristic search no effort is made to save the backed-
up values by changing the approximate value function

 In fact, the value function is generally designed by people and never
changed as a result of search

 However, it is natural to consider allowing the value function to be
improved over time, using either the backed-up values computed
during heuristic search or any of the other methods

 Example of non-saving method: 𝜖-greedy
 To compute the greedy action, we must look ahead from each possible

action to each possible next state, take into account the rewards and
estimated values, and then pick the best action

 Just as in conventional heuristic search, this process computes backed-up
values of the possible actions, but does not attempt to save them

 Thus, heuristic search can be viewed as an extension of the idea of a greedy
policy beyond a single step

U Kang

Heuristic Search

 The point of searching deeper than one step is to obtain better action
selections. If one has a perfect model and an imperfect action-value
function, then in fact deeper search will usually yield better policies

 Certainly, if the search is all the way to the end of the episode, then the
effect of the imperfect value function is eliminated, and the action
determined in this way must be optimal

 If the search is of sufficient depth k such that 𝛾𝑘 is very small, then the
actions will be correspondingly near optimal

 On the other hand, the deeper the search, the more computation is
required, usually resulting in a slower response time

U Kang

Heuristic Search

 Example: TD-Gammon
 Uses TD learning to learn an afterstate value function through many games

of self-play, using a form of heuristic search to make its moves

 As a model, TD-Gammon used a priori knowledge of the probabilities of
dice rolls and the assumption that the opponent always selected the actions
that TD-Gammon rated as best for it

 Tesauro found that the deeper the heuristic search, the better the moves
made by TD-Gammon, but the longer it took to make each move

 Backgammon has a large branching factor, yet moves must be made within
a few seconds

 It was only feasible to search ahead selectively a few steps, but even so the
search resulted in significantly better action selections

U Kang

Heuristic Search

 Much of the effectiveness of heuristic search is due to its search tree
being tightly focused on the states and actions that might immediately
follow the current state

 No matter how you select actions, it is these states and actions that are
of highest priority for updates and where you most urgently want your
approximate value function to be accurate

 The computation and memory should be devoted to imminent events
 In chess, there are far too many possible positions to store distinct

value estimates for each of them, but chess programs based on
heuristic search can easily store distinct estimates for the millions of
positions they encounter looking ahead from a single position

 This great focusing of memory and computational resources on the
current decision is presumably the reason why heuristic search can be
so effective

U Kang

Heuristic Search

 The distribution of updates can be altered in similar ways to focus on
the current state and its likely successors

 As a limiting case we might use exactly the methods of heuristic search
to construct a search tree, and then perform the individual, one-step
updates from bottom up

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Rollout Algorithms

 Rollout algorithms are decision-time planning algorithms based on MC
control applied to simulated trajectories that all begin at the current
environment state

 They estimate action values for a given policy by averaging the returns
of many simulated trajectories that start with each possible action and
then follow the given policy

 When the action-value estimates are considered to be accurate
enough, the action (or one of the actions) having the highest estimated
value is executed, after which the process is carried out anew from the
resulting next state

U Kang

Rollout Algorithms

 Unlike the MC control algorithms described in Chapter 5, the goal of a
rollout algorithm is not to estimate a complete optimal action-value
function, 𝑞∗, or a complete action-value function, 𝑞𝜋, for a given policy
𝜋

 Instead, they produce MC estimates of action values only for each
current state and for a given policy usually called the rollout policy

 As decision-time planning algorithms, rollout algorithms make
immediate use of these action-value estimates, then discard them

 This makes rollout algorithms relatively simple to implement because
there is no need to sample outcomes for every state-action pair, and
there is no need to approximate a function over either the state space
or the state-action space

U Kang

Rollout Algorithms

 What then do rollout algorithms accomplish?
 The policy improvement theorem says that given any two policies 𝜋

and 𝜋′ that are identical except that 𝜋′ 𝑠 = 𝑎 ≠ 𝜋(𝑠) for some state s,
if 𝑞𝜋(𝑠, 𝑎) ≥ 𝑣𝜋(𝑠), then policy 𝜋′ is as good as, or better, than 𝜋

 Moreover, if the inequality is strict, then 𝜋′ is in fact better than 𝜋
 This applies to rollout algorithms where s is the current state and 𝜋 is

the rollout policy
 Averaging the returns of the simulated trajectories produces estimates

of 𝑞𝜋(𝑠, 𝑎′) for each action 𝑎′ ∈ 𝐴(𝑠)

 Then the policy that selects an action in s that maximizes these
estimates and thereafter follows 𝜋 is a good candidate for a policy that
improves over 𝜋

U Kang

Rollout Algorithms

 In other words, the aim of a rollout algorithm is to improve upon the
rollout policy (not to find an optimal policy)

 Rollout algorithms can be surprisingly effective
 For example, Tesauro and Galperin (1997) were surprised by the

dramatic improvements in backgammon playing ability produced by
the rollout method

 In some applications, a rollout algorithm can produce good
performance even if the rollout policy is completely random

 But the performance of the improved policy depends on properties of
the rollout policy and the ranking of actions from the MC value
estimates

 Intuition suggests that the better the rollout policy and the more
accurate the value estimates, the better the policy produced by a
rollout algorithm is likely be

U Kang

Rollout Algorithms

 This involves important tradeoffs because better rollout policies
typically mean that more time is needed to simulate enough
trajectories to obtain good value estimates

 As decision-time planning methods, rollout algorithms usually have to
meet strict time constraints

 The computation time needed by a rollout algorithm depends on
 the number of actions that have to be evaluated for each decision
 the number of time steps in the simulated trajectories needed to obtain

useful sample returns
 the time it takes the rollout policy to make decisions, and
 the number of simulated trajectories needed to obtain good MC action-

value estimates

U Kang

Rollout Algorithms

 Balancing these factors is important in any application of rollout
methods, though there are several ways to ease the challenge

 Because the MC trials are independent of one another, it is possible to
run many trials in parallel on separate processors

 Another approach is to truncate the simulated trajectories short of
complete episodes, correcting the truncated returns by means of a
stored evaluation function (which brings into play all that we have said
about truncated returns and updates in the preceding chapters)

 It is also possible to monitor the MC simulations and prune away
candidate actions that are unlikely to turn out to be the best, or whose
values are close enough to that of the current best that choosing them
instead would make no real difference

U Kang

Rollout Algorithms

 Rollout algorithms are not considered as learning algorithms because
they do not maintain long-term memories of values or policies

 However, these algorithms take advantage of some of the features of
RL

 As instances of MC control, they estimate action values by averaging
the returns of a collection of sample trajectories, in this case
trajectories of simulated interactions with a sample model of the
environment

 In this way they are like RL algorithms in avoiding the exhaustive
sweeps of DP by trajectory sampling, and in avoiding the need for
distribution models by relying on sample, instead of expected, updates

 Rollout algorithms take advantage of the policy improvement property
by acting greedily with respect to the estimated action values

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Monte Carlo Tree Search

 Monte Carlo Tree Search (MCTS) is a recent and strikingly successful
example of decision-time planning

 At its base, MCTS is a rollout algorithm, but enhanced by the addition
of a means for accumulating value estimates obtained from the MC
simulations in order to successively direct simulations toward more
highly-rewarding trajectories

 MCTS is largely responsible for the improvement in computer Go from
a weak amateur level in 2005 to a grandmaster level in 2015

 MCTS has proved to be effective in a wide variety of competitive
settings, including general game playing, but it is not limited to games;
it can be effective for other single-agent sequential decision problems
if there is an environment model simple enough for fast multistep
simulation

U Kang

Monte Carlo Tree Search

 MCTS is executed after encountering each new state to select the
agent’s action for that state; it is executed again to select the action for
the next state, and so on

 As in a rollout algorithm, each execution is an iterative process that
simulates many trajectories starting from the current state and
running to a terminal state (or until discounting makes any further
reward negligible as a contribution to the return)

 Main idea of MCTS: successively focus multiple simulations starting at
the current state by extending the initial portions of trajectories that
have received high evaluations from earlier simulations

 MCTS does not have to retain approximate value functions or policies
from one action selection to the next, though in many implementations
it retains selected action values likely to be useful for its next execution

U Kang

Monte Carlo Tree Search

 For the most part, the actions in the simulated trajectories are
generated using a simple policy called a rollout policy

 When both the rollout policy and the model do not require a lot of
computation, many simulated trajectories can be generated in a short
period of time

 As in any tabular MC method, the value of a state–action pair is
estimated as the average of the (simulated) returns from that pair

 MC value estimates are maintained only for the subset of state–action
pairs that are most likely to be reached in a few steps, which form a
tree rooted at the current state

U Kang

Monte Carlo Tree Search

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Monte Carlo Tree Search

 MCTS incrementally extends the tree by adding nodes representing
states that look promising based on the results of the simulated
trajectories

 Any simulated trajectory will pass through the tree and then exit it at
some leaf node

 Outside the tree and at the leaf nodes the rollout policy is used for
action selections, but at the states inside the tree something better is
possible

 For these states we have value estimates for of at least some of the
actions, so we can pick among them using an informed policy, called
the tree policy, that balances exploration and exploitation

 For example, the tree policy could select actions using an 𝜖-greedy or
UCB selection rule

U Kang

Monte Carlo Tree Search

 Each iteration of MCTS has four
steps

 1. Selection
 Starting at the root node, a tree

policy based on the action values
attached to the edges of the tree
traverses the tree to select a leaf
node

 2. Expansion
 The tree is expanded from the

selected leaf node by adding one or
more child nodes reached from the
selected node via unexplored
actions

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Monte Carlo Tree Search

 3. Simulation
 From the selected node, or from

one of its newly-added child nodes
(if any), simulation of a complete
episode is run with actions
selected by the rollout policy. The
result is an MC trial with actions
selected first by the tree policy
and beyond the tree by the rollout
policy

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Monte Carlo Tree Search

 4. Backup
 The return generated by the

simulated episode is backed up to
update, or to initialize, the action
values attached to the edges of the
tree traversed by the tree policy in
this iteration of MCTS

 No values are saved for the states and
actions visited by the rollout policy
beyond the tree

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Monte Carlo Tree Search

 MCTS continues executing these four steps, starting each time at the
tree’s root node, until no more time is left, or some other
computational resource is exhausted

 Then, finally, an action from the root node (which still represents the
current state of the environment) is selected according to some
mechanism that depends on the accumulated statistics in the tree; for
example, it may be an action having the largest action value of all the
actions available from the root state, or perhaps the action with the
largest visit count to avoid selecting outliers

 After the environment transitions to a new state, MCTS is run again,
sometimes starting with a tree of a single root node representing the
new state, but often starting with a tree containing any descendants of
this node left over from the tree constructed by the previous execution
of MCTS; all the remaining nodes are discarded, along with the action
values associated with them

U Kang

Monte Carlo Tree Search

 MCTS was first proposed to select moves in programs playing two-
person competitive games, such as Go

 For game playing, each simulated episode is one complete play of the
game in which both players select actions by the tree and rollout
policies

 An extension of MCTS used in the AlphaGo program combines the MC
evaluations of MCTS with action values learned by a deep artificial
neural network via self-play reinforcement learning

U Kang

Monte Carlo Tree Search

 MCTS is a decision-time planning algorithm based on MC control
applied to simulations that start from the root state; that is, it is a kind
of rollout algorithm. It therefore benefits from online, incremental,
sample-based value estimation and policy improvement

 Beyond this, it saves action-value estimates attached to the tree edges
and updates them using RL’s sample updates

 This has the effect of focusing the MC trials on trajectories whose initial
segments are common to high-return trajectories previously simulated

 By incrementally expanding the tree, MCTS effectively grows a lookup
table to store a partial action-value function, with memory allocated to
the estimated values of state–action pairs visited in the initial segments
of high-yielding sample trajectories

 MCTS thus avoids the problem of globally approximating an action-
value function while it retains the benefit of using past experience to
guide exploration

U Kang

Outline

Models and Planning
Dyna: Integrated Planning, Acting, and Learning
When the Model Is Wrong
Prioritized Sweeping
Expected vs. Sample Updates
Trajectory Sampling
Real-time DP
Planning at Decision Time
Heuristic Search
Rollout Algorithms
MC Tree Search
Conclusion

U Kang

Conclusion

 Planning requires a model of the environment
 A distribution model consists of the probabilities of next states and

rewards for possible actions; a sample model produces single
transitions and rewards generated according to these probabilities

 DP requires a distribution model because it uses expected updates,
which involve computing expectations over all the possible next states
and rewards

 A sample model, on the other hand, is what is needed to simulate
interacting with the environment during which sample updates, like
those used by many RL algorithms, can be used

 Sample models are generally much easier to obtain than distribution
models

U Kang

Conclusion

 Close relationships between planning optimal behavior and learning
optimal behavior
 Both involve estimating the same value functions, and in both cases it is

natural to update the estimates incrementally, in a long series of small
backing-up operations

 This makes it straightforward to integrate learning and planning processes
simply by allowing both to update the same estimated value function

 In addition, any of the learning methods can be converted into planning
methods simply by applying them to simulated (model- generated)
experience rather than to real experience

 In this case learning and planning become even more similar; they are
possibly identical algorithms operating on two different sources of
experience

U Kang

Conclusion

 It is straightforward to integrate incremental
planning methods with acting and model
learning

 Planning, acting, and model-learning interact
in a circular fashion, each producing what the
other needs to improve

 The most natural approach is for all processes
to proceed asynchronously and in parallel

 If the processes must share computational
resources, then the division can be handled
almost arbitrarily—by whatever organization
is most convenient and efficient for the task
at hand

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Conclusion

 Dimensions of variation among state-space planning methods
 Dim 1: variation in the size of updates

 The smaller the updates, the more incremental the planning methods can
be

 Among the smallest updates are one-step sample updates, as in Dyna
 Dim 2: distribution of updates, that is, of the focus of search

 Prioritized sweeping focuses backward on the predecessors of states whose
values have recently changed

 On-policy trajectory sampling focuses on states or state–action pairs that
the agent is likely to encounter when controlling its environment. This can
allow computation to skip over parts of the state space that are irrelevant to
the prediction or control problem

 Realtime DP, an on-policy trajectory sampling version of value iteration,
illustrates some of the advantages this strategy has over conventional
sweep-based policy iteration

U Kang

Conclusion

 Planning can also focus forward from pertinent states, such as states
actually encountered during an agent-environment interaction

 The most important form of this is when planning is done at decision
time, that is, as part of the action-selection process

 Classical heuristic search as studied in AI is an example of this
 Other examples are rollout algorithms and MCTS that benefit from

online, incremental, sample-based value estimation and policy
improvement

U Kang

Conclusion: Part I

 Key ideas of many RL methods
 1) They all seek to estimate value functions
 2) They all operate by backing up values along actual or possible state

trajectories
 3) They all follow the general strategy of generalized policy iteration (GPI),

meaning that they maintain an approximate value function and an
approximate policy, and they continually try to improve each on the basis of
the other

U Kang

Conclusion: Part I

 Various dimensions of RL methods
 Width and depth of update

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Conclusion: Part I

 Various dimensions of RL methods
 On-policy and off-policy methods
 Definition of return: episodic or continuing, discounted or undiscounted?
 Action values vs. state values vs. afterstate values
 Action selection/exploration
 Synchronous vs. asynchronous
 Real vs. simulated
 Location of updates: what states or state–action pairs should be updated?
 Timing of updates: should updates be done as part of selecting actions, or

only afterward?
 Memory for updates: how long should updated values be retained? Should

they be retained permanently, or only while computing an action selection,
as in heuristic search?

U Kang

Questions?

