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Introduction to Data Mining

Lecture #9: Link Analysis
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Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Graph Data: Media Networks

Connections between political blogs

Polarization of the network [Adamic-Glance, 2005]
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=" Graph Data: Information Nets
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Citation networks and Maps of science

[BOrner et al., 2012]
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Graph Data: Classic Example
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Kdnigsberg

[Euler, 1735]

Return to the starting point by traveling

each link of the graph once and only once.
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Web as a Graph

m Web as a directed graph:
2 Nodes: Webpages
o Edges: Hyperlinks

This is a
class on
— Classes
Mining. are in the
\/ &
building 302
building is
\/ located
near SNU
SNU
\/ homepage
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Web as a Graph

m Web as a directed graph:
2 Nodes: Webpages
o Edges: Hyperlinks

This is a
class on
Data

MinfTo: Cla_sses
\ are in the
e 302

buildir 302
“‘J\\ building is
\/ located
near SNU

SNU
T— homepage
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Web as a Directed Graph

I'm a student
at Univ. of X

I'm applying to
college
| teach at
Univ. of X

USNews
Featured
Colleges
Networks
class blog
Blog post about
college rankings
Blog post
about
Company Z
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m How to organize the Web?

m First try: Human curated
Web directories

o Yahoo, DMOZ, LookSmart
m Second try: Web Search

o Information Retrieval investigates:
Find relevant docs in a small

and trusted set

m Newspaper articles, Patents, etc.

Broad Question
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o But: Web is huge, full of untrusted documents,

random things, web spam, etc.
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Web Search: 2 Challenges

2 challenges of web search:

m (1) Web contains many sources of information
Who to “trust”?

0 ldea: Trustworthy pages may point to each other!

m (2) What is the “best” answer to the query
“newspaper”?
0 No single right answer

0 ldea: Pages that actually know about newspapers might
all be pointing to many newspapers

U Kang 12
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Ranking Nodes on the Graph

m All web pages are not equally “important”

WWww.joe-schmoe.com vs. www.snu.ac.kr

m There is large diversity
in the web-graph
node connectivity.
Let’s rank the pages by
the link structure!

U Kang 13
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Link Analysis Algorithms

m We will cover the following Link Analysis
approaches for computing importances
of nodes in a graph:

o Page Rank
0 Topic-Specific (Personalized) Page Rank
2 Web Spam Detection Algorithms

U Kang 14
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®» [0 PageRank: Flow Formulation
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Links as Votes

m |dea: Links as votes
0 A page is more important if it has more links

m In-coming links? Out-going links?

m Think of in-links as votes:

o www.snu.ac.kr has 100,000 in-links
0 www.joe-schmoe.com has 1 in-link

m Are all in-links equal?
o Links from important pages count more
0 Recursive question!

U Kang
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m Each link’s vote is proportional to the importance
of its source page

m If page j with importance r; has n out-links, each
link gets r;/ n votes

m Pagej s own importance is the sum of the votes

on its in-links \5<
r/3./
3 r/3

u Kang
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& PageRank: The “Flow"” Model

m A “vote” from an important
page is worth more yI2

m A pageis important if it is
pointed to by other important
pages

= Define a “rank” r; for page

E — “Flow” equations:
ry =r,/2+r,/2

I—)J

r, =r,/2+r,
d; ... out-degree of node i r, =1, /2

| ->] . allithat pointto |
U Kang 19



Solving the Flow Equations

Flow equations:
ry =r,/2+r,/2

r, =r,/2+r,
F, =1, /2

3 equations, 3 unknowns,
no constants

2 No unique solution

0 All solutions equivalent modulo the scale factor

= le., Multiplying c to given a solutionr,, r,, r, will give you another
solution

Additional constraint forces uniqueness:

Aary, +ra+r, =1

Solution: 2 2 1
a outlon.ry _E' r, —E, m _E
Gaussian elimination method works for
small examples, but we need a better method for

large web-size graphs
We need a new formulation!

U Kang 20
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m Stochastic adjacency matrix M

0 Let page i has d; out-links
. . —_— 1 —
a Ifi - j, then M = else M, =20

m M is a column stochastic r'hatrix

NOTE: A matrix M is
called "column
stochastic’ if the sum

0 Columnssumtol of each column is 1
Source
Yy a M
cylw[n]o
S alwnlo]|1
7
Smlo|w|o0

M
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PageRank: Matrix Formulation

m Rank vector r: vector with an entry per page
a 1, is the importance score of page i

axyrn =1 "
m The flow equations i = Z:d_l can be written
r=M-7r
Why?

Iy
n-u H B B
1 X
d d.
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Eigenvector Formulation
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m The flow equations can be written cigenvector with
th di
Y = M e T eigecno\:;IelJSeF)(;\r]if:lng
Ax = Ax

m So the rank vector r is an eigenvector of the web
matrix M, with the corresponding eigenvalue 1

m Fact: The largest eigenvalue of a column
stochastic matrixis 1

m We can now efficiently solve for r!
The method is called Power iteration

U Kang 23
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Example: Flow Equations & M

y a m
yi Y% | % | 0
al¥% | 0|1
m|f0|%|O0
r=M-r
r, =r,/2+r,/2 y| |2 % 0
o =r,/2+r, a =2 0 1
1
r,=r,/2 m 0~ 0

U Kang
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& Power Iteration Method

m Given a web graph with n nodes, where the
nodes are pages and edges are hyperlinks

m Power iteration: a simple iterative scheme

0 Suppose there are N web pages

(t+1) Z_
a Initialize: r® =[1/N,....,1/N]" ~d,
|
o lterate: r#) =M - ¢t d. .... out-degree of node i
0 Stop when |t — | <g

IX]; = 24<ien|Xi|  (called the L1 norm)
Can use any other vector norm, e.g., Euclidean

U Kang 25
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Power Iteration Method
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m Power iteration:
A method for finding dominant eigenvector (the
vector corresponding to the largest eigenvalue)

G ) ()
2 1@ =M@ = M(Mr®) = M2 - r©
2 1® =M@ = MM ©®) = M3 - r©
m Fact:
Sequence M - 0 M2 . (@ pk .40
approaches the dominant eigenvector of M

o Dominant eigenvector = the one corresponding to the
largest eigenvalue

U Kang 26
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PageRank: How to solve?

m Power Iteration:

0 Setr; = 1/N

oL =Y,
J Zl_’fdi

o 2:r=r1

0 Goto 1

m Example:

1/3 13  5/12

1/3 36 1/3
1/3 16  3/12

lteration O, 1, 2, ...

U Kang
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r, =r,/2+r,/2
r, =r,/2+rg,
Fm=Ta/2
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Random Walk Interpretation

= Imagine a random web surfer:

o At any time t, surfer is on some page i

o Attime t 4+ 1, the surfer follows an
out-link from I uniformly at random I = z

I— ] dout(i)

a0 Ends up on some page j linked from i

0 Process repeats indefinitely
= Let:

= p(t) ... vector whose it" coordinate is the
prob. that the surfer is at page i attime ¢

0 So, p(t) is a probability distribution over pages

U Kang 28



== The Stationary Distribution

m Where is the surfer at time t+17?
0 Follows a link uniformly at random

p(t+1)= M. p(t) o(t+1) = M- p(t)
= Suppose the random walk reaches a state
p(t+1)= M- p() = p(®
then p(t) is called stationary distribution of a random

walk
= Our original rank vector r satisfies r = M - r

o So, r is a stationary distribution for
the random walk

U Kang 29



= Existence and Uniqueness

m A central result from the theory of random
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what the
initial probability distribution at time t=0

Certain conditions: a walk starting from a random page
can reach any other page

U Kang
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Questions?

U Kang
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