
Reactors II

Today's lecture

- Reactor analysis using mass balance
 - Plug flow reactor
 - Completely mixed flow reactor

Plug-flow reactor (PFR)

1) define control volume:

the moving "plug": a very thin, homogeneous plate moving in the direction of flow

2) write a mass balance eq.:

$$\frac{dM}{dt} = \frac{d(in)}{dt} - \frac{d(out)}{dt} + R$$

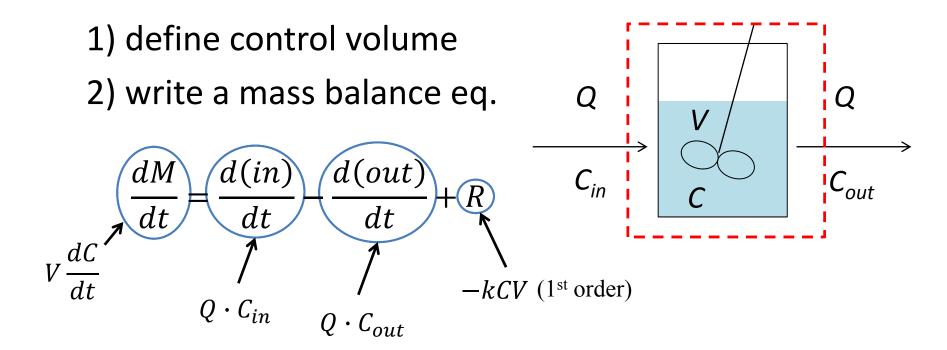

$$\Delta V \frac{dC}{dt}$$

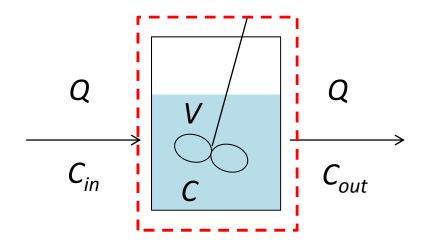
$$-kC\Delta V \text{ (1st order)}$$

3) arrange the equation: $\frac{dC}{dt} = -kC$ integrating over t=0 to t_0 (= $L/v_{flow} = V/Q$):

$$\frac{C_{out}}{C_{in}} = e^{-kt_0} \quad \Rightarrow \text{ same form as the batch reactor!}$$
(why??)

Examples of PFRs


Disinfection



Rivers and streams

Q: In the U.S., a wastewater treatment plant must disinfect its effluent before discharging the wastewater to a stream. The wastewater contains 4.5 x 10⁵ CFU/L of fecal coliform. The effluent standard for fecal coliform is 2 x 10³ CFU/L. Assuming that the disinfection facility is a PFR, determine the length of pipe required if the velocity of the wastewater in the PFR is 0.75 m/s. Assume that the first-order reaction rate constant for destruction of the fecal coliforms is 0.23 min⁻¹.

 Completely mixed flow reactor (CMFR) (continuous-flow stirred tank reactor, CSTR)

Because of homogeneous mixing, $C = C_{out}$

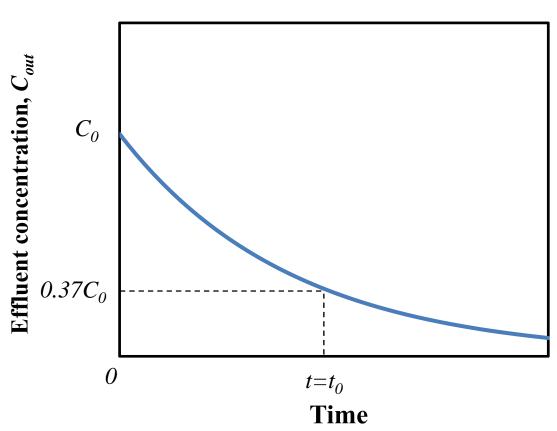
$$C_{out}$$
 $V \frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$

3) arrange the equation:

$$V\frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

Special case I: No reaction, initial concentration = C_0

$$V\frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$


$$\frac{dC_{out}}{dt} = \frac{1}{t_o}(C_{in} - C_{out}) \quad (t_o = V/Q)$$

integrating over *t*=0 to *t*:

$$C_{out,t} = C_o \left[exp\left(-\frac{t}{t_0} \right) \right] + C_{in} \left[1 - exp\left(-\frac{t}{t_0} \right) \right]$$

when $C_{in} = 0$,

$$C_{out,t} = C_o \left[exp\left(-\frac{t}{t_0}\right) \right]$$

$$V\frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

Special case II: Steady state

$$V\frac{dC_{out}}{dt} = QC_{in} - QC_{out} - kC_{out}V$$

$$C_{out} = \frac{C_{in}}{1 + kt_0} \qquad (t_0 = V/Q)$$

 \rightarrow influent concentration (C_{in}) is reduced in the effluent by a factor of (1+ kt_0)

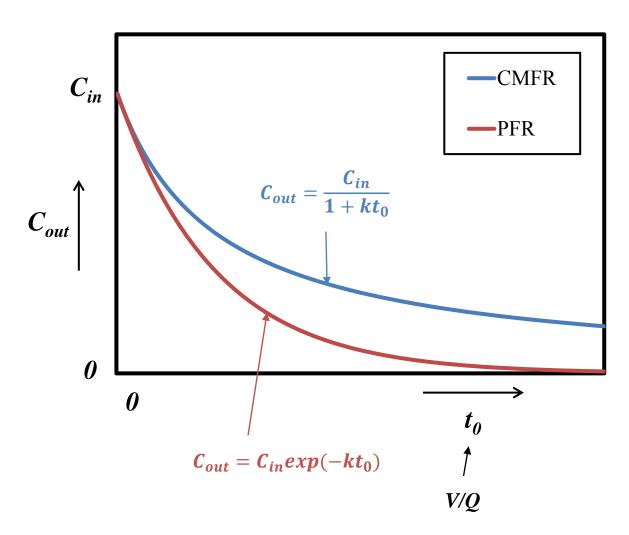
Examples of CMFRs

Biological wastewater treatment

Lake

Q: Activated sludge is a key process for most wastewater treatment facilities. The process is often run as a CMFR. Assume a 400 m³-sized CMFR for an activated sludge process receiving 2000 m³/d of wastewater. If a terrorist dumped 10 kg of a non-biodegradable toxic chemical to the reactor, how long will it take for the toxic chemical concentration in the reactor to a safe level (1 mg/L)?

Q: A chemical degrades in a steady-state CMFR according to first-order reaction kinetics. The upstream concentration of the chemical is 10 mg/L and the downstream concentration is 2 mg/L. Water is being treated at a rate of 29 m³/min. The volume of the tank is 580 m³. What is the rate of decay? What is the rate constant?


Retention time

• Retention time (detention time), t_0

$$t_0 = V / Q$$

- The average time the fluid particles spend in the reactor
- PFR: the time that fluid particles spend in a reactor is the same $(=t_0)$ for all particles
- CMFR: the time that fluid particles spend in a reactor is different

PFR vs. CMFR

- At the same t_o,
 PFR shows
 better
 performance
 - Advantage of using CMFR: less sensitive to shock loads and toxic compounds

Reading assignment

• Textbook Ch4 p. 162-168

Slide#6 solution)

$$ln\frac{c_{out}}{c_{in}} = -kt_0 = -kL/v_{flow}$$

$$L = -\frac{v_{flow}}{k} \cdot ln\frac{c_{out}}{c_{in}} = -\frac{0.75 \, m/s}{0.23 \, min^{-1}} \times 60 \, s/min \times ln\frac{2 \times 10^3 \, CFU/mL}{4.5 \times 10^5 \, CFU/mL}$$

$$= 1060 \, m$$

Slide#13 solution)

Non-biodegradable → no reaction

$$C_{out,t} = C_0 exp(-t/t_0)$$

$$t = -t_0 \cdot ln \frac{c_{out,t}}{c_0}$$

$$C_0 = \frac{10 \, kg}{400 \, m^3} \times 10^6 \, mg/kg \times 10^{-3} \, m^3/L = 25 \, mg/L$$

$$t_0 = \frac{V}{Q} = \frac{400 \, m^3}{2000 \, m^3/d} = 0.2 \, d$$

$$t = -0.2 d \cdot ln \frac{1 mg/L}{25 mg/L} = 0.64 day$$

Slide#14 solution)

$$C_{out} = \frac{C_{in}}{1+kt_0}$$

$$k = \frac{1}{t_0} \left(\frac{C_{in}}{C_{out}} - 1 \right)$$

$$t_0 = \frac{580 \, m^3}{29 \, m^3 / min} = 20 \, min$$

$$k = \frac{1}{20 \, min} \left(\frac{10 \, mg/L}{2 \, mg/L} - 1 \right) = \mathbf{0.20 \, min^{-1}}$$

$$rate \, of \, decay = -r = \left. -\frac{dC}{dt} \right|_{reaction} = k \cdot C_{out}$$

$$= (0.20 \, min^{-1}) \cdot (2 \, mg/L) = \mathbf{0.40 \, mg/L} - min$$