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What is an ADPLL?

• In a broad sense

– ADPLL consists of digital components and 

digital equivalents

– Building blocks have input/output levels are 

defined in digital domain

• In a strict sense

– A PLL exclusively built from digital function 

blocks and contains no passive component

– All components are synthesizable

(Cell-based ADPLL)
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Classification of PLL Types

• Analog PLL

– Analog PD (multiplier), LF built from passive or 

active RC filter, VCO

• Digital PLL

– Digital PD, charge-pump PLL

• All-Digital PLL

– Built from digital function blocks

– All components provide digital interfaces only

[1] R. E. Best 2003
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ADPLL Block Diagram

• Digital loop filter

• Time-to-digital converter (TDC)

– Linear

– Bang-bang

• Digitally controlled oscillator (DCO)

– Explicit DAC + VCO

– Embedded DAC

TDC DLF DCO

/N
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Advantages of ADPLL

• No analog tuning voltage

– Suitable for deep-submicron tech using low supply voltage

• PVT variation can be compensated more easily

– Stable transfer characteristic

• Digital filter

– Passive components are not necessary

– Less sensitive to gate leakage

– Easily benefit from technology shrink

– Small area  cost reduction

• Information can be processed more flexibly

– More portability and testability

– Most function blocks are synthesizable
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Advantages of Digital Loop Filter

• Small area

• No leakage current

• PVT independent

• Easy to design 

– DLF can be constructed simply by transformation from 

s-domain to z-domain

– DLF can be expanded to higher-order filter readily

• Coefficients can be changed adaptively

– Preset initialization on power-up

– Adaptation during operation for fast locking or low jitter
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Comparison with Typical DPLL

• Almost the same structure 

as a charge-pump PLL 

– PFD & CP  TDC

– VCO  DCO

CPPLL ADPLL

Phase error 

information

Pump 

Current

Quantized

digital

Loop filter

RC filter

(passive or 

active)

Digital filter

(IIR or FIR)

Oscillator

control

Analog

(voltage or 

current)

Digital code 

(binary or 

thermometer)
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DLF Examples

• Simple z-domain IIR filters
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Higher Order DLF Example

• Cascaded IIR low pass filter

– Easily expanded to higher order
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• z-domain model
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• z-domain model

• 2nd order passive loop filter
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Adaptive Digital Loop Filter

• Lock-time control, frequency locking range 

enhancement

• Find the optimum performance point

– Input noise filtering vs. lock-time

• Utilize software or hardware 

– Gain estimation

– Noise cancellation

β

α

z
-1

Adaptive 

control
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TDC Classification

• Linear TDC

– Delay line based

– Fine resolution

– Consumes large hardware and power

– Process dependent and less reusable

• Bang-bang TDC

– Simple structure

– Highly nonlinear but can be controlled

– More reusable
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Linear TDC

• Converts time difference 

to digital value

• Important design factors: 

resolution, linearity, 

power, area

• Conventional TDC

– Delay chain and samplers

– Minimum delay is 

restricted by intrinsic gate 

delay  Vernier TDC, 

interpolative TDC

– Large size, small dynamic 

range
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[3] S. Henzler JSSC 2008

[2] P. Dudek JSSC 2000
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Linear TDC

• To increase dynamic 

range

– Ring oscillator-based TDC

– Large power consumption 

due to the free running 

oscillator

• Stochastic TDC

– Exploits mismatch 

between samplers and 

random variation of the 

offset voltage

– Very fine resolution

– Narrow range
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[4] J. Yu JSSC 2010

[5] V. Kratyuk TCASI 2009

17



Integrated Systems Design Laboratory, SNU D.K.Jeong

• Easily achievable and suitable for digital 

implementation

– e.g. bang-bang PFD

Bang-Bang TDC

Conventional PFD Bang-bang PFD

DFF

DFF

reset

reset

Up

Down

Ref

Div

‘1’

‘1’

Conventional 

PFD

Ref

Div

Up

Down

[6] T. Olsson JSSC 2004
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Digitally Controlled Oscillator

• Most Critical component 

in ADPLL implementation

• Digital-to-frequency 

conversion

– Underlying functionality is 

analog

– Supports digital interface

– Analog nature doesn’t 

propagate

• Implementation method

– Explicit DAC + VCO

– Embedded DAC (turning 

on/off each unit cell)
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Problem of Limited DCO Resolution

• Quantized frequency control causes a limit cycle –

cycling around the intended frequency
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Typical Locked Behavior of ADPLL

• Periodic or pseudo-periodic (peak-to-peak jitter is 

bounded)

• ΔΣ-modulator can be used to alleviate this problem
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TDC DLF
Error 

canceller
ΔΣ DCO

÷ M

÷ N/N+1

ΔΣ

• ΔΣ-modulator (ΔΣ) is used to increase the 

effective resolution of the DCO

• Fractional spur can be reduced by using 

cancellation techniques

ADPLL Architecture

[7] C.-M. Hsu JSSC 2008

[8] R. B. Staszewski JSSC 2005
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Low Jitter DCO Using ΔΣ-Modulator

• Effective frequency resolution is improved by high-

speed ΔΣ-dithering

• Higher update rate of DCO is important

– Phase error accumulates for dithering cycles

– Peak-to-peak jitter is inversely proportional to update 

frequency

Ref
Out

fupdate = fRef

< Case 1 > < Case 2 >

TDC DLF DCO

÷ M

÷ N

fupdate = fOut/M    fRef

TDC DLF ΔΣ DCO
Out

÷ N

Ref
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Analysis methods

• z-domain analysis

– Models discrete-time behavior

– Can exploit intuitive CPPLL analogy

– Quick and simple

• s-domain analysis

– z-to-s domain transformation

• Simple approximation (z -> 1+sT)

• Bilinear-z transformation (z -> (1+sT/2)/(1-sT/2))

– CPPLL analogy can be used

– Many s-domain analysis techniques reused

• Phase Margin 

• Bandwidth 
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• Stability check in z-domain

– Unit circle criterion: all poles should be inside the unit circle

– Jury’s stability criterion
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• Step input:

• Error function:

• Using final value theorem:

Phase error is eventually eliminated
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• Ramp input:

• Error function:

• Using final value theorem:
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Analysis Using CPPLL Analogy

• DLF coefficients selection

– Apply bilinear transform to s-domain filter

• Ts : sampling time of digital system

– Compare coefficients
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Analysis Using CPPLL Analogy

• Use stability analysis method of CPPLL

– TS : Sampling period [s]

– TREF : Reference period (usually TREF = Ts)

– KDCO : DCO gain [Hz/LSB]

– ΔtTDC : Resolutions of TDC [s/LSB]

– PM : Phase Margin

– ωUGBW : Unit gain bandwidth [rad/s]
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Analysis Using CPPLL Analogy

• Use stability analysis using simple approximation (z -> 1+sT)
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PD Gain in Presence of Jitter

• PD inputs contain jitter from input and VCO  

32
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BBPD Gain in Presence of Jitter

• Highly nonlinear characteristics of BBPD (one-bit TDC)

33

[TCASII_YDCHOI - Jitter transfer analysis of tracked oversampling
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ADPLL with BBPD (1)

• Loop dynamic of ADPLL with BBPD

– Highly nonlinear characteristics of BBPD (one-bit TDC) 

Described by time-domain difference equation

– Refer to [11]–[15] for more details

DLF
BBPD β

α

z
-1

DCO

÷N
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Nonlinear Loop Dynamics

• Nonlinear dynamics are illustrated by trajectories in 

the phase space

• Behavior: equilibrium point or periodic orbit
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ADPLL with BBPD (2)

• Stability condition: Existence of limit-cycle

– Phase and frequency errors never converge to zero 

concurrently

• Long pipeline stages increase loop latency

– Enlarge the size of orbit

– Degrade jitter performance

• Small loop latency is 

important
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Dynamics of ADPLL with BBPD

Phase error
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ADPLL with BBPD (3)

• 1st order BBPLL loop dynamics (initial error = 0) 

– Peak-to-peak jitter is directly proportional to loop latency 

Latency = D, JPP = (1 + 2D)  
[11] N. D. Dalt TCASI 2005
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ADPLL with BBPD (4)

• 1st order BBPLL loop dynamics

– Initial error ≠ 0, JPP = 2(1+D)Δ

– For uniform distribution

• 2nd order BBPLL loop dynamics

– Size of orbit (stability) depends on D and R=α(int)/β(prop)

– For small R, JPP ≈ 2(1+D)Δ

– For uniform distribution and small orbit
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General Linearized s-domain Model

[16] M. H. Perrott JSSC 2002
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Spectral Density Conversion
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Quantization Noise of TDC

• Modeled as an additive random variable with white 

spectral density

• Output noise is low pass filtered by the loop

– Small ΔtTDC and large fREF is advantageous
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Noises in Oscillator

• FM noise

– Up-converted flicker 

noise (1/f3)

– Up-converted thermal 

noise (1/f2)

• PM noise

– Thermal electronic 

noise added from 

outside of the oscillator 

core (e.g. output buffer)

– High pass filtered by 

the loop

PM noise: −170dBc/Hz

slope: −20dBc/Hz

FM noise: −153dBc/Hz 

@ 20MHz

)()(1)(
,,

2
fSfGfS

DCOnDCOOUT  
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Quantization Noise of DCO (1)

• Modeled as an additive random variable with white 

spectral density accounting for the effect of zero-

order hold

• Output noise is high pass filtered by the loop

– Small ΔfDCO and large fREF is advantageous
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DCO Dithering

• Discrete frequency level

– Frequency error always occurs

– DCO resolution is the limiting factor of the 

phase noise performance

– Dithering by using ΔΣ modulation to enhance 

resolution

– Dithering noise should be less than the natural 

phase noise of the oscillator

– Caution: dithering increases high frequency 

noise
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Quantization Noise of DCO (2)

• Power spectral density of quantization noise of nth

order ΔΣ dithering (fdth = M·fREF)

– High frequency noise increases

• Output noise is high pass filtered by the loop
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Quantization Noise of DCO (3)

• Noise shaping

– Performance bottleneck in some RF application

– Fine resolution is important even if dithering is used

• Peak value

• For 2nd order dithering

ΔfDCO = 554.4 kHz

ΔfDCO = 95.6 kHz

7.2
for 

1
95.0

)}(max{

2

,

dth

dth

DCO f
f

ff

f

fS
OUT








 




2nd order dithering, 

f0 = 4GHz, fdth = 500 MHz

dth

n

dth

DCO

f

f
r

r

r
n

rn

rn

ff

f

fS
OUT






















 





 and 
tan

for 

1)(

)(41

12

1

)}(max{

2

22

,

47



Integrated Systems Design Laboratory, SNU D.K.Jeong

Time-Domain Noise (Jitter)

• Jitter

– Uncertainty or randomness in the timing of events

• Phase modulation jitter (PM jitter)

– Non-accumulative jitter

– Random fluctuation in the delay between input and output 

event with zero mean and bounded variation

• Frequency modulation jitter (FM jitter)

– Accumulative jitter

– Uncertainty of when a transition occurs accumulates with 

every transition

– Modeled as a random walk that is not bounded

[18] K. Kundert 2001
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Time-domain Simulation Method

• Oversampling simulation

– Spice, Simulink (matlab), etc.

– Transverse all the equally spaced time-stamps

– Inefficient due to the high oversampling ratio

• Event-driven simulation

– VHDL or Verilog

– Proceed to the time-stamp at which the next event 

occurs 

– Fast and efficient

– More useful in ADPLL design

49



Integrated Systems Design Laboratory, SNU D.K.Jeong

Basic Time-Domain Equation

• For nominal frequency f0 and nominal period T0

• For small ΔT/T0

• Timing deviation (TDEV)

– The difference between actual and ideal timing
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 Δt1  Δt2  Δt3  Δt4

T0 2T0 3T0 4T0

Actual time-stamps

Idea time-stamps

0

Oscillator PM Jitter

• Non accumulative addictive random error

• Timing errors do not influence one another

• Relation between time and frequency domains
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 ΔT1  ΔT2  ΔT3  ΔT4

T0 2T0 3T0 4T0

Actual time-stamps

Idea time-stamps

T0
T0

T0
T0

0

Oscillator FM Jitter

• Accumulative jitter

• Each transition depends on all previous deviation

• Relation between time and frequency domains
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Jitter and Phase Noise

• Convert phase noise specification into 
time-domain constraints

• FM jitter

– e.g. to meet −153 dBc/Hz @ 20 MHz for 1.9 GHz
• 20 MHz/1.9 GHz x (0.53 ns x 10-15.3 /Hz)0.5 = 5.4 fsRMS

• PM jitter

– e.g. to meet −170 dBc/Hz for 1.9 GHz
• 0.53 ns x (1.9 GHz x 10-17 /Hz)0.5 / 2π = 11.6 fsRMS
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[22] http://www.jittertime.com/resources/pncalc.shtml
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Summary

• ADPLLs are similar to DSP systems

• ADPLL will be dominantly used in deep-

submicron technology

• DLF offers more flexibility in design

• TDC and DCO dominate overall performance

• Various techniques can be exploited to 

analyze the ADPLL in both frequency and 

time domain
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• A digital controlled oscillator (DCO) is the 

digital counterpart of voltage controlled 

oscillator (VCO) in an all digital phase locked 

loop (ADPLL).

• Z-domain modeling

3

Basic Operation (1)

z-1

2pKDCOT
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• Input : N-bit digital code

• Output : periodic clock signal with 
frequency range (fmin ~ fmax) 

• KDCO : Df (Hz/bit)

4

Basic Operation (2)

Control 

code0 2N-1

Frequncy

fmin

fmax KDCO
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• Basic Operation

• Requirements

• Classification

• Design Example

• Issues on DCO design

• Case Studies

5

Outline



Integrated Systems Design Laboratory, SNU D.K.Jeong

• Fine frequency resolution (low KDCO)

• Wide range

– (Fine resolution + wide range) require larger N

• Linearity (constant Df/f)

• Low phase noise

• Low power consumption

• Small active area

6

DCO Requirements
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• Analog approach

– DAC + VCO

– DAC + ICO

– DAC + Varactor in LC tank

• Digital approach

– Control the number of inverter stages

– Control the number of drivers(variable inverter 

strength)

– Control the C value in LC tank

– Control the divider with high freq. oscillator

7

DCO Classification (1)
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• Ring oscillator

– Simple to design, small area

– Relatively low maximum frequency

– Poor phase noise

– Control # of stages, strength, supply voltage, 

load capacitor.

• LC oscillator

– Large area due to an inductor

– Relatively high maximum frequency

– Good phase noise, fine resolution

– Control C value

8

DCO Classification (2)
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• IDAC + analog VCO

– Control the R value

10

Analog approach (1)

[1] V. Kratyuk, SOVC, 2006

load swing
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• IDAC + analog VCO

– Control the current

11

Analog approach (2)

load swing

d eq load
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• DAC + analog VCO

– Control the voltage

12

Analog approach (3)

load swing

d eq load
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[2] D.Oh, ISSCC, 2007
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MUX

Coarse control : 

stage selection Output

In

EN[1]

EN[n]

Out

EN[0]

Fine control : 

Strength selection

Fine control

Fine control : 

Combination delay path

• Stage selection + strength control

– All components are cell-based

13

Digital approach (1)

[3] T.-Y.Hsu, TCAS II, 2001

[4] Ching-Che Chung, JSSC, 2003
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• Strength control

14

Digital approach (2)

[5] T. Olsson, JSSC, 2004

RUN
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• 2-phase selection + phase interpolating

– Control logic includes a FSM

15

Digital approach (3)

[6] S. Sidiropoulos, JSSC, 1997

N:2 MUX

Coarse control Output
PI

Fine control
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• High freq. oscillator + integer freq. divider

– Low resolution

– Used for wide-range applications

16

Digital approach (4)

/N divider

N control code

Fixed high freq.

oscillator

Clock output
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LC DCOs (1)

• Frequency tuning scheme

– Capacitance tuning

• MOS capacitance tuning

• For coarse/fine control

– Inductance tuning

• Self/mutual inductance tuning

• For band selection or coarse 

control

• Suitable for dual mode 

operation

Capacitor bank

Ctrl

Ctrl

Ctrl

17

LC

1
0 
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• Segmented LC-VCO

– Change frequency by turning on/off binary- or 

equally-weighted small capacitances

18

LC DCOs (2)

[7] R. B. Staszewski, TMTT, 2003
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• Basic Operation
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• Capacitive tuning:

– To enhance frequency resolution

• Increase capacitance

• Low LC-tank Q due to the parasitic capacitance

• Phase noise performance degradation

• Increased power consumption due to large load 

capacitance

– Trade-off between frequency resolution, output 

frequency, tuning range, and power 

consumption

20

Trade-offs in LCDCOs
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• Reducing switching noise

– Minimizing on/off switching

– Only one column bit state changes

21

Design Issues (1)

[2] D. Oh, ISSCC, 2007
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Design Issues (2)

• Frequency resolution

– Quantization noise due to 
uniform dithering

– Quantization noise due to 
ΣΔ modulation

– Directly affect phase 
noise performance

– Performance bottleneck 
in some application

22

[9] R. B. Staszewski, JSSC, 2005
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• Choice for negative gm device

– NMOS

• Smallest parasitic capacitance for same gm

• Output swing exceeds the supply voltage

– PMOS

• Lower 1/f noise in most process(not always)

– CMOS

• Large parasitic capacitance

• Low signal distortion

• Min. & Max. output voltage is fixed

23

Design Issues (3)
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• Noise on current source

– The drain node of the current source has a 

ripple of 2x output frequency

– Additional LC for high Z to the current source

24

Design Issues (4)

[9] R. B. Staszewski, JSSC, 2005Bias
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• Current source sizing

– According to the operating frequency, the 

optimum size changes

– Digital code controls the current source

25

Design Issues (5)

[8] R. B. Staszewski, JSSC, 2005
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• Basic Operation

• Requirements

• Classification

• Design Example

• Issues on DCO design

• Case Studies

26
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Monotonic DCO (1)

• Core oscillator : inverter-based 4-stage delay element

– Integral word  control supply of the core oscillator

– PD outputs  altering load capacitor

integral word<10:0>

Vvdddco

DCR

CBYPASS

Level 

Converter
Level 

Converter

Level 

Converter

Level 

Converter

up

dnb

proportional 

gain<3:0>

4-phase clock ( mclk<3:0> )

[16] H. Song, JSSC
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Monotonic DCO (2)

• Digitally controlled 

resistor (DCR)

– Stacked row cells of PMOS 

array

– monotonic characteristics

• Linear characteristics by 

non-uniformly sizing of 

wP1, wP2, … , wP31

on<0> on<1> on<31>

WS

onl<32> on<33> on<63>

on<992> on<993> on<1023>

WP0 WP1 WP31

fine<0>

28

[16] H. Song, JSSC
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Monotonic DCO (3)

• Simulation results of the DCR with non-uniformly

sized parallel PMOSs

– Resistance range : 330 Ω ~ 3.3 kΩ

same width: RS0=RS, RP0=RP1= ··· =RP31

Non-uniform sizing: RS0>RS, RP0>RP1> ··· >RP31
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same width

nonlinear sizing

same width

non-uniform sizing

RS0

RTOP=RS0

(31-N)×RS

(31-N)

RS

RS
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N

RVARI=RP0//RP1// ••• // RPM

RF

RP0 RP1 RP30 RP31

RP0 RP1 RP30 RP31

RP0 RP1 RPM

REQUIV=RTOP // RVARI+(31-N)*RS+RFVvdddco

REQUIV=RTOP // RVARI+(31-N)*RS

integral word=2
5
*N+M (N,M=0~31)

[16] H. Song, JSSC
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• Implementation of the DCR

30

Monotonic DCO (4)

Column decoder
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integral word<10:6>
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integral word<0>
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[16] H. Song, JSSC
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• Supply-compensated delay cell

– Coarse : stage selector

– Fine : phase interpolator

31

V-Tolerant DCO (1)

[14] B. M. Moon, TCAS II, 2008
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• Supply-compensated delay cell

– The strength of the latch is controlled by Vth

(PMOS) and VDD – Vth (NMOS).

32

V-Tolerant DCO (2)

[14] B. M. Moon, TCAS II, 2008
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• Supply-compensated delay cell

– Delay time is insensitive to the supply voltage.

33

V-Tolerant DCO (3)

[14] B. M. Moon, TCAS II, 2008
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• DCO code prediction for fast locking

– Using reference clock, PVT sensor detects 

current condition.

– DCO code prediction makes a fast locking

34

Fast locking ADPLL (1)

[15] H. S. Jeon, ISCAS, 2008

(a) DCO

(b) PVT sensor
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• DCO code prediction for fast locking

– By normalizing, PVT variation can be cancelled

35

Fast locking ADPLL (2)

[15] H. S. Jeon, ISCAS, 2008

(a) DCO period (b) DCO normalized period

Predicted codeword for 6ns period
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• DCO code calculation

– DCO code predictor

36

Fast locking ADPLL (3)

[15] H. S. Jeon, ISCAS, 2008
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• Hysteresis delay cell

– Coarse stage : selecting delay path

– Fine stage : hysteresis delay cell

37

Fine-Resolution DCO (1)

[13] D. Sheng, TCAS II, 2007

MUX

Coarse control : 

stage selection

Fine delay 

path
Out

F1ON[1] F1ON[2]

HDC
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• Hysteresis delay cell

38

Fine-Resolution DCO (2)

[13] D. Sheng, TCAS II, 2007

F1ON

I1 I3

I 2

F1ON

F1ON

Cload

I 1 I3

N1
N1

I 2

High for a 

while



Integrated Systems Design Laboratory, SNU D.K.Jeong

• Phase noise of LC DCO is affected by the 

frequency resolution

• Δf is linearly proportional to ΔC

• Output frequency: ~ GHz

– Required Δf: ~ kHz

– Required minimum ΔC: ~ aF

– Minimum ΔC depends on the minimum feature 

size of the process

– Various studies focus on ΔC minimization 

39

Frequency Resolution
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• Capacitors in series

• Capacitive divider network

• Vulnerable to process variation, parasitic, 

and mismatch

40

Capacitance Minimization Techniques
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[18] Y. Chen, A-SSCC, 2007

[17] X. Dai, ISIC, 2009
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• NMOS-PMOS varactor bank

41

Fine-Resolution LC-DCO (1)

[11] J. H. Han, EL, 2008
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• NMOS-PMOS varactor bank

– Capacitance of MOSFET in various process

42

Fine-Resolution LC-DCO (2)

[11] J. H. Han, EL, 2008

Process
NMOS PMOS NMOS-PMOS

Con Coff ΔC Con Coff ΔC Con Coff ΔC

65nm 200a 104a 96a 183a 94a 89a 294a 287a 7a

90nm 253a 143a 110a 266a 159a 107a 413a 409a 4a

130nm 3.7f 2.0f 1.7f 3.4f 1.6f 1.8f 5.2f 5.4f -0.2f

180nm 4.2f 2.2f 2.0f 4.6f 2.5f 2.1f 6.7f 6.8f -0.1f
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• NMOS-PMOS varactor bank

– Quality factors of the varactors

43

Fine-Resolution LC-DCO (3)

[11] J. H. Han, EL, 2008

PMOS

NMOS

N-PMOS



Integrated Systems Design Laboratory, SNU D.K.Jeong

• Source degeneration capacitor

– Capacitance shrinking factor ≈ 500 (@ C=5pF)

44

Fine-Resolution LC-DCO (4)

[12] L. Fanori, ISSCC, 2010
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• Source degeneration capacitor

45

Fine-Resolution LC-DCO (5)

[12] L. Fanori, ISSCC, 2010
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• Source degeneration capacitor

– Adding 4-bit DAC for higher resolution

46

Fine-Resolution LC-DCO (6)

[12] L. Fanori, ISSCC, 2010

@ 3.3GHz with shrinking factor of 150

300f HzD 
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• Dual-LC tank DCO

– Only one -gm cell is intended to be enabled

47

Dual-LC Tank DCO (1)

[19] A. Goel, SOVC, 2010
L1=2.05nH, L2=1.28nH, k12=0.3
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• Coupled inductors

– Behavior of active tank is influenced by the inactive tank

– Adjusting the resonance frequency of inactive tank 

results in three modes

48

Dual-LC Tank DCO (2)

[19] A. Goel, SOVC, 2010
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• Performance summary

49

Dual-LC Tank DCO (3)
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Low Phase Noise LCVCO Comparisons

Year Publish Title
VDD power Pnoise Calculation

@20M, 0.9G
[V] [W]

2006 ISSCC
A phase noise reduction technique for quadrature LC-VCO with phase to amplitude 

noise conversion
1.8 2.77E-02 -173.7 

2010 EL [22]Low-phase-noise LC-VCO using high-Q 8-shaped inductor 1.8(Reg) 1.35E-02 -171.9 

2009 IEEE MW
A CMOS backgate coupled QVCO based on Back-to-Back series Varactor configuration 

for minimal AM-to-PM noise conversion
1.0 4.40E-03 -170.3 

2008 ISSCC A 28GHz Low phase Noise CMOS VCO using and amplitude redistribution Technique. 2.5 6.70E-03 -168.8 

2001 JSSC A filtering Technique to lower LC oscillator Phase Noise 2.5 9.25E-03 -166.2 

2003 JSSC A low phase noise 5GHz CMOS quadrature VCO using superharmonic coupling 1.8 2.20E-02 -165.7 

2001 JSSC
low-power Low phase Noise Differentially tuned quadrature VCO design in standard 

CMOS
2.5 2.00E-02 -165.5 

2001 JSSC
Low power low phase noise differentially tuned quadrature VCO design in standard 

CMOS
2.5 2.00E-02 -165.5 

2010 IEEE MW [21]An UMTS and GSM Low Phase Noise Inductively Tuned LC VCO 1.8 1.35E-02 -165.0 

2007 IEEE [18]A Low Phase Noise Quad-Band CMOS VCO with Minimized Gain 2.6 4.42E-02 -164.8 

2002 JSSC Analysis and design of a 1.8 GHz CMOS LC quadrature VCO 2 5.00E-02 -162.5 

2002 JSSC Analysis and design of a 1.8 GHz CMOS LC quadrature VCO 2 5.00E-02 -162.5 

2007 JSSC A 1-V 17GHz 5mW CMOS quadrature VCO based on tranformer coupling 1 5.00E-03 -161.5 

2002 JSSC A Noise shifting Differential Colpitts VCO 2.5 1.00E-02 -161.5 

2009 RFIC
Low phase noise gm-boosted differential Colpitts VCO with suppressed AM-to-FM 

conversion
0.9V 1.62E-03 -160.2 

Meet

GSM

Spec
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Wide Tuning Ranges LCVCO Comparisons

Year Publish Title
Inductor

Tuning method

Truning 
range 

Freq [Hz]

Process

VDD power Pnoise 
Calculation
@20M,0.9Gmax/min

x100
min center max [V] W

2006 MTT
Switched resonator and Their Application in a dual band 

monolithic CMOS LC-Tuned VCO
Self 

7,9n/3.2n 110.6 1.64E+09 1.73E+09 1.81E+09 0.18u 3.3~3.6 1.6E-02 -159.5 

2008 JSSC
Design of wide Tuning-Range CMOS VCOs using switched 

coupled-inductors
Mutual 160.1 7.34E+09 9.55E+09 1.18E+10 90n 1.2 7.7E-03 -154.3 

2009 JSSC
LC PLL with 1.2-Octave Locking Range based on mutual-

inductance switching in 45nm SOI CMOS

Mutual
k=0.48

0.1n/0.2n
239.7 7.30E+09 1.24E+10 1.75E+10 45n 1 1.4E-02 -141.7 

2005 RFIT
Multi-mode wide-band 130 nm CMOS WLAN and GSM-

UMTS
Mutual 334.8 3.42E+09 7.44E+09 1.15E+10 0.13u 1.5 3.0E-03 -163.9 

2007 MTT
New Frequency Plan and Reconfigurable 6.6- 7.128 GHz 
CMOS Quadrature VCO for MB OFDM UWB Application

Self 108.0 6.60E+09 6.86E+09 7.13E+09 0.18u 2 2.0E-02 -159.3 

2000 CICC
A new approach to fully integrated CMOS LC-oscillators 

with a very large tuning range
Self 159.7 1.34E+09 1.74E+09 2.14E+09 0.35u 3 - -132.5 

2007 EL
Wide tuning range LC-oscillator in 65nm SOI CMOS, 

based on switchable secondary inductor
Mutual

0.6n/0.3n 176.6 6.40E+09 8.85E+09 1.13E+10 65n 1 4.5E-03 -143.8 

2007 JSSC A Magnetically Tuned Quadrature Oscillator
Mutual + K 

control 228.1 3.20E+09 5.25E+09 7.30E+09 65n 1.2 2.4E-02 -150.1 

2009 RFIC
1.1 to 1.9GHz CMOS VCO for Tuner Application with 

Resistively Tuned Variable Inductor
Mutual + R 177.4 1.06E+09 1.47E+09 1.88E+09 0.25u 3 2.0E-02 -148.4 

2005 ASSCC
A 1V Dual-Band VCO Using an Integrated Variable 

Inductor
Mutual + C 513.6 2.20E+09 6.75E+09 1.13E+10 0.18u 1 5.0E-03 -154.5 

2009 CICC
A CMOS 3.3-8.4 GHz wide tuning range, low phase noise 

LC VCO
Self 254.5 3.30E+09 5.85E+09 8.40E+09 0.13u 1.6 1.5E-02 -162.4 

2002 ESSCIRC
ESSCIRC A CMOS fully integrated 1 GHz and 2 GHz dual 

band VCO with a voltage controlled inductor
Self 200.0 1.00E+09 1.50E+09 2.00E+09 0.25u 1.5 1.4E-02 -155.4 

2007 RFIT
A Dual Band CMOS Quadrature VCO for Low Power and 

Low Phase Noise Application
Self 272.2 1.80E+09 3.35E+09 4.90E+09 0.18u 1.7 6.8E-03 -155.0 

None can meet GSM spec.(-165dBc/Hz @ 900MHz freq, 20MHz offset).

There is trade-off  between tuning range and phase noise.
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• Introduction

• Basic Operation

• TDC Requirements

• TDC Classification

– Short time interval generation

– Time stretching

– Etc

2

Outline
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• Time-to-digital converter(TDC) is a device 
for converting a time difference between 
two events into a digital representation of 
their time indices.
– Time-of-fight(TOF) measurement in high energy 

particle physics, laser range finding and positive 
electron tomography(PET) medical imaging 
technology

– On-chip timing and jitter measurements

– Phase difference measurement in All-digital PLL 
and All-digital DLL

3

Introduction
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Basic Operation(1)
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• TDC transfer curve

5

Basic Operation(2)
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• High resolution

• Wide range

• Linearity(INL, DNL)

• Low power

• Small area

6

TDC Requirements
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• Introduction

• Basic Operation

• TDC Requirements

• TDC Classification

– Short time interval generation

– Time stretching

– Etc

7

Outline



Integrated Systems Design Laboratory, SNU D.K.Jeong

• Short time interval generation

• Time Stretching

• Etc

– Gated ring oscillator TDC

– Pulse shrinking TDC

– Stochastic TDC

– Utilizing ADC

8

TDC Classification
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• Generation of the more fine timing signal 

to enable the more accurate translation of 

time interval to digital code

– Delay chain TDC

– Differential delay chain TDC

– Vernier TDC

– Interpolation TDC

9

Short Time Interval Generation
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• Two-inverter delay resolution

10

Delay Chain TDC

[1] Rahkonen,Ciruit and Systems,1989
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Delay Chain TDC
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• One-inverter delay resolution

• Different setup time for data ‘1’ and ‘0’

12

Differential Delay Chain TDC
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• One-inverter delay resolution

• Using symmetric DFF

13

Differential Delay Chain TDC

[2]Staszewski,TSCASII,2006
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• Symmetric DFF

– Same setup time for data ‘1’ and ‘0’

14

Differential Delay Chain TDC

[3]Nikolic,JSSC,2000
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• Sub-gate-delay resolution

• TDC resolution = ts – tf  , (ts ≠ tf )

15

Vernier TDC

[4]Dudek,JSSC,2000
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Vernier TDC
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• Divide the buffer delay into two or more 

smaller intervals

17

Interpolation TDC

[5]Henzler,JSSC,2008



Integrated Systems Design Laboratory, SNU D.K.Jeong18

Interpolation TDC
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• TDC range = # of delay cell x resolution

• For wide range and high resolution, too 

many delay cells are needed.

=> large area and poor linearity.

• Solutions:

– Two-step TDC

– Logarithmic TDC

– Ring TDC

19

Wide Range TDC
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• Incorporates both the delay chain TDC and 

Vernier TDC

20

Two-Step TDC

[6]Ramakrishnan,VLSI Design,2006
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• Incorporates both the delay chain TDC and 

Vernier TDC

21

Two-Step TDC (1)

[7]Tokairin,ISSCC,2010
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Two-Step TDC (2)

[7]Tokairin,ISSCC,2010
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• SEL=high => measures td1 for normalization

• SEL=low  => measures residue from delay chain 

TDC

23

Two-Step TDC (3)

[7]Tokairin,ISSCC,2010
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• Wide range is achieved through logarithmic 

inverter delay

• Additional logic is required for linearization

24

Logarithmic TDC

[8]Lin,ISSCC,2004
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Logarithmic TDC
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• Reuses the delay elements and increases the 

detection range

• Better linearity than delay chain TDC

26

Cyclic TDC

[9]Chang,ISSCC,2008

Inconsistency may occur

during transition
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Vernier Ring TDC

[10]Yu,JSSC,2010
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Vernier Ring TDC
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• Opposite approach to get high resolution 

is time stretching

• Amplifies input time difference  and uses 

simple delay chain TDC

• Amplification greatly relaxes the 

requirement on device matching in delay 

line

– Time amplifying TDC

– Sub-exponent TDC

29

Time Stretching TDC
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• Time residue is amplified by TA(Time Amplifier) 

and resolved by fine TDC

30

Time Amplifying TDC (1) 

[13]Lee, JSSC 2008
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Time Amplifying TDC (2) 

[13]Lee, JSSC 2008
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• In SR latch followed by an XOR, the propagation delay 

varies as an even-symmetric logarithmic function versus 

input time difference.

32

Time Amplifying TDC (3) 

[13]Lee, JSSC 2008
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Time Amplifying TDC (4) 

[13]Lee, JSSC 2008
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Sub-Exponent TDC (1) 

[14]Lee, JSSC 2010

• Scaling of resolution according to input time difference
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Sub-Exponent TDC (1) 

[14]Lee, JSSC 2010

td=

Output is 1 when time 

difference is > td
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• First discharging is performed by two identical path

• Second discharging is perform by only one path

=> The gain of TA roughly is twice of the small signal input gain.

36

Sub-Exponent TDC (2)

[14]Lee, JSSC 2010
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• With large input time diff, output saturated. To get accurate 

2x time amplification, TA calibration is necessary

37

Sub-Exponent TDC (3)

[14]Lee, JSSC 2010

PMOS diodes:

Slow discharge 

on C & D

M1 and M3 not 

completely

turned off
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• Etc

– Gated ring oscillator TDC

– Pulse shrinking TDC

– Stochastic TDC

– Time-to-Voltage followed by ADC

38

Other TDCs
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• Counters operate when enable signal is high

• Oscillator runs freely regardless of input 

=> Large power consumption

39

Oscillator-Based TDC

[15]Nissinen,ESSCIRC,2003



Integrated Systems Design Laboratory, SNU D.K.Jeong

Terr=Terr,stop-Terr,start

An oscillator-based 

TDC’s Terr,start is random, 

having uniform density 

on the interval [0,Tq]. 

40

Oscillator-Based TDC
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• Oscillator operates only when the enable is high

• When the enable is low, it holds the state

41

Gated Ring Oscillator TDC (1)

[16]Straayer,JSSC,2009
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• When the enable is low, the time residue is stored 

in VOi node

42

Gated Ring Oscillator TDC (2)
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Terr,stop[k-1]=Terr,start [k]

Terr=Terr,stop[k]-Terr,stop[k-1]

First order noise shaping

of the quantization error

43

Gated Ring Oscillator TDC (3)
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• Width of the input pulse shrinks in each element 

by a fixed amount, until the pulse entirely 

disappears.

44

Pulse Shrinking TDC (1)

[17] Karadamoglou,JSSC,2004
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• The propagation of the rising edge of the input 

pulse is slowed down by the current starving 

transistor.

45

Pulse Shrinking TDC (2)
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• Using random sampling offset mismatch

46

Stochastic TDC

[18]Kratyuk,TCASI,2009
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• Behavioral simulations of 100 STDCs

47

Stochastic TDC
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• The time interval is first converted into a voltage 

and then the voltage is converted into a digital 

value by ADC

48

Time-to-Voltage followed by ADC

[19] Maatta, Instrum.&Meas,1998
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• Introduction 

• Recently Published Frequency Synthesizers

Outline

2



Integrated Systems Design Laboratory, SNU D.K.Jeong

• Jitter reduction

• Skew suppression (zero delay buffer)

• Frequency synthesis

– Clock multiplication and carrier generation in 

wireline and wireless communication systems

– Multiple PLLs in a chip

– Integer-N or fractional-N frequency synthesis

• Clock and data recovery

PLL applications

3
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TDC DLF
Error 

canceller
ΔΣ DCO

÷ M

÷ N/N+1

ΔΣ

• ΔΣ-modulator (ΔΣ) is used to increase the 

effective resolution of the DCO

• Fractional spur can be reduced by using 

cancellation techniques

ADPLL Fractional-N FS Architecture

[1] C.-M. Hsu JSSC 2008

[2] R. B. Staszewski JSSC 2005

4



Integrated Systems Design Laboratory, SNU D.K.Jeong

DCO Resolution Enhancement Using ΔΣ-Modulator

• We can’t reduce DCO resolution which is determined by 

physical characteristics. 

• However we can improve effective resolution of DCO by 

averaging a modulated signals.

• ΔΣ-dithering means to change frequency with high modulation 

frequency.

• Dithering prevents a jitter  being accumulated. There only 

short-term jitter. (In other word, high frequency noise 

component)

Ideal

No dithering

With dithering

5
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High Resolution DCO Using ΔΣ-Modulator

• Effective frequency resolution is improved by high-

speed ΔΣ-dithering

• Higher update rate of DCO is important

– Phase error accumulates for dithering cycles

– Peak-to-peak jitter is inversely proportional to update 

frequency

Ref
Out

fupdate = fRef

< Case 1 > < Case 2 >

TDC DLF DCO

÷ M

÷ N

fupdate = fOut/M    fRef

TDC DLF ΔΣ DCO
Out

÷ N

Ref

6
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• Peak-to-peak jitter reduction

Low Jitter DCO Using ΔΣ-Modulator

Lock point

Δte,pp ≈ N x KD

Tdiv,m Tdiv,m+1

Td,k Td,k+1

Tref Tref

Ref

Div

Out

Δte,m

Lock point

Δte,pp ≈ M x KD

Td,k = KD x DCOin,k

KD : DCO resolution

< Case 1 > < Case 2 >

Td,k+N-1

M = fOut/fΔΣ

Ref
Out

fupdate = fRef

< Case 1 >

TDC DLF DCO

÷ N

< Case 2 >

÷ M

fupdate = fOut/M    fRef

TDC DLF ΔΣ DCO
Out

÷ N

Ref

7
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• Design issue

– Synchronization between lower and higher frequency 

clock domain

– Fast ΔΣ-dithering speed for low jitter generation

– Noise shaping due to ΔΣ

• High frequency noise increases

• Performance bottleneck in some RF applications 

Low Jitter DCO Using ΔΣ-Modulator

High frequency regionLow frequency region

÷ M

TDC DLF ΔΣ DCO

÷ N

Synchronization

Out
Ref

8
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Frequency Multiplication

• General fractional-N operation

– Divider dithering using ΔΣ

• Phase-domain operation

– Accumulate frequency 

control word (FCW)

Ref
Out

TDC DLF DCO

÷ N/N+1

ΔΣ

Σ
N.F

Ref Σ

DLF DCO
Out

1

+

−

9



Integrated Systems Design Laboratory, SNU D.K.Jeong

• Phase-domain operation

– Long term average: fRef × N = fOut × 1

– Reference and output clock domains are not 

synchronous

– Spurious tones occur

Integer Frequency Multiplication

Σ
N

LF DCO

1
Σ

+
Out

Ref

+

−

[3] R. B. Staszewski TCASII 2005

10
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Out

Ref

CKR

SF

SV

SVR

E

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 3 9 12

0

0 0

6

3 9 126

00 0

Integer Frequency Multiplication

Σ
N=3

LF DCO

1
Σ

+
Out

Ref CKR

SF

SVR SV

E

Sync

+

−

11
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Out

Ref

CKR

SF

SV

SVR

E

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

2.25 4.5 11.25

0 3 5 7 9 12

0 6.75 9

-0.75 -0.5 -0.750 -0.25 0

Fractional Error

Σ
N=2.25

LF DCO

1
Σ

+
Out

Ref CKR

SF

SVR SV

E

Sync

+

−
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Out

Ref

ε = 0.75 ε = 0.5 ε = 0.25 ε = 0.75ε = 0

Fractional Error Correction

[3] R. B. Staszewski TCASII 2005

TDC
Normalization factor

−ε

Σ
N=2.25

LF DCO

1
Σ

+
Out

Ref CKR

SF

SVR SV

E

Sync

+

−

13

Inconsistency 

may occur
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• Introduction

• Recently Published ADPLLs

Outline

14
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ADPLL Example – 1 (1)

• Multipath gated ring oscillator TDC (GRO-TDC)

• Digital fractional noise cancellation

• Achieve low noise and wide bandwidth

[1] C.-M. Hsu JSSC 2008

15
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ADPLL Example – 1 (2)

Multipath GRO-TDC

• Deal with the quantization noise 

directly in the digital domain

• Scale factor is easily computed

Digital noise cancellation

[1] C.-M. Hsu JSSC 2008

GRO-TDC

Multipath implementation

16
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ADPLL Example – 1 (3)

Passive DAC

• 5-bit resistor ladder & 5-bit 

switch-capacitor array

• Minimize active circuitry and no 

transistor bias current

• Achieve monotonic DAC output 

with first-order filtering

[1] C.-M. Hsu JSSC 2008

Step 1: unit capacitor charged

Step 2: charge redistributed and filtered

17
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ADPLL Example – 2 (1)

• Fractional ADPLL without feedback divider
([9] R. B. Staszewski TCASII 2005)

• Simplifies synthesizer core

• Requires more accurate TDC calibration to ensure 

the ratio between Fout and Fref

[4] E. Temporiti JSSC 2009

18
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ADPLL Example – 2 (2)

• Fractional counter should meet N·Tdel=M·Tdco/2

M and N are relatively prime

• In this implementation, 21·Tdel=5·Tdco/2

[4] E. Temporiti JSSC 2009

19



Integrated Systems Design Laboratory, SNU D.K.Jeong

ADPLL Example – 2 (3)

• Fractional counter calibration

– Monitor the number of group of 5 identical bits

[4] E. Temporiti JSSC 2009

20
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ADPLL Example – 2 (4)

• Fractional counter mismatch correction

– Reference clock rate is doubled

– Generate pseudo random jitter injected ‘dirty edge’ only for 

calibration and correction

(‘dirty edges’ are not used by the main loop)

– Monitor the histogram of fractional counter

[4] E. Temporiti JSSC 2009

21
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ADPLL Example – 3 (1)

• Fractional-N PLL with phase-interpolation divider

• TDC using dynamic element matching (DEM)

• Digital fractional noise cancellation (as [7])

• Phase interpolator mismatch cancellation

[5] M. Zanuso ISSCC 2010
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ADPLL Example – 3 (2)

• Division factor: Ndiv + (Npi + Nsd/216)/16

• All digital bang-bang servo loop forces multi-phases 

to be equally spaced

[5] M. Zanuso ISSCC 2010
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ADPLL Example – 3 (3)

TDC using DEM
Phase interpolator 

mismatch cancellation

[5] M. Zanuso ISSCC 2010
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 ADPLL Block Diagram and Noise Sources

 Output Noise

 Calculation of Power Spectral Density 

 Verilog Simulation

 Phase Noise and Jitter 

 RMS Jitter Calculation from Phase Noise

 Verilog simulation

 Simulation Guide
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 Power spectral density of output noise

Output Noise 
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Phase Noise and Jitter
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 Verilog simulation (calculation and simulation result comparison)

7

Simulation
Integral of RMS jitter, 3.7717ps 

Relative RMS jitter with frequency

1 – Jitter from TDC quantization 

noise

2 – Jitter from divider DSM noise

3 – Jitter from DCO DSM noise

RMS jitter

Calculation : 3.7717ps

Simulation : 3.6343ps

3

1

2

RMS Jitter of calculation and that 

of verilog simulation are almost 

same!


