# 3.1. Introduction to All-Digital PLL

**Deog-Kyoon Jeong** 

Integrated Systems Design Laboratory Seoul National University

#### Outline

- Introduction
- ADPLL Building Blocks
  - Digital Loop Filter
  - Digitally Controlled Oscillator
  - Time-to-Digital Converter
- Modeling and Analysis
- Phase Noise
- Summary

#### What is an ADPLL?

- In a broad sense
  - ADPLL consists of digital components and digital equivalents
  - Building blocks have input/output levels are defined in digital domain
- In a strict sense
  - A PLL exclusively built from digital function blocks and contains no passive component
  - All components are synthesizable (Cell-based ADPLL)

#### **Classification of PLL Types**

- Analog PLL
  - Analog PD (multiplier), LF built from passive or active RC filter, VCO
- Digital PLL
  - Digital PD, charge-pump PLL
- All-Digital PLL
  - Built from digital function blocks
  - All components provide digital interfaces only

## **ADPLL Block Diagram**

- Digital loop filter
- Time-to-digital converter (TDC)
  - Linear
  - Bang-bang
- Digitally controlled oscillator (DCO)
  - Explicit DAC + VCO
  - Embedded DAC



#### **Advantages of ADPLL**

- No analog tuning voltage
  - Suitable for deep-submicron tech using low supply voltage
- PVT variation can be compensated more easily
  - Stable transfer characteristic
- Digital filter
  - Passive components are not necessary
  - Less sensitive to gate leakage
  - Easily benefit from technology shrink
  - Small area  $\rightarrow$  cost reduction
- Information can be processed more flexibly
  - More portability and testability
  - Most function blocks are synthesizable

## **Advantages of Digital Loop Filter**

- Small area
- No leakage current
- PVT independent
- Easy to design
  - DLF can be constructed simply by transformation from s-domain to z-domain
  - DLF can be expanded to higher-order filter readily
- Coefficients can be changed adaptively
  - Preset initialization on power-up
  - Adaptation during operation for fast locking or low jitter

## **Comparison with Typical DPLL**

- Almost the same structure as a charge-pump PLL
  - PFD & CP → TDC
  - VCO  $\rightarrow$  DCO

|                         | CPPLL                               | ADPLL                                      |
|-------------------------|-------------------------------------|--------------------------------------------|
| Phase error information | Pump<br>Current                     | Quantized<br>digital                       |
| Loop filter             | RC filter<br>(passive or<br>active) | Digital filter<br>(IIR or FIR)             |
| Oscillator<br>control   | Analog<br>(voltage or<br>current)   | Digital code<br>(binary or<br>thermometer) |



#### Outline

Introduction

#### ADPLL Building Blocks

- Digital Loop Filter
- Digitally Controlled Oscillator
- Time-to-Digital Converter
- Modeling and Analysis
- Phase Noise
- Summary

#### **DLF Examples**

Simple z-domain IIR filters



Integrated Systems Design Laboratory, SNU

D.K.Jeong

#### **Higher Order DLF Example**

- Cascaded IIR low pass filter
  - Easily expanded to higher order



## Analogy to Analog Filter (1)

1<sup>st</sup> order passive loop filter



$$H(s) = \left(R + \frac{1}{sC}\right) = \frac{(s / \omega_z + 1)}{sC}$$
$$\omega_z = \frac{1}{RC}$$

• z-domain model



$$H(z) = \left( \begin{array}{c} \beta + \frac{\alpha}{1 - z^{-1}} \end{array} \right) \quad \text{Integral gain}$$

#### **Proportional gain**

## Analogy to Analog Filter (2)

• 2<sup>nd</sup> order passive loop filter



$$H(s) = \frac{(s/\omega_z + 1)}{(C_1 + C_2)s} \cdot \frac{1}{(s/\omega_p + 1)}$$
$$\omega_z = \frac{1}{RC_1}, \quad \omega_p = \frac{C_1 + C_2}{RC_1C_2}$$

• z-domain model



$$H(z) = \left(\beta + \frac{\alpha}{1 - z^{-1}}\right) \cdot \frac{1}{1 - \gamma z^{-1}}$$

#### With gain normalization

$$H(z) = \left(\beta + \frac{\alpha}{1 - z^{-1}}\right) \cdot \frac{\left(1 - \gamma\right)}{1 - \gamma z^{-1}}$$

## **Adaptive Digital Loop Filter**

- Lock-time control, frequency locking range enhancement
- Find the optimum performance point
  - Input noise filtering vs. lock-time
- Utilize software or hardware
  - Gain estimation
  - Noise cancellation



#### **TDC Classification**

- Linear TDC
  - Delay line based
  - Fine resolution
  - Consumes large hardware and power
  - Process dependent and less reusable
- Bang-bang TDC
  - Simple structure
  - Highly nonlinear but can be controlled
  - More reusable

#### Linear TDC

- Converts time difference to digital value
- Important design factors: resolution, linearity, power, area
- Conventional TDC
  - Delay chain and samplers
  - Minimum delay is restricted by intrinsic gate delay → Vernier TDC, interpolative TDC
  - Large size, small dynamic range







[3] S. Henzler JSSC 2008

#### Linear TDC

- To increase dynamic range
  - Ring oscillator-based TDC
  - Large power consumption due to the free running oscillator
- Stochastic TDC
  - Exploits mismatch between samplers and random variation of the offset voltage
  - Very fine resolution
  - Narrow range







[5] V. Kratyuk TCASI 2009

#### **Bang-Bang TDC**

- Easily achievable and suitable for digital implementation
  - e.g. bang-bang PFD



[6] T. Olsson JSSC 2004

Integrated Systems Design Laboratory, SNU

D.K.Jeong

# **Digitally Controlled Oscillator**

- **Most Critical component** in ADPLL implementation
- **Digital-to-frequency** ulletconversion
  - Underlying functionality is analog
  - **Supports digital interface**
  - Analog nature doesn't propagate
- Implementation method
  - Explicit DAC + VCO
  - Embedded DAC (turning on/off each unit cell)



#### **Problem of Limited DCO Resolution**



 Quantized frequency control causes a limit cycle – cycling around the intended frequency

## **Typical Locked Behavior of ADPLL**



- Periodic or pseudo-periodic (peak-to-peak jitter is bounded)
- ΔΣ-modulator can be used to alleviate this problem

#### **ADPLL** Architecture

- $\Delta\Sigma$ -modulator ( $\Delta\Sigma$ ) is used to increase the effective resolution of the DCO
- Fractional spur can be reduced by using cancellation techniques



### Low Jitter DCO Using ΔΣ-Modulator

- Effective frequency resolution is improved by highspeed ΔΣ-dithering
- Higher update rate of DCO is important
  - Phase error accumulates for dithering cycles
  - Peak-to-peak jitter is inversely proportional to update frequency



#### Outline

- Introduction
- ADPLL Building Blocks
  - Digital Loop Filter
  - Digitally Controlled Oscillator
  - Time-to-Digital Converter
- Modeling and Analysis
- Phase Noise
- Summary

#### **Analysis methods**

- z-domain analysis
  - Models discrete-time behavior
  - Can exploit intuitive CPPLL analogy
  - Quick and simple
- s-domain analysis
  - z-to-s domain transformation
    - Simple approximation (z -> 1+sT)
    - Bilinear-z transformation (z -> (1+sT/2)/(1-sT/2))
  - CPPLL analogy can be used
  - Many s-domain analysis techniques reused
    - Phase Margin
    - Bandwidth

#### Simple z-domain Model



#### Stability check in z-domain

- Unit circle criterion: all poles should be inside the unit circle
- Jury's stability criterion

#### **Steady-State Phase Error**

- Step input:  $p(t) = p \times u(t) \rightarrow P(z) = \frac{p}{1-z^{-1}} = \frac{pz}{(z-1)}$
- Error function:

$$E_{p}(z) = P(z) - P(z)C(z) = \frac{P(z)}{1 + L(z)}$$
$$= \frac{pz}{(z-1)} \cdot \frac{z^{D-1}(z-1)^{2}}{z^{D-1}(z-1)^{2} + K_{TDC}(\alpha + \beta)\gamma z - K_{TDC}\beta\gamma}$$

• Using final value theorem:

$$e_{p}(\infty) = \lim_{z \to 1} (z-1)E_{p}(z)$$
  
= 
$$\lim_{z \to 1} \frac{pz}{(z-1)} \cdot \frac{z^{D-1}(z-1)^{3}}{z^{D-1}(z-1)^{2} + K_{TDC}(\alpha+\beta)\gamma z - K_{TDC}\beta\gamma} = 0$$

#### Phase error is eventually eliminated

#### **Steady-State Frequency Error**

- **Ramp input:**  $f(t) = wt \times u(t) \rightarrow F(z) = \frac{wTz}{(z-1)^2}$
- Error function:

$$E_{f}(z) = F(z) - F(z)C(z) = \frac{F(z)}{1 + L(z)}$$
$$= \frac{wTz}{(z-1)^{2}} \cdot \frac{z^{D-1}(z-1)^{2}}{z^{D-1}(z-1)^{2} + K_{TDC}(\alpha + \beta)\gamma z - K_{TDC}\beta\gamma}$$

• Using final value theorem:

$$e_{f}(\infty) = \lim_{z \to 1} (z-1)E_{f}(z)$$
  
= 
$$\lim_{z \to 1} \frac{wTz}{(z-1)^{2}} \cdot \frac{z^{D-1}(z-1)^{3}}{z^{D-1}(z-1)^{2} + K_{TDC}(\alpha+\beta)\gamma z - K_{TDC}\beta\gamma} = 0$$

#### Frequency error is eventually eliminated

## Analysis Using CPPLL Analogy

- DLF coefficients selection
  - Apply bilinear transform to s-domain filter
    - T<sub>s</sub> : sampling time of digital system

$$H(s) = \left(R + \frac{1}{sC}\right) \xrightarrow{s = \frac{2}{T_s} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}} H(z) = \frac{\left(\frac{T_s}{2C} + R\right) + \left(\frac{T_s}{2C} - R\right) z^{-1}}{1 - z^{-1}}$$

Compare coefficients

[10] V. Kratyuk TCASII 2007

# Analysis Using CPPLL Analogy

Use stability analysis method of CPPLL

$$\alpha = \frac{T_s}{T_{REF}} \cdot \frac{\Delta t_{TDC} \cdot N}{K_{DCO}} \cdot \frac{\omega_{UGBW}^2}{\sqrt{1 + \tan^2(PM)}}$$
$$\beta = \alpha \cdot \left(\frac{\tan(PM)}{T_s \cdot \omega_{UGBW}} - \frac{1}{2}\right)$$

- T<sub>s</sub> : Sampling period [s]
- $-T_{REF}$  : Reference period (usually  $T_{REF} = T_s$ )
- K<sub>DCO</sub> : DCO gain [Hz/LSB]
- Δt<sub>TDC</sub> : Resolutions of TDC [s/LSB]
- PM : Phase Margin
- $-\omega_{UGBW}$ : Unit gain bandwidth [rad/s]

[10] V. Kratyuk TCASII 2007

## Analysis Using CPPLL Analogy

Use stability analysis using simple approximation (z -> 1+sT)



#### **PD Gain in Presence of Jitter**

PD inputs contain jitter from input and VCO



General phase detector gain curve.



Eye diagram and jitter pdf.



[TCASII\_YDCHOI - Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery]

#### Integrated Systems Design Laboratory, SNU

#### D.K.Jeong

#### **BBPD Gain in Presence of Jitter**

Highly nonlinear characteristics of BBPD (one-bit TDC)



[TCASII\_YDCHOI - Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery]

### ADPLL with BBPD (1)



- Loop dynamic of ADPLL with BBPD
  - Highly nonlinear characteristics of BBPD (one-bit TDC)
    Described by time-domain difference equation
  - Refer to [11]–[15] for more details

#### **Nonlinear Loop Dynamics**

- Nonlinear dynamics are illustrated by trajectories in the phase space
- Behavior: equilibrium point or periodic orbit



# ADPLL with BBPD (2)

- Stability condition: Existence of limit-cycle
  - Phase and frequency errors never converge to zero concurrently
- Long pipeline stages increase loop latency
  - Enlarge the size of orbit
  - Degrade jitter performance
- Small loop latency is important


## ADPLL with BBPD (3)

- 1<sup>st</sup> order BBPLL loop dynamics (initial error = 0)
  - Peak-to-peak jitter is directly proportional to loop latency



Latency = D,  $J_{PP} = (1 + 2D) \times \Delta$ 

[11] N. D. Dalt TCASI 2005

## ADPLL with BBPD (4)

- 1<sup>st</sup> order BBPLL loop dynamics
  - Initial error ≠ 0,  $J_{PP} = 2(1+D)\Delta$
  - For uniform distribution

$$\sigma_J^2 = \frac{(1+D)^2}{3} \Delta^2$$
  

$$\sigma_J^2 = \text{Jitter variance}$$
  

$$D = Delay$$
  

$$\Delta = \text{Quantized Step of DCO}$$

• 2<sup>nd</sup> order BBPLL loop dynamics

$$\begin{cases} \tau_{k+1} = \tau_k - R \cdot \varphi_{k-D} - \operatorname{sgn}(\tau_{k-D}) \\ \varphi_{k+1} = \varphi_k + \operatorname{sgn}(\tau_{k+1}) \end{cases}$$

- Size of orbit (stability) depends on D and  $R=\alpha(int)/\beta(prop)$
- For small R, J<sub>PP</sub> ≈ 2(1+D)∆
- For uniform distribution and small orbit

$$\sigma_J^2 = \frac{(1+D)^2}{3} \Delta^2$$

[11] N. D. Dalt TCASI 2005

Integrated Systems Design Laboratory, SNU

D.K.Jeong

#### Outline

- Introduction
- ADPLL Building Blocks
  - Digital Loop Filter
  - Digitally Controlled Oscillator
  - Time-to-Digital Converter
- Modeling and Analysis
- Phase Noise
- Summary

#### **General Linearized s-domain Model**



#### **Spectral Density Conversion**

$$CT \rightarrow CT \xrightarrow{x(t)} H(f) \xrightarrow{y(t)}$$

$$S_{y}(f) = \left| H(f) \right|^{2} S_{x}(f)$$

$$\mathbf{DT} \rightarrow \mathbf{DT} \xrightarrow{\mathbf{x[k]}} H(\mathbf{e}^{j2\pi fT}) \xrightarrow{\mathbf{y[k]}} S_{y}(e^{j2\pi fT}) = \left|H(e^{j2\pi fT})\right|^{2} S_{x}(e^{j2\pi fT})$$
$$\mathbf{DT} \rightarrow \mathbf{CT} \xrightarrow{\mathbf{x[k]}} H(\mathbf{f}) \xrightarrow{\mathbf{y(t)}} S_{y}(f) = \frac{1}{T} \left|H(f)\right|^{2} S_{x}(e^{j2\pi fT})$$

[16] M. H. Perrott JSSC 2002

#### **Quantization Noise of TDC**

Modeled as an additive random variable with white spectral density

$$\sigma_{\Phi_{n,TDC}}^{2} = \frac{\left(\Delta t_{TDC}\right)^{2}}{12}$$

$$S_{\Phi_{n,TDC}}\left(f\right) = \frac{\sigma_{\Phi_{n,TDC}}^{2}}{f_{REF}} = \frac{\left(\Delta t_{TDC}\right)^{2}}{12} \cdot \frac{1}{f_{REF}}$$

- Output noise is low pass filtered by the loop
  - Small  $\Delta t_{TDC}$  and large  $f_{REF}$  is advantageous

$$S_{\Phi_{OUT,TDC}}(f) = \left| \frac{2\pi}{T_{REF}} \cdot N \cdot G(f) \right|^2 \cdot S_{\Phi_{n,TDC}}(f)$$
$$= \frac{(2\pi)^2}{12} \cdot \left( \frac{\Delta t_{TDC}}{T_{OUT}} \right)^2 \cdot \frac{1}{f_{REF}} \cdot |G(f)|^2$$

[17] R. B. Staszewski JSSC 2005

Integrated Systems Design Laboratory, SNU

#### D.K.Jeong

#### **Noises in Oscillator**

- FM noise
  - Up-converted flicker noise (1/f<sup>3</sup>)
  - Up-converted thermal noise (1/f<sup>2</sup>)
- PM noise
  - Thermal electronic noise added from outside of the oscillator core (e.g. output buffer)
  - High pass filtered by the loop

$$S_{\Phi_{OUT,DCO}}(f) = |1 - G(f)|^2 \cdot S_{\Phi_{n,DCO}}(f)$$



#### Quantization Noise of DCO (1)

• Modeled as an additive random variable with white spectral density accounting for the effect of zeroorder hold  $\sigma_{\Phi}^2 = \frac{1}{12}$ 

$$S_{\Phi_{n,q}}(e^{j2\pi fT}) = \sigma_{\Phi_{n,q}}^2 \left(\frac{\sin(\pi fT_{REF})}{\pi fT_{REF}}\right)^2 = \frac{1}{12} \left(\operatorname{sinc} \frac{f}{f_{REF}}\right)^2$$

- Output noise is high pass filtered by the loop
  - Small  $\Delta f_{DCO}$  and large  $f_{REF}$  is advantageous

$$S_{\Phi_{OUT,q}}(f) = \frac{1}{T_{REF}} \left\| \left( \frac{T_{REF} \cdot \Delta f_{DCO}}{jf} \right) (1 - G(f)) \right\|^2 \cdot S_{\Phi_{n,q}}(e^{j2\pi f T_{REF}})$$
$$= \frac{1}{12} \cdot \left( \frac{\Delta f_{DCO}}{f} \right)^2 \cdot \frac{1}{f_{REF}} \cdot \left( \operatorname{sinc} \frac{f}{f_{REF}} \right)^2 \cdot \left| 1 - G(f) \right|^2$$
[8] R. B. Staszewski JSSC 2005

#### **DCO** Dithering

- Discrete frequency level
  - Frequency error always occurs
  - DCO resolution is the limiting factor of the phase noise performance
  - Dithering by using  $\Delta\Sigma$  modulation to enhance resolution
  - Dithering noise should be less than the natural phase noise of the oscillator
  - Caution: dithering increases high frequency noise

#### Quantization Noise of DCO (2)

- Power spectral density of quantization noise of n<sup>th</sup> order ΔΣ dithering (f<sub>dth</sub> = M-f<sub>REF</sub>)
  - High frequency noise increases

$$S_{\Phi_{n,\Delta\Sigma}}\left(e^{j2\pi fT}\right) = \frac{\sigma_{\Phi_{n,q}}^{2}}{M} \left(2\sin\frac{\pi fT_{REF}}{M}\right)^{2n} = \frac{1}{12M} \left(2\sin\frac{\pi f}{Mf_{REF}}\right)^{2n}$$

Output noise is high pass filtered by the loop

$$S_{\Phi_{OUT,\Delta\Sigma}}(f) = \frac{1}{T_{REF}} \left| \left( \frac{T_{REF} \cdot \Delta f_{DCO}}{jf} \right) (1 - G(f)) \right|^2 \cdot S_{\Phi_{n,\Delta\Sigma}}(e^{j2\pi f T_{REF}})$$
$$= \frac{1}{12} \cdot \left( \frac{\Delta f_{DCO}}{f} \right)^2 \cdot \frac{1}{f_{dth}} \cdot \left( 2\sin\frac{\pi f}{f_{dth}} \right)^{2n} \cdot \left| 1 - G(f) \right|^2$$

[8] R. B. Staszewski JSSC 2005

Integrated Systems Design Laboratory, SNU

#### D.K.Jeong

## Quantization Noise of DCO (3)

- Noise shaping
  - Performance bottleneck in some RF application
  - Fine resolution is important even if dithering is used
- Peak value • Power Spectral Density Estimate  $\max\{S_{\Phi_{OUT AS}}(f)\} =$ -90 -100  $\frac{1}{12} \cdot \left(\frac{\Delta f_{DCO}}{f}\right)^2 \cdot \frac{1}{f_{ML}} \cdot \left(\frac{4(rn)^2}{(rn)^2 + 1}\right)^n$ -110 (≂H/28 (<sup>∞</sup>∇) (<sup>∞</sup>∇) 140 for  $n = \frac{\tan r}{r}$  and  $r = \frac{\pi f}{f_{dth}}$  $\Delta f_{DCO} = 554.4 \text{ kHz}$ -150 • For 2<sup>nd</sup> order dithering -160  $\max\{S_{\Phi_{OUT AS}}(f)\} =$  $\Delta f_{DCO} = 95.6 \text{ kHz}$ -170 -180<sup>1</sup> 10<sup>5</sup> 10<sup>4</sup> 10<sup>6</sup> 10<sup>8</sup>  $0.95 \left(\frac{\Delta f_{DCO}}{f}\right)^2 \cdot \frac{1}{f_{...}} \quad \text{for } f = \frac{f_{dth}}{2.7}$ 10 Frequency (Hz) 2<sup>nd</sup> order dithering,

Integrated Systems Design Laboratory, SNU

 $f_0 = 4GHz, f_{dth} = 500 MHz$ 

10<sup>9</sup>

#### **Time-Domain Noise (Jitter)**

- Jitter
  - Uncertainty or randomness in the timing of events
- Phase modulation jitter (PM jitter)
  - Non-accumulative jitter
  - Random fluctuation in the delay between input and output event with zero mean and bounded variation
- Frequency modulation jitter (FM jitter)
  - Accumulative jitter
  - Uncertainty of when a transition occurs accumulates with every transition
  - Modeled as a random walk that is not bounded

#### **Time-domain Simulation Method**

- Oversampling simulation
  - Spice, Simulink (matlab), etc.
  - Transverse all the equally spaced time-stamps
  - Inefficient due to the high oversampling ratio
- Event-driven simulation
  - VHDL or Verilog
  - Proceed to the time-stamp at which the next event occurs
  - Fast and efficient
  - More useful in ADPLL design

#### **Basic Time-Domain Equation**

For nominal frequency f<sub>0</sub> and nominal period T<sub>0</sub>

$$f_0 + \Delta f = \frac{1}{T_0 - \varDelta T}$$

• For small  $\Delta T/T_0$ 

$$\Delta f \approx f_0 \frac{\Delta T}{T_0} = f_0^2 \Delta T = \frac{\Delta T}{T_0^2}$$

- Timing deviation (TDEV)
  - The difference between actual and ideal timing

$$TDEV[i] = \sum_{l=1}^{i} \Delta T[l] = \sum_{l=1}^{i} \frac{\Delta f[l]}{f_0^{2}}$$

[19] R. B. Staszewski TCASI 2005

#### **Oscillator PM Jitter**



- Non accumulative addictive random error
- Timing errors do not influence one another

 $TDEV_{PM}[i] = t[i] - i \cdot T_0 = (i \cdot T_0 + \Delta t[i]) - i \cdot T_0 = \Delta t[i]$ 

Relation between time and frequency domains

$$\sigma_{\Delta t} = \frac{T_0}{2\pi} \sqrt{L \cdot f_0} \quad (L:\text{noise floor})$$

[19] R. B. Staszewski TCASI 2005

#### **Oscillator FM Jitter**



- Accumulative jitter
- Each transition depends on all previous deviation

$$TDEV_{FM}[i] = t[i] - i \cdot T_0 = (i \cdot T_0 + \sum_{l=1}^{i} \Delta T[l]) - i \cdot T_0 = \sum_{l=1}^{i} \Delta T[l]$$

Relation between time and frequency domains

$$\sigma_{\Delta T} = \frac{\Delta f}{f_0} \sqrt{T_0} \sqrt{L\{\Delta f\}}$$
 [19] R. B. Staszewski TCASI 2005

#### **Jitter and Phase Noise**

- Convert phase noise specification into time-domain constraints
- **FM jitter**  $\sigma_{\Delta T} = \frac{\Delta f}{f_0} \sqrt{T_0} \sqrt{L\{\Delta f\}}$ 
  - e.g. to meet -153 dBc/Hz @ 20 MHz for 1.9 GHz • 20 MHz/1 9 GHz x (0.53 ns x 10<sup>-15.3</sup> /Hz)<sup>0.5</sup> - 5.4 fs

• 20 MHz/1.9 GHz x (0.53 ns x  $10^{-15.3}$  /Hz)<sup>0.5</sup> = 5.4 fs<sub>RMS</sub>

- **PM jitter**  $\sigma_{\Delta t} = \frac{T_0}{2\pi} \sqrt{L \cdot f_0}$ 
  - e.g. to meet −170 dBc/Hz for 1.9 GHz
    - 0.53 ns x (1.9 GHz x  $10^{-17}$  /Hz)<sup>0.5</sup> /  $2\pi = 11.6$  fs<sub>RMS</sub>

[22] http://www.jittertime.com/resources/pncalc.shtml

#### Summary

- ADPLLs are similar to DSP systems
- ADPLL will be dominantly used in deepsubmicron technology
- DLF offers more flexibility in design
- TDC and DCO dominate overall performance
- Various techniques can be exploited to analyze the ADPLL in both frequency and time domain

#### References (1)

- [1] R. E. Best, *Phase-Locked Loops—Design, Simulation, and Applications*, 5th edition, San Francisco: McGraw-Hill, 2003, pp. 1-5.
- [2] P. Dudek, et al., "A high-resolution CMOS time-to-digital converter utilizing a vernier delay line," *IEEE J. Solid-State Circuits*, vol. 35, no. 2, pp. 240-247, Feb. 2000.
- [3] S. Henzler, et al., "A local passive time interpolation concept for variation-tolerant highresolution time-to-digital conversion," *IEEE J. Solid-State Circuits*, vol. 43, no. 7, pp. 1666-1676, July 2008.
- [4] J. Yu, et al., "A 12-Bit vernier ring time-to-digital converter in 0.13um CMOS technology," *IEEE J. Solid-State Circuits*, vol. 45, no. 4, pp. 830-842, Apr. 2010.
- [5] V. Kratyuk, et al., "A digital PLL with a stochastic time-to-digital converter," *IEEE Trans. Circuits and Syst. I: Regular Papers*, vol. 56, no. 8, pp. 1612-1621, Aug. 2009.
- [6] T. Olsson, et al. "A Digitally Controlled PLL for SoC Applications", *IEEE J. Solid-State Circuits*, vol. 39, no. 5, pp. 751-760, May 2004.

#### References (2)

- [7] C.-M. Hsu, et al., "A low-noise wide-BW 3.6-GHz digital ΔΣ fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation," *IEEE J. Solid-State Circuits*, vol. 43, no. 12, pp. 2776-2786, Dec. 2008.
- [8] R. B. Staszewski, et al., "A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones," *IEEE J. Solid-State Circuits*, vol. 40, no. 11, pp. 2203-2211, Nov. 2005.
- [9] R. B. Staszewski, et al., "Phase-domain all-digital phase-locked loop," *IEEE Trans. Circuits and Syst. II: Express Briefs*, vol. 52. no 3, pp. 159-163, Mar. 2005.
- [10] V. Kratyuk, et al., "A design procedure for all-digital phase-locked loops based on a chargepump phase-locked-loop analogy," *IEEE Trans. Circuits and Syst. II: Express Briefs*, vol. 54, no. 3, pp. 247-251, Mar. 2007.
- [11] N. D. Dalt, "A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs," *IEEE Trans. Circuits and Syst. I: Regular Papers*, vol. 52, no. 1, pp. 21-31, Jan. 2005.

#### **References (3)**

- [12] N. D. Dalt, "Markov chains-based derivation of the phase detector gain in bang-bang PLLs," *IEEE Trans. Circuits Syst. II: Express Briefs*, vol. 53, no. 11, pp. 1195-1199, Nov. 2006.
- [13] N. D. Dalt, "Linearized analysis of a digital bang-bang PLL and its validity limits applied to jitter transfer and jitter generation," *IEEE Trans. Circuits and Syst. I: Regular Papers*, vol. 55, no. 11, pp. 3663-3675, Dec. 2008.
- [14] B. Chun, el al., "Statistical properties of first-order bang-bang PLL with nonzero loop delay," *IEEE Trans. Circuits and Syst. II: Express Briefs*, vol. 55, no. 10, pp. 1016–1020, Oct. 2008.
- [15] M. Zanuso, et al., "Noise analysis and minimization in bang-bang digital PLLs," *IEEE Trans. Circuits and Syst. II: Express Briefs*, vol. 56, no. 11, pp. 835–839, Nov. 2009.
- [16] M. H. Perrott, et al., "A modeling approach for Σ-Δ fractional-N frequency synthesizers allowing straightforward noise analysis," *IEEE J. Solid-State Circuits*, vol. 37, no. 8, pp. 1028-1038, Aug. 2002.

#### **References (4)**

- [17] R. B. Staszewski, et al., "All-digital PLL and transmitter for mobile phones," *IEEE J. Solid-State Circuits*, vol. 40, no. 12, pp. 2469-2482, Dec. 2005.
- [18] K. Kundert, *Modeling and simulation of jitter in PLL frequency synthesizers*, cadence white paper, 2001.
- [19] R. B. Staszewski, et al., "Event-driven simulation and modeling of phase noise of an RF oscillator," *IEEE Trans. Circuits and Syst. I: Regular Papers*, vol. 52. no 4, pp. 723-733, Apr. 2005.
- [20] E. Temporiti, et al., "A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques," *IEEE J. Solid-State Circuits*, vol. 44, no. 3, pp. 824-834, Mar. 2009.
- [21] M. Zanuso, et al., "A 3MHz-BW 3.6GHz digital fractional-N PLL with sub-gate-delay TDC, phase-interpolation divider, and digital mismatch cancellation," in *IEEE ISSCC Dig. Tech. Papers*, 2010, pp. 476-477.
- [22] http://www.jittertime.com/resources/pncalc.shtml
- [23] YDCHOI TCASII Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery," IEEE Trans. Circuits and Syst. II: Analog and Digital Signal Processing, VOL 50, No 11, Nov 2003, pp. 775-783.

# 3.2. Digitally Controlled Oscillator

#### **Deog-Kyoon Jeong**

Integrated Systems Design Laboratory Seoul National University

#### Outline

- Basic Operation
- Requirements
- Classification
- Design Example
- Issues on DCO design
- Case Studies

## **Basic Operation (1)**

- A digital controlled oscillator (DCO) is the digital counterpart of voltage controlled oscillator (VCO) in an all digital phase locked loop (ADPLL).
- Z-domain modeling



## **Basic Operation (2)**



- Input : N-bit digital code
- Output : periodic clock signal with frequency range (f<sub>min</sub> ~ f<sub>max</sub>)
- K<sub>DCO</sub> : ∆f (Hz/bit)

#### Outline

- Basic Operation
- Requirements
- Classification
- Design Example
- Issues on DCO design
- Case Studies

#### **DCO Requirements**

- Fine frequency resolution (low K<sub>DCO</sub>)
- Wide range
  - (Fine resolution + wide range) require larger N
- Linearity (constant ∆f/f)
- Low phase noise
- Low power consumption
- Small active area

6

#### **DCO Classification (1)**

- Analog approach
  - DAC + VCO
  - DAC + ICO
  - DAC + Varactor in LC tank
- Digital approach
  - Control the number of inverter stages
  - Control the number of drivers(variable inverter strength)
  - Control the C value in LC tank
  - Control the divider with high freq. oscillator

## **DCO Classification (2)**

- Ring oscillator
  - Simple to design, small area
  - Relatively low maximum frequency
  - Poor phase noise
  - Control # of stages, strength, supply voltage, load capacitor.
- LC oscillator
  - Large area due to an inductor
  - Relatively high maximum frequency
  - Good phase noise, fine resolution
  - Control C value

#### Outline

- Basic Operation
- Requirements
- Classification
- Design Example
- Issues on DCO design
- Case Studies

#### Analog approach (1)

- IDAC + analog VCO
  - Control the R value



$$T_d = \frac{C_{load} V_{swing}}{I} = R_{eq} C_{load}$$

Integrated Systems Design Laboratory, SNU

[1] V. Kratyuk, SOVC, 2006

#### Analog approach (2)

- IDAC + analog VCO
  - Control the current



#### Analog approach (3)

- DAC + analog VCO
  - Control the voltage



$$T_d = \frac{C_{load} V_{swing}}{I} = R_{eq} C_{load}$$

[2] D.Oh, ISSCC, 2007

#### **Digital approach (1)**

EN2

- Stage selection + strength control
  - All components are cell-based



#### **Digital approach (2)**

Strength control



[5] T. Olsson, JSSC, 2004
#### **Digital approach (3)**

- 2-phase selection + phase interpolating
  - Control logic includes a FSM



[6] S. Sidiropoulos, JSSC, 1997

## **Digital approach (4)**

- High freq. oscillator + integer freq. divider
  - Low resolution
  - Used for wide-range applications



# LC DCOs (1)

Frequency tuning scheme



- Capacitance tuning
  - MOS capacitance tuning
  - For coarse/fine control
- Inductance tuning
  - Self/mutual inductance tuning
  - For band selection or coarse control
  - Suitable for dual mode operation







# LC DCOs (2)

- Segmented LC-VCO
  - Change frequency by turning on/off binary- or equally-weighted small capacitances



[7] R. B. Staszewski, TMTT, 2003

#### Outline

- Basic Operation
- Requirements
- Classification
- Design Example
- Issues on DCO design
- Case Studies

#### Trade-offs in LCDCOs

- **Capacitive tuning:**  $\frac{\Delta f}{f_0} \approx \frac{1}{2} \frac{\Delta C}{C}$ 
  - To enhance frequency resolution
    - Increase capacitance
    - Low LC-tank Q due to the parasitic capacitance
    - Phase noise performance degradation
    - Increased power consumption due to large load capacitance
  - Trade-off between frequency resolution, output frequency, tuning range, and power consumption

## **Design Issues (1)**

- Reducing switching noise
  - Minimizing on/off switching
  - Only one column bit state changes



## **Design Issues (2)**

- Frequency resolution
  - Quantization noise due to uniform dithering

$$S_{\Phi}(f) = \frac{1}{12} \cdot \left(\frac{\Delta f_{res}}{f}\right)^2 \cdot \frac{1}{f_{dth}} \cdot \left(\operatorname{sinc} \frac{f}{f_{dth}}\right)^2$$

- Quantization noise due to  $\Sigma\Delta$  modulation

$$S_{\Phi_{\Delta\Sigma}}(f) = \frac{1}{12} \cdot \left(\frac{\Delta f_{res}}{f}\right)^2 \cdot \frac{1}{f_{dth}} \cdot \left(2\sin\frac{\pi f}{f_{dth}}\right)^{2n}$$

- Directly affect phase noise performance
- Performance bottleneck in some application



[9] R. B. Staszewski, JSSC, 2005

Integrated Systems Design Laboratory, SNU

22

## **Design Issues (3)**

- Choice for negative g<sub>m</sub> device
  - NMOS
    - Smallest parasitic capacitance for same g<sub>m</sub>
    - Output swing exceeds the supply voltage
  - PMOS
    - Lower 1/f noise in most process(not always)
  - CMOS
    - Large parasitic capacitance
    - Low signal distortion
    - Min. & Max. output voltage is fixed

## **Design Issues (4)**

- Noise on current source
  - The drain node of the current source has a ripple of 2x output frequency
  - Additional LC for high Z to the current source



Integrated Systems Design Laboratory, SNU

#### **Design Issues (5)**

- Current source sizing
  - According to the operating frequency, the optimum size changes
  - Digital code controls the current source



#### Outline

- Basic Operation
- Requirements
- Classification
- Design Example
- Issues on DCO design
- Case Studies

## Monotonic DCO (1)



#### Core oscillator : inverter-based 4-stage delay element

- Integral word  $\rightarrow$  control supply of the core oscillator
- PD outputs → altering load capacitor

[16] H. Song, JSSC

Integrated Systems Design Laboratory, SNU

## Monotonic DCO (2)

- Digitally controlled resistor (DCR)
  - Stacked row cells of PMOS array
  - monotonic characteristics
- Linear characteristics by non-uniformly sizing of W<sub>P1</sub>, W<sub>P2</sub>, ..., W<sub>P31</sub>



[16] H. Song, JSSC

### Monotonic DCO (3)

 Simulation results of the DCR with non-uniformly sized parallel PMOSs

- Resistance range : 330  $\Omega$  ~ 3.3 k $\Omega$ 



#### **Monotonic DCO (4)**

#### Implementation of the DCR



#### V-Tolerant DCO (1)

- Supply-compensated delay cell
  - Coarse : stage selector
  - Fine : phase interpolator



[14] B. M. Moon, TCAS II, 2008

#### V-Tolerant DCO (2)

- Supply-compensated delay cell
  - The strength of the latch is controlled by  $V_{th}$  (PMOS) and  $V_{DD} V_{th}$  (NMOS).





[14] B. M. Moon, TCAS II, 2008

#### V-Tolerant DCO (3)

- Supply-compensated delay cell
  - Delay time is insensitive to the supply voltage.



[14] B. M. Moon, TCAS II, 2008

## Fast locking ADPLL (1)

- DCO code prediction for fast locking
  - Using reference clock, PVT sensor detects current condition.
  - DCO code prediction makes a fast locking



### Fast locking ADPLL (2)

DCO code prediction for fast locking
By normalizing, PVT variation can be cancelled



#### Fast locking ADPLL (3)

- DCO code calculation
  - DCO code predictor



Integrated Systems Design Laboratory, SNU

#### **Fine-Resolution DCO (1)**

- Hysteresis delay cell
  - Coarse stage : selecting delay path
  - Fine stage : hysteresis delay cell



[13] D. Sheng, TCAS II, 2007

#### **Fine-Resolution DCO (2)**

Hysteresis delay cell



[13] D. Sheng, TCAS II, 2007

#### **Frequency Resolution**

- Phase noise of LC DCO is affected by the frequency resolution
- $\Delta f$  is linearly proportional to  $\Delta C$
- Output frequency: ~ GHz
  - Required  $\Delta f$ : ~ kHz
  - Required minimum  $\Delta C$ : ~ aF
  - Minimum ΔC depends on the minimum feature size of the process
  - Various studies focus on ΔC minimization

#### **Capacitance Minimization Techniques**

Capacitors in series



[17] X. Dai, ISIC, 2009

Capacitive divider network



 Vulnerable to process variation, parasitic, and mismatch

#### **Fine-Resolution LC-DCO (1)**

NMOS-PMOS varactor bank





[11] J. H. Han, EL, 2008

#### Integrated Systems Design Laboratory, SNU

#### D.K.Jeong

#### Fine-Resolution LC-DCO (2)

- NMOS-PMOS varactor bank
  - Capacitance of MOSFET in various process

| Process | NMOS |                  |      | PMOS |                  |      | NMOS-PMOS |                  |       |
|---------|------|------------------|------|------|------------------|------|-----------|------------------|-------|
|         | Con  | C <sub>off</sub> | ΔC   | Con  | C <sub>off</sub> | ΔC   | $C_{on}$  | C <sub>off</sub> | ΔC    |
| 65nm    | 200a | 104a             | 96a  | 183a | 94a              | 89a  | 294a      | 287a             | 7a    |
| 90nm    | 253a | 143a             | 110a | 266a | 159a             | 107a | 413a      | 409a             | 4a    |
| 130nm   | 3.7f | 2.0f             | 1.7f | 3.4f | 1.6f             | 1.8f | 5.2f      | 5.4f             | -0.2f |
| 180nm   | 4.2f | 2.2f             | 2.0f | 4.6f | 2.5f             | 2.1f | 6.7f      | 6.8f             | -0.1f |

[11] J. H. Han, EL, 2008

#### **Fine-Resolution LC-DCO (3)**

- NMOS-PMOS varactor bank
  - Quality factors of the varactors



[11] J. H. Han, EL, 2008

#### Integrated Systems Design Laboratory, SNU

#### D.K.Jeong

### **Fine-Resolution LC-DCO (4)**

- Source degeneration capacitor
  - Capacitance shrinking factor ≈ 500 (@ C=5pF)



Integrated Systems Design Laboratory, SNU

#### **Fine-Resolution LC-DCO (5)**

Source degeneration capacitor



[12] L. Fanori, ISSCC, 2010

#### **Fine-Resolution LC-DCO (6)**

Source degeneration capacitor

- Adding 4-bit DAC for higher resolution



@ 3.3GHz with shrinking factor of 150

 $\overline{\Delta f} = 300 Hz$ 

[12] L. Fanori, ISSCC, 2010

### Dual-LC Tank DCO (1)

- Dual-LC tank DCO
  - Only one -gm cell is intended to be enabled



## Dual-LC Tank DCO (2)

- Coupled inductors
  - Behavior of active tank is influenced by the inactive tank
  - Adjusting the resonance frequency of inactive tank results in three modes



[19] A. Goel, SOVC, 2010

#### **Dual-LC Tank DCO (3)**

#### Performance summary

| DPLL with Dual LC Tank DCO                               |                            |                           |  |  |  |  |
|----------------------------------------------------------|----------------------------|---------------------------|--|--|--|--|
| Technology                                               | 45 nm SOI CMOS             |                           |  |  |  |  |
| Core Area                                                | 0.111 mm <sup>2</sup>      |                           |  |  |  |  |
|                                                          | TANK1 active               | TANK2 active              |  |  |  |  |
| Digital Core Power                                       | 2.5 mA (1.0 V, 5.86 GHz)   | 4.2 mA (1.0 V, 10.86 GHz) |  |  |  |  |
| <b>Oscillator Core Power</b>                             | 2.9 mA (1.0 V, 5.86 GHz)   | 3.8 mA (1.0 V, 10.86 GHz) |  |  |  |  |
| Other DCO Power<br>(Prescaler, Buffers)                  | 7.0 mA (1.1V, 5.86 GHz)    | 11.7 mA (1.1V, 10.86 GHz) |  |  |  |  |
| Frequency Range                                          | 5.85-8.86 GHz              | 7.89-11.64 GHz            |  |  |  |  |
| Push Mode Extension                                      | 5.67-8.86 GHz              | 7.89-12.09 GHz            |  |  |  |  |
|                                                          | 218 fs (5.78 GHz) #        | 227 fs (8 GHz)            |  |  |  |  |
| <b>RMS Jitter *</b>                                      | 274 fs (5.98 GHz)          | 295 fs (11.65 GHz)        |  |  |  |  |
|                                                          | 267 fs (8.3 GHz)           | 362f s (12 GHz) #         |  |  |  |  |
| Phase Noise for Free                                     | -108.8 dBc/Hz (5.78 GHz) # |                           |  |  |  |  |
| <b>Running Oscillations</b>                              | -110.2 dBc/Hz (5.98 GHz)   |                           |  |  |  |  |
| (TANK1, 1 MHz offset)                                    | -103 dBc/Hz (8.3 GHz)      |                           |  |  |  |  |
| Fine Tune Resolution<br>(TANK2 in Band 16)               | 20.2 MHz                   |                           |  |  |  |  |
| Ultra-fine Tune Mode<br>Resolution<br>(TANK2 in Band 16) | 0.7                        | MHz                       |  |  |  |  |

\* RMS Jitter is integrated from  $f_c/1667$  to  $f_c/2$ # In Push Mode operation

Integrated Systems Design Laboratory, SNU

#### Low Phase Noise LCVCO Comparisons

| Year |         |                                                                                                                        | VDD      | power    | Pnoise Calculation |
|------|---------|------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------------|
|      | Publish | litle                                                                                                                  | [V]      | [W]      | @20M, 0.9G         |
| 2006 | ISSCC   | A phase noise reduction technique for quadrature LC-VCO with phase to amplitude noise conversion                       | 1.8      | 2.77E-02 | -173.7             |
| 2010 | EL      | [22]Low-phase-noise LC-VCO using high-Q 8-shaped inductor                                                              | 1.8(Reg) | 1.35E-02 | -171.9             |
| 2009 | IEEE MW | A CMOS backgate coupled QVCO based on Back-to-Back series Varactor configuration for minimal AM-to-PM noise conversion | 1.0      | 4.40E-03 | -170.3             |
| 2008 | ISSCC   | A 28GHz Low phase Noise CMOS VCO using and amplitude redistribution Technique.                                         | 2.5      | 6.70E-03 | -168.8             |
| 2001 | JSSC    | A filtering Technique to lower LC oscillator Phase Noise                                                               | 2.5      | 9.25E-03 | -166.2             |
| 2003 | JSSC    | A low phase noise 5GHz CMOS quadrature VCO using superharmonic coupling                                                | 1.8      | 2.20E-02 | -165.7             |
| 2001 | JSSC    | low-power Low phase Noise Differentially tuned quadrature VCO design in standard CMOS                                  | 2.5      | 2.00E-02 | -165.5             |
| 2001 | JSSC    | Low power low phase noise differentially tuned quadrature VCO design in standard CMOS                                  | 2.5      | 2.00E-02 | -165.5             |
| 2010 | IEEE MW | [21]An UMTS and GSM Low Phase Noise Inductively Tuned LC VCO                                                           | 1.8      | 1.35E-02 | -165.0             |
| 2007 | IEEE    | [18]A Low Phase Noise Quad-Band CMOS VCO with Minimized Gain                                                           | 2.6      | 4.42E-02 | -164.8             |
| 2002 | JSSC    | Analysis and design of a 1.8 GHz CMOS LC quadrature VCO                                                                | 2        | 5.00E-02 | -162.5             |
| 2002 | JSSC    | Analysis and design of a 1.8 GHz CMOS LC quadrature VCO                                                                | 2        | 5.00E-02 | -162.5             |
| 2007 | JSSC    | A 1-V 17GHz 5mW CMOS quadrature VCO based on tranformer coupling                                                       | 1        | 5.00E-03 | -161.5             |
| 2002 | JSSC    | A Noise shifting Differential Colpitts VCO                                                                             | 2.5      | 1.00E-02 | -161.5             |
| 2009 | RFIC    | Low phase noise gm-boosted differential Colpitts VCO with suppressed AM-to-FM conversion                               | 0.9V     | 1.62E-03 | -160.2             |

Meet GSM Spec

#### Integrated Systems Design Laboratory, SNU
#### Wide Tuning Ranges LCVCO Comparisons

| Year | Publish | Title                                                                                                   | Inductor<br>Tuning method     | Truning<br>range | Freq [Hz] |          | Descent  | VDD     | power   | Pnoise<br>Calculation |           |
|------|---------|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------|-----------|----------|----------|---------|---------|-----------------------|-----------|
|      |         |                                                                                                         |                               | max/min<br>x100  | min       | center   | max      | Process | [V]     | W                     | @20M,0.9G |
| 2006 | MTT     | Switched resonator and Their Application in a dual band monolithic CMOS LC-Tuned VCO                    | Self<br>7,9n/3.2n             | 110.6            | 1.64E+09  | 1.73E+09 | 1.81E+09 | 0.18u   | 3.3~3.6 | 1.6E-02               | -159.5    |
| 2008 | JSSC    | Design of wide Tuning-Range CMOS VCOs using switched<br>coupled-inductors                               | Mutual                        | 160.1            | 7.34E+09  | 9.55E+09 | 1.18E+10 | 90n     | 1.2     | 7.7E-03               | -154.3    |
| 2009 | JSSC    | LC PLL with 1.2-Octave Locking Range based on mutual-<br>inductance switching in 45nm SOI CMOS          | Mutual<br>k=0.48<br>0.1n/0.2n | 239.7            | 7.30E+09  | 1.24E+10 | 1.75E+10 | 45n     | 1       | 1.4E-02               | -141.7    |
| 2005 | RFIT    | Multi-mode wide-band 130 nm CMOS WLAN and GSM-<br>UMTS                                                  | Mutual                        | 334.8            | 3.42E+09  | 7.44E+09 | 1.15E+10 | 0.13u   | 1.5     | 3.0E-03               | -163.9    |
| 2007 | MTT     | New Frequency Plan and Reconfigurable 6.6- 7.128 GHz<br>CMOS Quadrature VCO for MB OFDM UWB Application | Self                          | 108.0            | 6.60E+09  | 6.86E+09 | 7.13E+09 | 0.18u   | 2       | 2.0E-02               | -159.3    |
| 2000 | CICC    | A new approach to fully integrated CMOS LC-oscillators<br>with a very large tuning range                | Self                          | 159.7            | 1.34E+09  | 1.74E+09 | 2.14E+09 | 0.35u   | 3       | -                     | -132.5    |
| 2007 | EL      | Wide tuning range LC-oscillator in 65nm SOI CMOS,<br>based on switchable secondary inductor             | Mutual<br>0.6n/0.3n           | 176.6            | 6.40E+09  | 8.85E+09 | 1.13E+10 | 65n     | 1       | 4.5E-03               | -143.8    |
| 2007 | JSSC    | A Magnetically Tuned Quadrature Oscillator                                                              | Mutual + K<br>control         | 228.1            | 3.20E+09  | 5.25E+09 | 7.30E+09 | 65n     | 1.2     | 2.4E-02               | -150.1    |
| 2009 | RFIC    | 1.1 to 1.9GHz CMOS VCO for Tuner Application with<br>Resistively Tuned Variable Inductor                | Mutual + R                    | 177.4            | 1.06E+09  | 1.47E+09 | 1.88E+09 | 0.25u   | 3       | 2.0E-02               | -148.4    |
| 2005 | ASSCC   | A 1V Dual-Band VCO Using an Integrated Variable<br>Inductor                                             | Mutual + C                    | 513.6            | 2.20E+09  | 6.75E+09 | 1.13E+10 | 0.18u   | 1       | 5.0E-03               | -154.5    |
| 2009 | CICC    | A CMOS 3.3-8.4 GHz wide tuning range, low phase noise<br>LC VCO                                         | Self                          | 254.5            | 3.30E+09  | 5.85E+09 | 8.40E+09 | 0.13u   | 1.6     | 1.5E-02               | -162.4    |
| 2002 | ESSCIRC | ESSCIRC A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor        | Self                          | 200.0            | 1.00E+09  | 1.50E+09 | 2.00E+09 | 0.25u   | 1.5     | 1.4E-02               | -155.4    |
| 2007 | RFIT    | A Dual Band CMOS Quadrature VCO for Low Power and<br>Low Phase Noise Application                        | Self                          | 272.2            | 1.80E+09  | 3.35E+09 | 4.90E+09 | 0.18u   | 1.7     | 6.8E-03               | -155.0    |

#### **♦**None can meet GSM spec.(-165dBc/Hz @ 900MHz freq, 20MHz offset).

◆There is trade-off between tuning range and phase noise.

# Reference(1)

- [1] V. Kratyuk, et al. "A digital PLL with a stochastic time-to-digital converter" *IEEE SOVC, Dig. Tech. Paper*, June. 2006.
- [2] D. Oh, et al., "A 2.8Gbs All-Digital CDR with a 10b Monotonic DCO," IEEE ISSCC Dig. Tech. Papers, 2007.
- [3] T.-Y. Hsu, et al. "Design and analysis of a portable high-speed clock generator," *IEEE Trans. on Circuits and Systems. II*, Apr. 2001.
- [4] C.-C. Chung, et al. "An all-digital phase-locked loop for high speed clock generation," *IEEE J. Solid-State Circuits*, Feb. 2003.
- [5] T. Olsson, et al. "A Digitally Controlled PLL for SoC Applications," *IEEE J. Solid-State Circuits*, Vol. 39, No. 5, May 2004, pp 751-760, Feb. 2003.
- [6] S. Sidiropoulos, et al., "A semidigital dual delay-locked loop," IEEE J. Solid-State Circuits, Nov. 1997.
- [7] R. B. Staszewski, et al. "A first multigigahertz digitally controlled oscillator for wireless applications," *IEEE Trans. on Microwave Theory and Techniques*, Vol. 51. No. 11, Nov. 2003.

#### Reference(2)

- [8] R. B. Staszewski, et al. "All-Digital PLL and Transmitter for Mobile Phones," *IEEE J. Solid-State Circuits*, vol. 40, no. 12, pp. 2469-2482, Dec. 2005.
- [9] R. B. Staszewski, et al. "A digitally controlled oscillator in a 90nm digital CMOS process for mobile phones," *IEEE J. Solid-State Circuits*, vol. 40, no. 11, pp. 2203-2211, Nov. 2005.
- [10] H. Shi, et al., "Variable Negative Gm Technique for RF LC VCO with Very Large Tuning Range," in *Electron Devices and Solid-State Circuits*, 2005 IEEE Conference on, pp. 145-148, 2005.
- [11] J. H. Han, et al., "Digitally controlled oscillator with high frequency resolution using novel varactor bank," *IEEE Electronics Letters*, vol. 44, no. 25, pp. 830-842, Dec. 2008.
- [12] L. Fanori, et al., "3.3GHz DCO with a Frequency Resolution of 150Hz for All-Digital PLL," *IEEE ISSCC Dig. Tech. Papers,* pp. 48-49, 2010.
- [13] D. Sheng, et al., "An Ultra-Low-Power and Portable Digitally Controlled Oscillator for SoC Applications," *IEEE Trans. on Circuits and* systems - II, Vol 54. No. 11, Mar. 2007.

# Reference(3)

- [14] B. M. Moon, et al., "Monotonic Wide-Range Digitally Controlled Oscillator Compensated for Supply Voltage Variation," *IEEE Trans. on Circuits and Systems II*, Vol 55. No. 10, Oct. 2008.
- [15] H. S. Jeon, et al., "Fast Frequency Acquisition All-Digital PLL Using PVT Calibration," *IEEE International Symposium on Circuits and Systems*, 2008.
- [16] H. Song, et al., "A 1.0–4.0-Gb/s All-Digital CDR With 1.0-ps Period Resolution DCO and Adaptive Proportional Gain Control," *IEEE J. Solid-State Circuits*, to be published.
- [17] X. Dai, et al., "Frequency resolution enhancement for digitally controlled oscillators using series switched varactor," *ISIC*, 2009, pp. 397-400.
- [18] Y. Chen, et al., "9 GHz dual-mode digitally controlled oscillator for GSM/UMTS transceivers in 65 nm CMOS," *IEEE A-SSCC*, 2007, pp. 432-435.
- [19] A. Goel, et al., "A compact 6 GHz to 12 GHz digital PLL with coupled dual-LC tank DCO," *IEEE SOVC, Dig. Tech. Paper*, 2010, pp. 141-142.

# 3.3. Time-to-Digital Converter

**Deog-Kyoon Jeong** 

Integrated Systems Design Laboratory Seoul National University

# Outline

- Introduction
- Basic Operation
- TDC Requirements
- TDC Classification
  - Short time interval generation
  - Time stretching
  - Etc

#### Introduction

- Time-to-digital converter(TDC) is a device for converting a time difference between two events into a digital representation of their time indices.
  - Time-of-fight(TOF) measurement in high energy particle physics, laser range finding and positive electron tomography(PET) medical imaging technology
  - On-chip timing and jitter measurements
  - Phase difference measurement in All-digital PLL and All-digital DLL

#### **Basic Operation(1)**



Integrated Systems Design Laboratory, SNU

# **Basic Operation(2)**

TDC transfer curve



Integrated Systems Design Laboratory, SNU

# **TDC Requirements**

- High resolution
- Wide range
- Linearity(INL, DNL)
- Low power
- Small area

# Outline

- Introduction
- Basic Operation
- TDC Requirements
- TDC Classification
  - Short time interval generation
  - Time stretching
  - Etc

# **TDC Classification**

- Short time interval generation
- Time Stretching
- Etc
  - Gated ring oscillator TDC
  - Pulse shrinking TDC
  - Stochastic TDC
  - Utilizing ADC

8

# **Short Time Interval Generation**

- Generation of the more fine timing signal to enable the more accurate translation of time interval to digital code
  - Delay chain TDC
  - Differential delay chain TDC
  - Vernier TDC
  - Interpolation TDC

# **Delay Chain TDC**

Two-inverter delay resolution



[1] Rahkonen, Ciruit and Systems, 1989

#### **Delay Chain TDC**



Integrated Systems Design Laboratory, SNU

D.K.Jeong

# **Differential Delay Chain TDC**

- One-inverter delay resolution
- Different setup time for data '1' and '0'



## **Differential Delay Chain TDC**

- One-inverter delay resolution
- Using symmetric DFF



[2]Staszewski,TSCASII,2006

#### **Differential Delay Chain TDC**

- Symmetric DFF
  - Same setup time for data '1' and '0'



[3]Nikolic,JSSC,2000 D.K.Jeong

#### Vernier TDC

- Sub-gate-delay resolution
- TDC resolution =  $t_s t_f$ ,  $(t_s \neq t_f)$



[4]Dudek,JSSC,2000 D.K.Jeong

#### **Vernier TDC**



Integrated Systems Design Laboratory, SNU

D.K.Jeong

#### Interpolation TDC

 Divide the buffer delay into two or more smaller intervals



[5]Henzler, JSSC, 2008 D.K.Jeong

#### Interpolation TDC



# Wide Range TDC

- TDC range = # of delay cell x resolution
- For wide range and high resolution, too many delay cells are needed.
  - => large area and poor linearity.
- Solutions:
  - Two-step TDC
  - Logarithmic TDC
  - Ring TDC

#### **Two-Step TDC**

Incorporates both the <u>delay chain TDC</u> and <u>Vernier TDC</u>



[6]Ramakrishnan,VLSI Design,2006 D.K.Jeong

Integrated Systems Design Laboratory, SNU

# Two-Step TDC (1)

 Incorporates both the delay chain TDC and Vernier TDC



[7]Tokairin, ISSCC, 2010

Integrated Systems Design Laboratory, SNU

## **Two-Step TDC (2)**



[7]Tokairin, ISSCC, 2010

# **Two-Step TDC (3)**

- SEL=high => measures t<sub>d1</sub> for normalization
- SEL=low => measures residue from delay chain TDC



[7]Tokairin, ISSCC, 2010

# Logarithmic TDC

- Wide range is achieved through logarithmic inverter delay
- Additional logic is required for linearization



[8]Lin,ISSCC,2004 D.K.Jeong

#### Integrated Systems Design Laboratory, SNU

## Logarithmic TDC



Integrated Systems Design Laboratory, SNU

# **Cyclic TDC**

- Reuses the delay elements and increases the detection range
- Better linearity than delay chain TDC



[9]Chang,ISSCC,2008

D.K.Jeong

# **Vernier Ring TDC**



[10]Yu,JSSC,2010

Integrated Systems Design Laboratory, SNU

#### D.K.Jeong

# **Vernier Ring TDC**



# **Time Stretching TDC**

- Opposite approach to get high resolution is time stretching
- Amplifies input time difference and uses simple delay chain TDC
- Amplification greatly relaxes the requirement on device matching in delay line
  - Time amplifying TDC
  - Sub-exponent TDC

# Time Amplifying TDC (1)

 Time residue is amplified by TA(Time Amplifier) and resolved by fine TDC



[13]Lee, JSSC 2008 D.K.Jeong

# **Time Amplifying TDC (2)**



[13]Lee, JSSC 2008 D.K.Jeong

# Time Amplifying TDC (3)

 In SR latch followed by an XOR, the propagation delay varies as an even-symmetric logarithmic function versus input time difference.



Integrated Systems Design Laboratory, SNU

D.K.Jeong
#### **Time Amplifying TDC (4)**





(b) Shifted RS latch delay characteristics

 $T_{off}$  controls the linear range  $A_T$  is a gain of TA around zero input  $A_T=2(C/g_m)/T_{off}$   $g_m$ : transconductance of the NAND in metastability

> [13]Lee, JSSC 2008 D.K.Jeong

#### Sub-Exponent TDC (1)

• Scaling of resolution according to input time difference



[14]Lee, JSSC 2010 D.K.Jeong

#### Sub-Exponent TDC (1)



Integrated Systems Design Laboratory, SNU

[14]Lee, JSSC 2010 D.K.Jeong

#### Sub-Exponent TDC (2)

- First discharging is performed by two identical path
- Second discharging is perform by only one path
  => The gain of TA roughly is twice of the small signal input gain.



[14]Lee, JSSC 2010 D.K.Jeong

#### Sub-Exponent TDC (3)

• With large input time diff, output saturated. To get accurate 2x time amplification, TA calibration is necessary



[14]Lee, JSSC 2010 D.K.Jeong

#### **Other TDCs**

- Etc
  - Gated ring oscillator TDC
  - Pulse shrinking TDC
  - Stochastic TDC
  - Time-to-Voltage followed by ADC

#### **Oscillator-Based TDC**

- Counters operate when enable signal is high
- Oscillator runs freely regardless of input

=> Large power consumption



[15]Nissinen,ESSCIRC,2003

D.K.Jeong

#### **Oscillator-Based TDC**



### Gated Ring Oscillator TDC (1)

- Oscillator operates only when the enable is high
- When the enable is low, it holds the state



[16]Straayer,JSSC,2009

D.K.Jeong

### Gated Ring Oscillator TDC (2)

- When the enable is low, the time residue is stored in  $V_{\text{Oi}}$  node



#### Gated Ring Oscillator TDC (3)



 $T_{err,stop}[k-1]=T_{err,start}[k]$  $T_{err}=T_{err,stop}[k]-T_{err,stop}[k-1]$ 

First order noise shaping of the quantization error

#### Pulse Shrinking TDC (1)

 Width of the input pulse shrinks in each element by a fixed amount, until the pulse entirely disappears.



[17] Karadamoglou, JSSC, 2004

D.K.Jeong

#### **Pulse Shrinking TDC (2)**

 The propagation of the rising edge of the input pulse is slowed down by the current starving transistor.



#### **Stochastic TDC**

Using random sampling offset mismatch



Integrated Systems Design Laboratory, SNU

[18]Kratyuk,TCASI,2009 D.K.Jeong

#### **Stochastic TDC**

Behavioral simulations of 100 STDCs



#### Time-to-Voltage followed by ADC

 The time interval is first converted into a voltage and then the voltage is converted into a digital value by ADC



[19] Maatta, Instrum.&Meas,1998 D.K.Jeong

#### Reference(1)

- [1] T. Rahkonen, et al., "Time interval measurements using integrated tapped CMOS delay lines," in *Circuits and Systems*, vol.1, pp. 201-205, Aug. 1989.
- [2] R. B. Staszewski, et al., "1.3 V 20 ps time-to-digital converter for frequency synthesis in 90 nm CMOS," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 53, no. 3, pp. 220–224, Mar. 2006.
- [3] B. N. Nikolic, *et al., "Improved* sense-amplifier-based flip-flop: design and measurements," *IEEE J. Solid-State Circuits*, vol. 35, no. 6, pp. 876–884, Jun. 2000.
- [4] P. Dudek, et al., "A high-resolution CMOS time-to-digital converter utilizing a vernier delay line," *IEEE J. Solid-State Circuits*, vol. 35, no. 2, pp. 240-247, Feb. 2000.
- [5] S. Henzler, et al., "A local passive time interpolation concept for variation-tolerant high-resolution time-to-digital conversion," *IEEE J. Solid-State Circuits*, vol. 43, no. 7, pp. 1666-1676, July 2008.
- [6] V. Ramakrishnan, et al., "A wide-range, high-resolution, compact, CMOS time to digital converter," Proc. VLSI Design (VLSID'06), pp. 197-202, Jan. 2006.

#### Reference(2)

- [7] T. Tokairin, et al., "A 2.1-to-2.8GHz all-digital frequency synthesizer with a time-windowed TDC," in *IEEE ISSCC Dig. Tech. Papers*, 2010, pp. 470-471.
- [8] J. Lin, B., et al., "A PVT tolerant 0.18MHz to 600MHz self-calibrated digital PLL in 90nm CMOS process," in *IEEE ISSCC Dig. Tech. Papers*, 2004, pp. 488-541.
- [9] C. Hsiang-Hui, et al., "A fractional spur-free ADPLL with loop-gain calibration and phase-noise cancellation for GSM/GPRS/EDGE," in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 200-201.
- [10]Jianjun Yu, et al., "A 12-Bit vernier ring time-to-digital converter in 0.13um CMOS technology," *IEEE J. Solid-State Circuits*, vol. 45, no. 4, pp. 830-842, Apr. 2010.
- [11] H. Chorng-Sii, et al., "A high-precision time-to-digital converter using a two-level conversion scheme," *IEEE Trans. Nucl. Sci.*, vol. 51, no. 4, pp. 1349-1352, Aug. 2004.

#### Reference(3)

- [12] C. Poki, et al., "A PVT insensitive vernier-based time-to-digital converter with extended input range and high accuracy," *IEEE Trans. Nucl. Sci.*, vol. 54, no. 2, pp. 294-302, Apr. 2007.
- [13] L. Minjae and A. A. Abidi, "A 9 b, 1.25 ps resolution coarse-fine timeto-digital converter in 90 nm CMOS that amplifies a time residue," *IEEE J. Solid-State Circuits*, vol. 43, no. 4, pp. 769-777, Apr. 2008.
- [14] L. Seon-Kyoo, et al., "A 1GHz ADPLL with a 1.25ps minimumresolution sub-exponent TDC in 0.18um CMOS," in *IEEE ISSCC Dig. Tech. Papers*, 2010, pp. 482-483.
- [15] I. Nissinen, et al., "A CMOS time-to-digital converter based on a ring oscillator for a laser radar," in *Proc. IEEE ESSCIRC*, 2003, pp. 469-472.
- [16] M. Z. Straayer and M. H. Perrott, "A multi-path gated ring oscillator TDC with first-order noise shaping," *IEEE J. Solid-State Circuits*, vol. 44, no. 4, pp. 1089-1098, Apr. 2009.

#### Reference(4)

- [17] K. Karadamoglou, et al., "An 11-bit high-resolution and adjustablerange CMOS time-to-digital converter for space science instruments," *IEEE J. Solid-State Circuits*, vol. 39, no. 1, pp. 214-222, Jan. 2004.
- [18] V. Kratyuk, et al., "A digital PLL with a stochastic time-to-digital converter," *IEEE Trans. Circuits and Syst. I, Reg. Papers,* vol. 56, no. 8, pp. 1612-1621, Aug. 2009.
- [19] K. Maatta and J. Kostamovaara, "A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications," *IEEE Trans. Instrum. Meas.*, vol. 47, no. 2, pp. 521–536, Apr. 1998.
- [20] M. Straayer, "Noise shaping techniques for analog and time to digital converters using voltage controlled oscillators," Ph.D. dissertation, MIT, Cambridge, MA, 2008.
- [21] J. Kalisz, "Review of methods for time interval measurements with picosecond resolution," *Metrologia,* vol. 41, no. 1, pp. 17–32, Feb. 2004.

# 3.4. All-Digital Frequency Synthesizer

**Deog-Kyoon Jeong** 

Integrated Systems Design Laboratory Seoul National University

#### Outline

- Introduction
- Recently Published Frequency Synthesizers

### **PLL** applications

- Jitter reduction
- Skew suppression (zero delay buffer)
- Frequency synthesis
  - Clock multiplication and carrier generation in wireline and wireless communication systems
  - Multiple PLLs in a chip
  - Integer-N or fractional-N frequency synthesis
- Clock and data recovery

#### **ADPLL Fractional-N FS Architecture**

- ΔΣ-modulator (ΔΣ) is used to increase the effective resolution of the DCO
- Fractional spur can be reduced by using cancellation techniques



#### **DCO Resolution Enhancement Using ΔΣ-Modulator**

- We can't reduce DCO resolution which is determined by physical characteristics.
- However we can improve effective resolution of DCO by averaging a modulated signals.
- ΔΣ-dithering means to change frequency with high modulation frequency.
- Dithering prevents a jitter being accumulated. There only short-term jitter. (In other word, high frequency noise component)



#### High Resolution DCO Using ΔΣ-Modulator

- Effective frequency resolution is improved by highspeed ΔΣ-dithering
- Higher update rate of DCO is important
  - Phase error accumulates for dithering cycles
  - Peak-to-peak jitter is inversely proportional to update frequency



#### Low Jitter DCO Using ΔΣ-Modulator

Peak-to-peak jitter reduction



#### Low Jitter DCO Using ΔΣ-Modulator

- Design issue
  - Synchronization between lower and higher frequency clock domain
  - Fast  $\Delta\Sigma$ -dithering speed for low jitter generation
  - Noise shaping due to  $\Delta\Sigma$ 
    - High frequency noise increases
    - Performance bottleneck in some RF applications



#### **Frequency Multiplication**

- General fractional-N operation
  - Divider dithering using  $\Delta\Sigma$



- Phase-domain operation
  - Accumulate frequency control word (FCW)



#### **Integer Frequency Multiplication**

Phase-domain operation



- Long term average:  $f_{Ref} \times N = f_{Out} \times 1$
- Reference and output clock domains are not synchronous
- Spurious tones occur

[3] R. B. Staszewski TCASII 2005

#### **Integer Frequency Multiplication**



Integrated Systems Design Laboratory, SNU

D.K.Jeong

#### **Fractional Error**



#### **Fractional Error Correction**



[3] R. B. Staszewski TCASII 2005

#### Outline

- Introduction
- Recently Published ADPLLs

### ADPLL Example – 1 (1)

- Multipath gated ring oscillator TDC (GRO-TDC)
- Digital fractional noise cancellation
- Achieve low noise and wide bandwidth



## ADPLL Example – 1 (2)

**Multipath GRO-TDC** 

#### **Digital noise cancellation**









Multipath implementation



- Deal with the quantization noise directly in the digital domain
- Scale factor is easily computed

[1] C.-M. Hsu JSSC 2008
### ADPLL Example – 1 (3)





- 5-bit resistor ladder & 5-bit switch-capacitor array
- Minimize active circuitry and no transistor bias current
- Achieve monotonic DAC output with first-order filtering

[1] C.-M. Hsu JSSC 2008

## ADPLL Example – 2 (1)

- Fractional ADPLL without feedback divider ([9] R. B. Staszewski TCASII 2005)
- Simplifies synthesizer core
- Requires more accurate TDC calibration to ensure the ratio between F<sub>out</sub> and F<sub>ref</sub>



### ADPLL Example – 2 (2)

- Fractional counter should meet N-T<sub>del</sub>=M-T<sub>dco</sub>/2 M and N are relatively prime
- In this implementation,  $21 \cdot T_{del} = 5 \cdot T_{dco}/2$



## ADPLL Example – 2 (3)

- Fractional counter calibration
  - Monitor the number of group of 5 identical bits



## ADPLL Example – 2 (4)

- Fractional counter mismatch correction
  - Reference clock rate is doubled
  - Generate pseudo random jitter injected 'dirty edge' only for calibration and correction ('dirty edges' are not used by the main loop)
  - Monitor the histogram of fractional counter



Integrated Systems Design Laboratory, SNU

D.K.Jeong

## ADPLL Example – 3 (1)

- Fractional-N PLL with phase-interpolation divider
- TDC using dynamic element matching (DEM)
- Digital fractional noise cancellation (as [7])
- Phase interpolator mismatch cancellation



### ADPLL Example – 3 (2)

- Division factor:  $N_{div} + (N_{pi} + N_{sd}/2^{16})/16$
- All digital bang-bang servo loop forces multi-phases to be equally spaced



### ADPLL Example – 3 (3)

#### TDC using DEM

# Phase interpolator mismatch cancellation



[5] M. Zanuso ISSCC 2010

### References (2)

- [1] C.-M. Hsu, et al., "A low-noise wide-BW 3.6-GHz digital ΔΣ fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation," *IEEE J. Solid-State Circuits*, vol. 43, no. 12, pp. 2776-2786, Dec. 2008.
- [2] R. B. Staszewski, et al., "A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones," *IEEE J. Solid-State Circuits*, vol. 40, no. 11, pp. 2203-2211, Nov. 2005.
- [3] R. B. Staszewski, et al., "Phase-domain all-digital phase-locked loop," *IEEE Trans. Circuits and Syst. II: Express Briefs*, vol. 52. no 3, pp. 159-163, Mar. 2005.
- [4] E. Temporiti, et al., "A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques," *IEEE J. Solid-State Circuits*, vol. 44, no. 3, pp. 824-834, Mar. 2009.
- [5] M. Zanuso, et al., "A 3MHz-BW 3.6GHz digital fractional-N PLL with sub-gate-delay TDC, phase-interpolation divider, and digital mismatch cancellation," in *IEEE ISSCC Dig. Tech. Papers*, 2010, pp. 476-477

#### Noise Analysis of All-Digital Pixel Clock Generator



#### Outline

- ADPLL Block Diagram and Noise Sources
- Output Noise
  - Calculation of Power Spectral Density
  - Verilog Simulation
- Phase Noise and Jitter
  - RMS Jitter Calculation from Phase Noise
  - Verilog simulation
- Simulation Guide



#### **ADPLL Block Diagram and Noise Sources**



#### **Open Loop Transfer function**

$$A(f) = \frac{T_{REF}}{2\pi} \cdot \frac{1}{\Delta t_{TDC}} \cdot \left(\alpha + \beta \frac{f_{REF}}{j2\pi f}\right) \cdot \frac{K_{DCO}}{jf} \cdot \frac{1}{N}$$

**Closed Loop Transfer function** 

$$G(f) = \frac{A(f)}{1 + A(f)}$$



#### **Output Noise**

• Power spectral density of output noise

$$\begin{split} S_{\Phi OUT}(f) &= S_{\Phi OUT, TDCq}(f) + S_{\Phi OUT, DCOq}(f) + S_{\Phi OUT, \Delta\Sigma1}(f) + S_{\Phi OUT, \Delta\Sigma2}(f) + S_{\Phi OUT, REF}(f) + S_{\Phi OUT, DCO}(f) \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 2 & 3 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 2 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1 & 3 & 3 & 5 \\ \hline 1$$

#### ISDL

#### **Output Noise**

• Plot of Power spectral density of output noise



**ISDL** Integrated Systems Design Lab.

#### **Phase Noise and Jitter**

• RMS Jitter calculation from phase noise

$$C(t) = A\sin(2\pi f_C t + \theta(t)) = A\sin(2\pi f_C (t + \frac{\theta(t)}{2\pi f_C})) \qquad J_{PER} = \frac{\theta(t)}{2\pi f_C}$$
$$n(t) = \frac{A}{2}\theta(t) \qquad S_n(f) = \int_{-\infty}^{\infty} n(t)e^{-2\pi f t} dt = \frac{A^2}{4}S_{\theta}(f)$$

----

$$S_{\theta}(f) = \frac{4}{A^2} \int_{-\infty}^{\infty} n(t) e^{-2\pi f t} dt = \frac{4}{A^2} S_n(f) = 10^{\frac{L(f)}{10}}$$

$$\left\langle \theta^2(t) \right\rangle = 2 \int_0^\infty S_\theta(f) df = 2 \int_0^\infty \frac{4}{A_2} S_n(f) df = 2 \int_0^\infty 10^{\frac{L(f)}{10}} df$$

$$J_{RMS} = \frac{1}{2\pi f_C} \sqrt{\left\langle \theta^2(t) \right\rangle} = \frac{1}{2\pi f_C} \sqrt{2\int_{0}^{\infty} 10^{\frac{L(f)}{10}} df}$$



#### **Phase Noise and Jitter**

Verilog simulation (calculation and simulation result comparison)



**ISDL** Integrated Systems Design Lab.