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What is Injection Locking?

• A oscillator is locked to a frequency of an external signal 

close to its free-running frequency.

– Frequency is locked but not the phase.
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θ = function (Ainj, Aosc, ωinj, ω0) 
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Applications

• Clock generation

– Fundamental injection: ωout = ωinj

• Frequency multiplication

– Subharmonic injection: ωout / N = ωinj

• Frequency division

– Superharmonic injection: ωout *N = ωinj

• Clock recovery from NRZ data stream
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Basic Theory

• Developed by Adler in 1946
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Symbols

• ω0 = free-running frequency

• ω1 = frequency of external signal (injection)

• ∆ω0 = ω0 – ω1 : “undisturbed” beat freq.

• ω = “instantaneous” freq. of oscillator

• ∆ω = ω – ω1 : “instantaneous” beat freq.

• “undisturbed”: injection off

• “instantaneous”: injection on
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Three Assumptions

1) ω0 /2Q >> ∆ω0: injection freq  free running freq

2) T << 1/∆ω0: amplitude control mechanism is very fast

(T=RTCT)

3) E1 << E: weak injection
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Phasor Diagram

• Phasor: Phase Vector

– represents both amplitude and phase 

• Phasor diagram is used when analyzing linear system 

with the same frequency

• “rotating” phasor is used for expressing signals with 

slightly different frequency
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Rotating Phasor

• E1: Injected signal phasor with fixed frequency (ω1).

• E: Internally generated signal phasor

– Rotating clockwise with an angular velocity (dα/dt).

– Actual frequency = ω1 + (dα/dt)

• Eg: Phasor of sum of internal and externally injected 

signal
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Examples of Rotating Phasor

• When free-running frequency is equal to injected 

frequency (ω0 = ω1)
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t=0, initial phase 

difference exists
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Relation between Phasors

• Vector calculation
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Under weak injection, E1 << E, φ << 1
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Phase Shift at Off-resonant Frequency

• Assuming injection frequency being close to resonant 

frequency
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LC Resonant Circuit Phase Response

• For an RLC tank,
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LC Resonant Circuit Phase Response

• For an RLC tank,

• In the notation of the Phasor diagram,
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Calculation of Phasors

• Calculation of (t) from two equations
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: LC resonant circuit
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Lock Range Calculation

• Equation for (t) (phase angle between E and E1)

• In steady state,

• Thus, 

• Since

• Normalized lock range is
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Note on Lock Range

• For higher normalized lock range

– higher injection strength (E1/E)

– low Q resonant circuit (higher bandwidth of the tank)
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Solution of (t) when 0=0

• General solution with 0=0

• Simplified equation

• Analytical solution

• When α0 is small, close to a first-order system.
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Solution of (t) when 0=0

• In Mathematica,
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Solution of (t) when 00

• General solution with 00

• Simplified equation

• Analytical solution when K<1 (Injection locked)
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Solution of (t) when 00

• Still a first-order system (K<1)
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α ≠0 What is its time constant?

What is its final phase error?
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Solution of (t) when 00

• Analytical solution when K>1 (Injection pulling, not 

locked)
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Noise Model

• Assume Series Resonance

– Ri = internal resistance

– Ro = load resistance

• e(t): Injected signal
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𝜔0𝐿
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Equations of Signals

• In case of free-running, e(t)=0 and i(t) is periodic with 

harmonic terms.

• Suppose small perturbation is given by small e(t)

• A(t) and (t) are slowly varying function compared with .
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Equations of Signals

• Calculation of di/dt

Topics in IC Design 5©  2020 DK Jeong



Equations of Signals

• Calculation of ∫ i(t) dt

• Use integration by parts and note that A(t), dA(t)/dt, (t) 

and d(t)/dt are slowly varying functions. 
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Equations of Signals

• Substitute di/dt and ∫ i(t) dt into Eq. (1).
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Equations of Signals

• Multiply sin(t+𝛷) and cos(t+𝛷) and integrate over one 

period.

– Since A and 𝛷 are slowly varying function, they do not change 

appreciably over one period
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Equation for phase variation 
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Equations of Signals

• Multiply sin(wt+𝛷) and cos(wt+𝛷) and integrate over one 

period.

– Since A and 𝛷 are slowly varying function, they do not change 

appreciably over one period
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Equation for amplitude variation 
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Equations of Signals: Injection Locked

• When the oscillator is injection locked with                        ,

oscillation frequency becomes injection frequency s.

• In steady state,               and right hand side is                . 

• Let                           , then Eq. (2) becomes
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Lock Range

• Since |sin𝛷| < 1, lock range is 

• Note a0 is the voltage amplitude, A0 is the current amplitude.
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Equations of Signals: Injection Locked

• R is a nonlinear resistor.

• Average resistance over one cycle is (V/I)avg.

• ഥ𝑹 is a function of A. ഥ𝑹 decreases as A increases with the 

rate of -K.

• ഥ𝑹 = 𝑹𝒊 + 𝑹𝒐 −𝑲(𝑨 − 𝑨𝒐)
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Slope= - K
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Equations of Signals: Injection Locked

• When free-running,             and            .

• Thus,                   with A0.

• For a small variation       ,    varies linearly.
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Amplitude when Injection Locked

• When the oscillator is injection locked with                        ,

oscillation frequency becomes injection frequency s.

• In steady state, and right hand side is               .

• Since                               ,
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Result of injection on amplitude:

Phase difference between 

injected signal and oscillation 

signal 
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Noise in Free-Running Oscillator

• Suppose e(t) is a Gaussian noise source

• Let                                        and

• In case of free-running, = 0, and then (2) and (3) become
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Noise in Free-Running Oscillator

• Taking Laplace transform on phase noise,

• Then

• Taking Laplace transform on amplitude,

• Then 
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Noise in Free-Running Oscillator

• To combine phase noise and amplitude noise together,

calculate autocorrelation function of output current i(t).
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Noise in Free-Running Oscillator

• Using                          on

• Power Spectral Density becomes
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Due to phase noise

Due to amplitude noise

Lorentizian

©  2020 DK Jeong



Noise in Free-Running Oscillator

• Power Spectral Density becomes

• When  is near 0, first term dominates.
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Noise in Injection-Locked Oscillator

• e(t) has both noise and injection signal.

• Phase noise is calculated as

• When compared with free-running case,

• Phase fluctuation is considerably reduced when

• Noise down when  is within the lock range
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Noise in Injection-Locked Oscillator

• Equation for amplitude noise is calculated as

• Compared with free-running case,

• Amplitude noise is increased.
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Noise in Injection-Locked Oscillator

• Combining phase noise and amplitude noise together,
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Noise in Injection-Locked Oscillator

• At the edge of the lock range(cos 𝛷0 =0), this injection 

locking fails and this equation doesn’t hold.
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Comparison

• FM noise
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Noise in Noisy Injection Signal

• When injected by noisy injection signal, phase noise is

• Compare with free-running and noiseless injection cases,
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injection locked with 

noise-free input

Injection locked with 

noisy input

Free running
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Noise in Noisy Injection Signal

• When injected by noisy injection signal, amplitude noise 

is

• Compare with free-running and noiseless injection cases,
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Noise in Noisy Injection Signal

• Hard to calculate R() and Power Spectral Density with
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Noise in Noisy Injection Signal

• Shape of PSD with noisy injection signal

• 0: Free-running Frequency

• d: Frequency difference

• L: Lock-in Frequency

• B: Beat Frequency

• PSD
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Effect of Flicker Noise

• ILO attenuates jitter with 1-st order filtering

• 0: Free-running Frequency

• d: Frequency difference

• L: Lock-in Frequency

• B: Beat Frequency

• PSD
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• N-th Harmonic Generation
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Subharmonic IL LC oscillator

• Subharmonic Injection-locked LC oscillator
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Injection-Locked LC Oscillator

• Pulses are injected with N-th harmonic
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N-th Harmonic Generation

• Pulse with short duty cycle has a lot of harmonics

– Equation?
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Injection-Locked LC Oscillator

• N-th harmonic is injected by a pulse generator or by a 

MOS transistor biased in class-C
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Injection-Locked LC Oscillator

• Injection to the source of the MOS transistors
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Pulse Injection by Shorting

• Injection by shorting

Topics in IC Design 8©  2020 DK Jeong



Injection-Locked Ring Oscillator

• Pulse-injection-locked frequency multiplier (PILFM)

• 20-MHz input with Sharp pulse with 1.7% duty

• 200-MHz output (10x multiplication)
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Subharmonic Pulse-Injection Locking

• Input Sensitivity as a function of output frequency 

– 1.7% duty ratio maintained

– X10 multiplication with constant tuning range
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250MHz
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2GHz

5%
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Multiphase ILRO

• Wide lock range
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Phase Noise

• Edges are realigned in every N cycles.
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Phase Noise

• Edges are realigned in every N cycles.
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3dB
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Spur and Frequency Tuning

• Impact of frequency tuning and reference spur generation

• When not tuned:

• Error in the period of injection cycle:

• Reference spur:  
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Tuning of IL Oscillator

• Pulse on Injection Switch

– Sample and hold detects phase error
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Tuning of IL Oscillator

• Tuning of the free-running frequency 

– Reference spur is reduced

16Topics in IC Design©  2020 DK Jeong



References

• [4.3.1] J Lee, et al., “Subharmonically Injection-Locked PLLs for Ultra-Low-
Noise Clock Generation,” ISSCC 2009

• [4.3.2] B. Helal, et al., “A Low Jitter Programmable Clock Multiplier Based on a 
Pulse Injection-Locked Oscillator With a Highly-Digital Tuning Loop,” JSSC 
2009

• [4.3.3] C. Liang et al., “An Injection-Locked Ring PLL with Self-Aligned 
Injection Window, ISSCC 2011 

• [4.3.4] C. Wu, et al., “A Phase-Locked Loop With Injection-Locked Frequency 
Multiplier in 0.18-um CMOS for V-Band Applications,” TMTT, No. 7, 2009

• [4.3.5] Choi et al., “Ultralow In-Band Phase Noise Injection-Locked Frequency 
Multiplier Design Based on Open-Loop Frequency Calibration,” TCAS-2, 2014 

• [4.3.6] K. Takano, et al., “4.8GHz CMOS Frequency Multiplier with 
Subharmonic Pulse-Injection Locking”, ASSCC, 2007

• [4.3.7] Da Dalt, “An Analysis of Phase Noise in Realigned VCOs,” TCAS-II, 
2014

• [4.3.8] Xu, et al., “A 4-15GHz Ring Oscillator based Injection Locked 
Frequency Multiplier with built-in Harmonic Generation,” CICC 2013

17Topics in IC Design©  2020 DK Jeong



Topics in IC Design

4.4 Injection Locked Frequency

Dividers

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

School of Electrical and Computer Engineering

Seoul National University

2020 Fall



Outline

• Direct Injection Locked Frequency Divider

• Regenerative IL FD

©  2020 DK Jeong Topics in IC Design 2



Direct Injection-Locked FD

• Divide-by-two Direct ILFD
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Direct Injection-Locked FD

• Divide-by-two Direct ILFD
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Input frequencyOutput frequency
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Frequency Divider based on LC Osc

• L3 and L4 reduces the effect of parasitic capacitances

• Divide-by-5 operation
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Frequency Divider based on LC Osc

• M5 mixes f0 and 5f0 to generate 4f0 and 6f0, which is mixed 

with 5f0 by M6 to generate f0 and 9f0 and 11f0.
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Frequency Divider based on LC Osc

• Resonance frequency 

• If C1=C2=C3=C and L5 > L3, L4

• L3 must be minimized to increase f0
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RO-based FD

• 4-stage RO based ILFD
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RO-based FD

• 4-stage RO based ILFD

• N-stage Lowpass filter removes high-frequency 

components and only the following term survives.

• Therefore,
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Regenerative Injection-Locked FD

• 60GHz divide-by-three operation
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Injection Locked Ring Oscillators

• N-stage resistive-load RO at free running
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Injection Locked Ring Oscillators

• Single-ended injection
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Injection Locked Ring Oscillators

• Single-ended injection

• Since
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3-Stage Ring Oscillator as 2:1 Divider

• Superharmonic IL RO as 2:1 frequency divider 

– Mixer acts as a phase shifter and a frequency translator

14Topics in IC Design©  2020 DK Jeong

[JSSC2007 J. Chien et al.]



Multiple-Input Injection

• Multiple-input injection

– Injection in three points with phase shift of inj

• Lock range is enhanced by 3 times with inj=
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ILFD

• RO locks to the 3rd harmonic of the input

– Free-running frequency is set by VILFD

– Each three-stage RO runs at 10GHz. Its 2nd harmonic is mixed 

with the 30GHz input and creates 10GHz output.

16Topics in IC Design©  2020 DK Jeong
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• Superharmonic pulsed injection lock model

• Transfer function derivation

• Phase Domain Response (PDR)

• Tuning

• 2-path injection issue
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Injection Lock Model

• Signal Injection

• Transfer function is

• The pole of this lowpass function is 
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Injection Lock Model

• Lock range calculation

– Period of injected signal = T

– Free-running frequency = T’

– Phase shift is T=T’-T

• For phase lag of Td, injection events per clock edge 

creates phase shift of 

• Period difference must not be more than T/4 or T’/4

• Therefore, Td=T/4 and the lock range is 
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Timing diagram of IL-VCO
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Assuming

N∙fref = fvco (∆f = 0),

“Tuned”

[JSSC’02 S. Ye et al.]
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Phase Realignment
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• Assumptions

– Linear phase shift (β)

– Amplitude fluctuation is negligible

[JSSC’02 S. Ye et al.]

–β
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Theoretical analysis (1)
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[Time-domain waveform] [Extra phase shift]

• θinst_vco(t) = θvco(t) + φ(t)

– θinst_vco(t): instantaneous VCO phase noise

– θvco(t): intrinsic VCO phase noise

– φ(t): extra phase shift due to injection (or realignment)

[JSSC’02 S. Ye et al.]

(1)
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Theoretical analysis (2)

• θe[n] = θinst_vco(nTr
-) – N∙θref(nTr)

– nTr
-
: the time instant just before the nth reference edge

– θref(t): the reference phase noise at 1/N frequency

• –β∙θe[n]

– VCO phase shift after nth phase realignment

• φ(t) = –β ∙ σ−∞
+∞θe[n] ∙ u(t–nTr)

– VCO can be modeled as a phase error integrator

• φ(t) = σ−∞
+∞φ∆[n] ∙ hhold(t–nTr)

– φ∆[n] – φ∆[n-1] ≡ –β∙θe[n] (see the figure of previous slide)

– hhold(t) = u(t) – u(t -Tr) (zero-order hold with pulse width of Tr)

Topics in IC Design 8

[JSSC’02 S. Ye et al.]
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Theoretical analysis (3)

• φ(jw) = 𝑻𝒓 ∙ 𝒆−𝒋𝒘𝑻𝒓/𝟐 ∙ 
𝒔𝒊𝒏(𝒘𝑻𝒓/𝟐)

(𝒘𝑻𝒓/𝟐)
∙ φ∆(z) | z=𝒆𝒋𝒘𝑻𝒓

– Fourier transform of “φ(t) = σ−∞
+∞φ∆[n] ∙ hhold(t–nTr)”

– φ∆(z): z transform of φ∆[n]

• φ∆[n] – φ∆[n-1] = –β ∙ (θvco[n] + φ∆[n-1] – N∙θref[n])
– φ∆[n] – φ∆[n-1] ≡ –β∙θe[n]

– θe[n] = θinst_vco(nTr
-) – N∙θref(nTr)

• φ∆(z) = 
–𝜷

𝟏+(𝜷−𝟏)𝒛−𝟏
∙ θvco(z) + 

𝑵∙𝜷

𝟏+(𝜷−𝟏)𝒛−𝟏
∙ θref(z)

• θinst_vco(jw) = θvco(jw) ∙ Hrl(jw) + θref(jw) ∙ Hup(jw) – (1),(2),(3)

– Hrl(jw) = 𝟏 −
β

𝟏+(β−𝟏)𝒆−𝒋𝒘𝑻𝒓
∙ 𝒆−𝒋𝒘𝑻𝒓

𝒔𝒊𝒏(𝒘𝑻𝒓/𝟐)

(𝒘𝑻𝒓/𝟐)
(phase realignment, high pass)

– Hup(jw) = 
𝑵∙β

𝟏+(β−𝟏)𝒆−𝒋𝒘𝑻𝒓
∙ 𝒆−𝒋𝒘𝑻𝒓

𝒔𝒊𝒏(𝒘𝑻𝒓/𝟐)

(𝒘𝑻𝒓/𝟐)
(reference noise upconversion, low 

pass)

Topics in IC Design 9

[JSSC’02 S. Ye et al.]

combining
Z transform

(2)

(3)

©  2020 DK Jeong



Theoretical analysis (4)

Topics in IC Design 10

Conventional PLL Realigned PLL

VCO phase noise 

transfer function

of RPLL

Reference phase noise

transfer function

of RPLL

Further suppression 

of VCO noise

[JSSC’02 S. Ye et al.]
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What is Phase Domain Response?

Topics in IC Design 11

CLKOSC

INJ

θIN

N-cycles

PW

θOUT

θ

PDR Estimation

• Re-adjustment of edges by a single pulse
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PDR Calculation (1)

Topics in IC Design 12

(a) Time domain (b) Phasor diagram

ΔV

V  sinΦ 

V  sin(Φ-Φout)

V

Φ

Φin

Im(V)

Re(V)

Φin

Φout

ΔVV

(c) PDR curves

• ∆V = V∙a∙sin(Φin), (a=𝟏 − 𝒆
−

𝒅

𝑹𝑺𝑾𝑪)

• Φout = Φin – Arctan[tan(Φin) – ∆V/Vcos(Φin)]

• Injection pulse width: impulse (d~0)

• Symmetric PDR

[JSSC’13 Y. C. Huang et al.]
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PDR Calculation (2)

integration

Topics in IC Design 13

[JSSC’13 A. Elkholy et al.]

• Integration of phase shifts 

• Injection pulse width: large signal (D>0)

• Asymmetric PDR
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Tuning

• Tuning

– Free-running frequency = injection frequency

– Free-running frequency can drift

– Continuous background calibration necessary

• Frequency Locked Loop (FLL) is necessary

– Phase is determined by injected signal

• What if a PLL is used?

– Phase is locked by two paths

– Average free-running frequency with spur = injection frequency 

– But real free-running frequency ≠ injection frequency

Topics in IC Design 14©  2020 DK Jeong



2-path phase adjustment

Topics in IC Design 15

Pulse 
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REF
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ΔΦERR 0
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Tuning 1 – GRO TDC

Topics in IC Design 16

• It can detects ∆f using GRO TDC

• Only 1 point injection: no BBPD from reference

[JSSC’09 B. M. Helal et al.]

[GRO TDC][Overall architecture]
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Tuning 2 – signal gating 

Topics in IC Design 17

[JSSC’13 A. Elkholy et al.]

• Gating injection pulse

• When gating pulse, BBPD can detect ∆f

• 2 point modulation: but calibrates two different paths

• But this method waste useful information every 1/N
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Tuning 3 – replica (1) 

Topics in IC Design 18

[JSSC’16 Choi et al.]

• It can detects ∆f using a replica delay cell

• Mismatch is reduced comparing replica oscillator

• DE-PD: comparing phase of VCO & REPLICA

• Only 1 point injection: no BBPD from reference
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Tuning 4 – 2-path delay matching (1)

Topics in IC Design 19

[ISSSC’17 Kim et al.]

• 1 replica delay cell as in JSSC’16 Choi

• But this architecture calibrates mismatches using PCL

• Only 1 point injection: no BBPD from reference
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Tuning 4 – 2-path delay matching (2)

• Architecture

Topics in IC Design 20

[ISSSC’17 Kim et al.]
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Tuning 4 – 2-path delay matching (3)

• If 2 modulation paths are not matched, it is shown as

– Large spur (PLL)

– Increased Phase jitter

Topics in IC Design 21

[ISSSC’17 Kim et al.]

INJ ϕ
E

R
R

REP

OSC

Ring OSC.

A

B

OSC

INJ

ϕERR UP

REP

DNIdentical

©  2020 DK Jeong



Tuning 4 – 2-path delay matching (4)

• tpm represents total path mismatch error

• DLF controls tcal to match tpm

Topics in IC Design 22

[ISSSC’17 Kim et al.]
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Tuning 4 – 2-path delay matching (5)

• Measured results

Topics in IC Design 23

[ISSSC’17 Kim et al.]
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Tuning 4 – 2-path delay matching (6)

• Measured results

Topics in IC Design 24

[ISSSC’17 Kim et al.]
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Tuning 4 – 2-path delay matching (7)

• Measured results

Topics in IC Design 25

[ISSSC’17 Kim et al.]
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