Topics in IC Design

5.1 Introduction to Delay-Locked Loop

Deog-Kyoon Jeong dkjeong@snu.ac.kr School of Electrical and Computer Engineering Seoul National University 2020 Fall

Outline

- □ Introduction
- □ Analysis of DLL
- DLL building blocks

What is DLL?

Delay-Locked Loop

- A negative feedback system where an delay-line-generated signal is locked to a reference signal
- □ Input and output frequencies are the same.
- Delayed output is automatically locked in phase to the input in a feedback loop.

DLL Applications (1)

□ Zero delay buffer

□ Resolves the skew problem due to on-chip clock tree

DLL Applications (2)

□ Multi-phase clock generation

□ Multi-phase clock is very useful in many applications

DLL Applications (3)

□ Clock frequency multiplication with multiphase DLL

- No jitter accumulation compared with PLL
- □ Much spur generated No RF applications

DLL Applications (4)

□ Clock generation for source-synchronous systems

- □ Jitter filtering is not possible
- □ Infinite bandwidth jitter passes through to the output with a 1 cycle delay

Delay-Locked Loop Transfer Function

- Loop filter for DLL is simpler
 - DLL is a first-order system
 - D_{in} is the period of input, D_{out} is the delay of the VCDL

- With $V_{\rm C} = \omega_{\rm In}(D_{\rm In} - D_{\rm Out})K_{\rm PD}L(s)$ and L(s) = 1/sRC

Delay-Locked Loop Transfer Function

- Loop filter for DLL is simpler •
 - DLL is a first-order system
 - D_{in} is the period of input, D_{out} is the delay of the VCDL

- With $V_{\rm C} = \omega_{\rm In}(D_{\rm In} - D_{\rm Out})K_{\rm PD}L(s)$ and L(s) = 1/sRC

DLL Transfer Function

What is the jitter transfer function?

- $H(s) = \Phi_{out}(s) / \Phi_{in}(s)$?

Using the following relations,

<= High-pass filter !!

Close to an all-pass filter !!

DLL

Harmonic Lock Problem

- False lock or harmonic lock occurs when initial delay is greater then 2 * T_{in} with PD locking at 0°.
 - In false lock, single phase output could be functionally ok but loop characteristics change
 - Multiphase clocks malfunctions
 - Start DLL with reset. On reset, V_c forced to 0.

Harmonic Lock Problem

- Avoiding harmonic lock
 - Use intermediate outputs

Stuck Problem

- Depending on initialization, stuck problem may arise.
 - Delay is at minimum but PD keeps comparing input with currentcycle output not with one-cycle delayed output.

Half Clock Delay DLL

- DLL with only half a clock delay
 - DLL locks at D_{out}=T_{in}/2
 - Limiting phase input difference with additional reset path for PFD can solve the stuck problem

References

- [6.1.1] M. Lee, "Jitter Transfer Characteristics of Delay-Locked Loops—Theories and Design Techniques", JSSC vol. 38, no 4, 2003
- [6.1.2] B. Kim, "A low-power CMOS Bluetooth RF transceiver with a digital offset canceling DLL-based GFSK demodulator," JSSC vol. 38, no 10, 2003

Integrated Systems Design Laboratory

Delay-Locked Loops 5.2 Structures

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

October 19, 2020

Dept. of Electrical Engineering and Computer Science

Seoul National Univ.

Delay-Locked Loop (DLL)

- Matching TIMING at separate two points by adjusting DELAY
- Negative feedback loop
- DLL does not self-generate the output clock

DLL Building Block: Delay Line

- Delay element with control port (Voltage-Controlled Delay Line)
- Control signal adjusting delay
- Typically, by tuning RC time constant

DLL Building Block: Phase Detector

- Phase detector (PD) for sensing the phase difference
- Linear phase detector, bang-bang phase detector

DLL Building Block: Loop Filter

- Loop filter for controlling delay element according to the sensed phase difference
- For DLL, only the first-order lowpass filter or an integrator with a chargepump is sufficient.

Comparison with Phase-Locked Loop

• Voltage-controlled oscillator vs. Voltage-controlled delay line

Comparison with Phase-Locked Loop

- PLL has a pole at zero frequency inherently, but DLL does not
- Stability and settling issues are relaxed in DLL
- Jitter does not accumulate in VCDL
- But VCDL cannot adjust frequency:
 - Jitter is added, not removed.
 - difficult to generate different output frequency
 - Multiphase Delay Line or Multiplying DLL is used

Types and Applications of DLL

- Type I
 - Multi-phase clock generation, zero-delay buffer
 - Only one input
 - PD compares input and output of the VCDL
- Type II
 - Data recovery
 - Two inputs (i.e. data and clock)
 - PD compares VCDL output and the other input

DLL Applications - 1

• Multi-phase clock generation (Type I)

DLL Applications - 2

- Zero-delay buffer (Type I)
- Driving the clock to a large load without adding skew
- Resolving the skew problem due to on-chip clock tree

DLL Applications - 3

- Data recovery (Type II)
- Recovering data by sampling at the eye center
- Jitter is not filtered

Building Block Examples: PD

- XOR phase detector Duty ratio sensitive
- Locking point at $\pi/2$, not zero

Building Block Examples: Delay

- For most of CMOS circuits, RC time constant determines circuit BANDWIDTH and DELAY (Time constant ≅ 1/bandwidth)
- Upper limit: process or power
- Lower limit:
- VCDL bandwidth should be higher than the clock frequency even when the VCDL is SLOW
- Duty ratio must be maintained

Building Block Examples: Delay

Delay element examples

CONFIDENTIAL

Integrated Systems Design Laboratory

Delay-Locked Loops 5.3 False Locking Issue

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

October 19, 2020

Dept. of Electrical Engineering and Computer Science

Seoul National Univ.

False Locking Issue in DLL

- Harmonic locking
 - DLL adjust DELAY, according to the information from PHASE detector
 - Same phase, but different delay: Harmonic
- Stuck locking
 - Finite delay range of a delay line
 - When the desired phase of the output signal is out of the range,
 the loop will be stuck at the edge of the range

Harmonic locking occurs when the VCDL range is wide

2020 CONFIDENTIAL

- Harmonic locking occurs when the VCDL range is wide ۲
- Limiting the VCDL range eliminates harmonic locking, but ٠

- Harmonic locking occurs when the VCDL range is wide
- Limiting the VCDL range eliminates harmonic locking, but
- PVT variations, wide operating frequency range

- Example: Type-I DLL for multi-phase generation
- Desired phase shift per stage: 0.25 UI

- PD does not know what's wrong: because phase is locked
- Maybe, a delay detector solves the issue

Delay Detector Example

 Phase detection using multiple phases

[Jung, JSSC'01]

- Comparing all the multi-phases with the reference phase ۲
 - Assuming that duty-cycle is about 50%

Proper locking

- Harmonic locking ٠
- Phase = 2T٠

- **Stuck locking** ٠
- **Phase < 0.5T** ٠

Relaxing Harmonic Lock

- PD locking point repeats
 every 2π
- VCDL range wider than 2π
 results in harmonic lock
- Using a 1/N of VCDL (replica
 VCDL) to relax the range Reprint

[Moon, JSSC'00]

Relaxing Harmonic Lock

- 1/8 of VCDL locks at $\pi/4$ ٠
- XOR PD offers $\pi/2$ locking ٠
- Intentional current offset of ٠ charge-pump shifts the locking point

Vavg

Integrated Systems Design Laboratory

Stuck Locking in DLL : Type-I

• Desired phase shift by the VCDL: 360°

Stuck Locking in DLL : Type-I

- Desired phase shift by the VCDL: 360°
 - Initial condition (A, B)
 - I.C @ A : PD drives the locking point beyond the VCDL range

Stuck Locking in DLL : Type-I

- Initial condition causes STUCK
 - To avoid the stuck,

Avoiding Stuck in Type-I DLL

- Initial condition causes STUCK
 - To avoid the stuck,
 - Set initial condition by RESET

Avoiding Stuck in Type-I DLL

- Initial condition causes STUCK
 - To avoid the stuck,
 - Set initial condition by RESET

Stuck Detection

• When a DLL is stuck, delay codes are all ones or zeros

Stuck Detection

- All-ones and all-zeros detector
- Timing controller generates required control and reset signals

Integrated Systems Design Laboratory

Stuck Locking in DLL : Type-II

- Desired phase shift by the VCDL: ???
 - Arbitrary phase difference between clock and data

2020

Stuck Locking in DLL : Type-II

- Case example 1: 45° skew between clk&data
 - I.C A results in STUCK

Stuck Locking in DLL : Type-II

- Case example 2: 315^o skew between clk&data
 - I.C B results in STUCK
 - Setting initial condition cannot solve the problem

Description of the second seco

Stuck-Free DLL

Infinite range DLL using phase-interpolator (PI) ٠

Stuck-Free DLL

• Dual-loop DLL: Type-I DLL (multi-phase) + type-II DLL (PI)

Phase Interpolator

- Voltage interpolation for phase interpolation
- Gradual clock edge is required: noise, speed, and power issues

Phase Interpolator

- Linear combination of two clocks does not mean linear combination of the two phases
- Because interpolated phase is a function of slew rate
- Non-ideal INL, DNL issue

Stuck Locking Escape

- Sample-swapping technique
- Equivalent to 0.5UI phase shift of PD gain curve

Integrated Systems Design Laboratory

Delay-Locked Loops 5.4 Phase Detector

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

October 19, 2020

Seoul National Univ.

Dept. of Electrical Engineering and Computer Science

Review: Phase Detector in DLL

• Phase detector (PD) for sensing the phase difference

Classification of Phase Detector

- Phase Frequency Detector (PFD)
- Phase Detector (PD)
- Static PD
- Dynamic PD
 - Fast operation speed and potential saving in power

XOR PD

- Phase only detector
- Locking point at $\pi/2$, not zero

XOR PD with Non-Ideal Duty-Cycle

- PD gain curve shifts
- Level sensitive: Two inputs need to be symmetrical

Edge Sensitive PD: JK Latch

- Positive edge at J input triggers the output to high
- Positive edge at K input triggers the output to low

Dynamic PD

• Less phase offset and high speed

Bang-Bang PD - 1

- Sampling one clock with the other clock
- Non-linear phase detection

2020

Bang-Bang PD - 2

- For a special case of type-II DLL: one of the input is not a CLK
- Alexander phase detector

Bang-Bang PD - 2

- For a special case of type-II DLL: one of the input is not a CLK
- Alexander phase detector

BBPD with Dual-Edge Flipflop

Dual edge triggered flipflop

2020

BBPD with Dual-Edge Flipflop

- Dual edge triggered flipflop ٠
- **Clock sampled by Data** •

Phase-Frequency Detector (PFD)

- Flip-flops to remember the edges PFD has been comparing
- Detects cycle slipping
- Dead zone and blind zone issues

XOR-PFD

Dynamic PFD

• K. Lee, US patent 5,815,041

Dynamic PFD

Integrated Systems Design Laboratory

CONFIDENTIAL

PFD in DLL

• Start-up issue

B lead, but PFD tells 'A lead'

Delay-Locked Loops 5.5 Voltage Controlled Delay Line

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

October 20, 2020

Dept. of Electrical Engineering and Computer Science

Seoul National Univ.

Delay Lines

- Analog Controlled
 - Starved Inverter
 - Load Capacitor
 - Supply Controlled inverter
 - Current-controlled fixed-swing CML with replica biasing
 - Swing-controlled fixed-current CML with replica biasing
- Digitally Controlled
 - CMOS NAND Lattice
 - Switched capacitor
 - Resistor-string DAC based current controlled inverter

2

Supply Controlled Inverter

Circuit diagram

NAND Lattice Delay Line

• Circuit diagram

Current-Controlled CML

- Tunable load resistor with same output common and swing
- Replica-feedback bias circuit keeps swing constant and the loads linear

- For high frequency MDLL and finely-spaced multi-phase generation DLL, a delay cell with a short delay is required
- Dual-input interpolating delay cell

[Song, EL'10]

 DIDC can be modeled as a combination of an ideal phase interpolator and a delay element

- Delay of the n-th delay cell $D_n = D_0 \left| \left(\frac{M+1}{M+2} \right) + \frac{1}{M+2} \left(\frac{-1}{M+1} \right)^{n-1} \right|$
- Not a constant delay: dummy delay cells are required

 Weight adjusted DIDC chain: the initial error disappears if the weight of the second delay cell is adjusted to (M+1):1

Duty-Cycle Error Amplification

 Insufficient circuit bandwidth of delay element causes severe duty-cycle error amplification

Duty-Cycle Error and Correction

- DC component of clock ≅ Duty-cycle of clock
- Measure the duty-cycle error by measuring DC portion of a differential clock

CONFIDENTIAL

DLL with Cell-Level DCC

• Duty-cycle correction (DCC) example

DCC with a Half Delay Line

• Duty-cycle correction (DCC) example: use of Half Delay Line

OR-AND DCC

- **Duty-cycle correction (DCC) example** ٠
- At first, duty detector selects • either AND or OR path
- Changing the delay of the VDL _{CK-} • based on the duty detector

AND Function

CONFIDENTIAL

CKD1

CKD2

A

Open Loop Duty Correction

- Duty correction using band-pass filter
- Small capacitor at high frequency

[Bae, A-SSCC'15]

Integrated Systems Design Laboratory

Delay-Locked Loops 5.6 All-Digital DLL

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

October 27, 2020

Dept. of Electrical Engineering and Computer Science

Seoul National Univ.

All-Digital DLL

- All components provide digital interface only
- Suitable for deep-submicron technology using low supply
- PVT variation can be mitigated
- Less sensitive to gate leakage
- Fast locking
- Storing locking information during power down mode

- Binary phase detector
 - Simple but highly nonlinear Vavg π **CK A** D Q Out $-\pi$ ΔΦ CK B CK A **CK B** Out A lead **B** lead

٠

- Linear: Time-to-digital converter (TDC)
- Conventional TDC: delay chain and samplers
- Resolution: Intrinsic gate delay

- Vernier TDC
- Fine resolution but large area, high power consumption

- Interpolative TDC
- Fine resolution using phase interpolation

- Ring oscillator-based TDC
- Wide dynamic range, large power consumption by oscillator

Digital Delay Element Examples

- Current-starved inverter
- Multiplexer-based delay
- Lattice delay line
- Synchronous mirror delay

Current-Starved Inverter

- Digitally controlled current-starved inverter
- Fine resolution
- Dynamic range and intrinsic delay depend on clock frequency

Multiplexer-Based Delay

- Most straightforward
- Tunable delay range increases by cascading the delay units, but the intrinsic delay increases as well

2020

CONFIDENTIAL

Multiplexer-Based Delay

Multiplexer-based delay element and current-starved delay ۲ element are combined

Lattice Delay Unit

- Intrinsic delay of two NAND delay
- Delay step of two NAND delay
- Dummy NAND for fan-out balancing

[Yang, JSSC'07]

Lattice Delay Line

- Intrinsic delay of two NAND delay
- As the operating frequency increases, the number of activated delay units is reduced and the power remains the same
- Breaking dependency between total delay stages and power

Lattice Delay Line

- Glitch issue
- Switching of S1 results in two different paths that generates an output glitch

Modified Lattice Delay Line

• Dual lattice delay line followed by fine phase mixer

Modified Lattice Delay Line

- Dual lattice delay line followed by fine phase mixer
- Seamless operation between coarse and fine delay line
- Power saving by shared delay line

Synchronous Mirror Delay

Synchronous Mirror Delay

$$T_{clk} = d1 + (d1 + d2) + 10TdF - d1$$

$$\therefore 10TdF = T_{clk} - (d1 + d2)$$

 $T_{out} = d1 + (d1 + d2) + 10TdF + 10TdF + d2$ =2 T_{clk}

Synchronous Mirror Delay

- Forward delay array (FDA) measures timing information of lock
- Backward delay array (BDA) with a mirror control circuit (MCC)
- Clock pulse is propagated backward through BDA as it is propagated forward through FDA
- Total delay is two clock cycle: clock skew is suppressed in two clock cycle
- Device mismatch and dynamic noise make the skew between the clocks

DLL Architecture - 1

- Register-controlled DLL
- Only one bit of the shift register is active to select a point of entry of the delay line (One-hot coded)
- Wider range achieved by adding more delay stages: large area

DLL Architecture - 2

- Counter-controlled DLL
- Binary-weighted delay line
- 64-bit shift register in a RDLL can be replaced by 6-bit counter
- Long lock time: 32 clock periods for 6-bit counter

DLL Architecture - 3

- SAR-controlled DLL ۲
- 6 clock periods for 6-bit binary-weighted delay line ٠

22

CONFIDENTIAL

Integrated Systems Design Laboratory

Low Power with Open-Loop Mode

- Once DLL is locked, the feedback loop is opened by LCU
- If any phase error is detected, PEC block sends a closed-loop request to LCU

NFIDENTIAL

Integrated Systems Design Laboratory

Phase-Error Compensation Block

Integrated Systems Design Laboratory

DLL with Low Supply

- Delay time mismatch due to the threshold voltage mismatch ۲
- **Unequal phase spacing** •

2020

DLL with Low Supply

- Mismatch becomes severe with low supply voltage
- Mismatch calibration circuit required

Mismatch Calibration Example

- Multiple DLLs
- Area overhead

Mismatch Calibration Example

- Multiple DLLs
- Area overhead

Mismatch Calibration Example

- Code Density Test
- Asynchronous clock required

Integrated Systems Design Laboratory

Delay-Locked Loops 5.7 Multiplying DLL

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

October 27, 2020

Dept. of Electrical Engineering and Computer Science

Seoul National Univ.

DLL with a Edge-Combining Logic

 Equally spaced phases of the reference clock are processed through an edge-combining logic

Integrated Systems Design Laboratory

2020 CONFIDENTIAL

DLL with a Edge-Combining Logic

- Any mismatch in the delay element or the edge-combining logic translates directly into duty cycle error and deterministic jitter
- Programmable clock multiplication ratio is difficult

[Farjad-Rad, JSSC'02]

Multiplying DLL (MDLL)

- MDLL or Recirculating DLL
- The VCDL is configured as an VCO for N-1 cycles
- V_{tune} **Reset by the reference clock** ۲ Out for one cycle Ref Sel Incorrect V_{tune} leads to undesired ٠ deterministic jitter Sel V_{tune} Ref too high Mux ➡ too low → ideal [Helal, Ph.D Dissertation, MIT] Out (ideal)

Multiplying DLL (MDLL)

- A PLL-like feedback loop to • set proper V_{tune}
- Path mismatch in the MUX ٠ and phase detector causes non-ideality

[Helal, Ph.D Dissertation, MIT]

MUX Select Signal for MDLL

- Timing of the select logic is critical at very high frequency
- If the select signal is too slow, the clock edge experiences a distortion and therefore a phase error in that cycle
- Select signal should have fast transitions

MDLL Compared to PLL

In case of static phase offset

MDLL Compared to PLL

- Reference spur
 - PLL: Periodic ripple on V_{ctrl}
 due to CP mismatch
 - DLL: Phase offset itself

CONFIDENTIAL

Phase Noise of MDLL

- Realignment strength β
- β =0: no phase realignment, β =1: full phase realignment

MDLL Phase Noise Compared to PLL

- PLL bandwidth is at most F_{REF}/10
- MDLL bandwidth is at least 2.5x the PLL bandwidth

Integrated Systems Design Laboratory

Delay-Locked Loops 5.8 Duty Cycle Correction

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

October 27, 2020

Dept. of Electrical Engineering and Computer Science

Seoul National Univ.

DCC Circuits

- Level Type
 - High time and low time are compared
- Edge Type
 - Rising edge and falling edge are compared

DCC Level Type I (US7,705,647)

- Rising and falling edges are adjusted in separate paths
- Wide-range operation possible

Level Type – II

- High and low levels are averaged
- No charge pump

CONFIDENTIAL

Level Type –III

- High loop gain is required unless charge pump is used.
- Otherwise offset remains.

Level Type –IV

Replica circuit for reduced loading

Synchronous DCC

• Falling edge is modulated.

2010 VLSI-SoC Sofer

