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What is Metastability?

• Buridan’s donkey

• In a latch, hesitating decision between 0 and 1.
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Sampling Asynchrounous Signals

• Signal from external world is asynchronous with Clk

• Asynchronous sampling occurs for the signal 

generated from different clock

– Inputs to FFs must be stable when sampled by clkB

– Sampling at aperture or keep-out region must be avoided

• D-FF has setup and hold times
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Synchronizer

• Inputs to synchronous systems must be synchronized 

- qualified in value and time.

• Inputs to synchronous systems must be synchronized 

- qualified in value and time.

• A synchronizer is similar to D-FF with sufficient delay

• X is sampled on the falling edge of clk and waits half 

cycle to decide and then asserts result at the rising 

edge of clk.
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Synchronization Failure

• When input level is close to the threshold, the 

decision can take longer than allotted time, which is 

called synchronization failure.
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Synchronizer Dynamics

• Initially both inputs are low and both outputs are high.

– When A rises first, Afirst’ goes low and Bfirst’ remains at high.

– When A and B rise nearly at the same time, during t,

– where

– When B arrives, NAND gates become cross-coupled inverters.

– where s is regeneration time constant

– Decision time td required for V to reach unit voltage is
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(Ref) Basic Model of Synchronizer

– Same function as positive-edge triggered D-FF

• clk=0: outputs old data and tracks new data

• clk=1: samples new data, regenerates, and outputs result

– The data is regenerated in synchronization core through a 

positive feedback loop
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(Ref) Synchronization Core

• Pair of inverters connected back to back

– Positive feedback loop of two inverters with unity-gain 

bandwidth f1 and time constant .

– Two time constants in the small-signal equivalent circuit

– Thus, metastability regeneration time constant is 
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(Ref) Clock to Q Delay

• Metastability appears as increased clk-to-Q delay, TCQ, 

when setup or hold time is violated

DC
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(Ref) Metastable State

• At sampling time t= tDC-tDC,TH from 

threshold crossing time tDC,TH
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• Probability of clk-to-Q delay exceeding wait time 

(Ref) Calculation of Error Probability
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• Timing window expands due to sampling.

- Error occurs when clock to Q delay exceeds ( )period ck DT   
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• Cascaded Synchronizer

- Error probability at A 

- Error probability at B  Prob( 2 ( ))period ck QC Q delay exceeds T   

Prob( 2 ( ))period ck DC Q delay exceeds T   

(Ref) Error Probability
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Metastability

• If the two inputs rise exactly at the same time, V1 is 

zero and no signal to amplify.

• The circuit with V(t)=0 is in a metastable state.

• Tiny amount of perturbation (noise) will drive the 

circuit into either one of the two stable state. 
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Probability of Sync Failure

• Wait time is the cycle time of A

• Prob (B rises/falls during aperture time) = ta/tcyA=tafA
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Probability of Sync Failure

• Initial condition of V that grows exponentially and 

reaches 1 after wait time of tw = V1 = 1exp(-tw/ts)

• Prob (Edge of B causes metastability after tw) 

= tafAV1 = tafAexp(-tw/ts)

• Frequency of synchronization failure 

= tafAfBexp(-tw/ts)
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Example Sync Calculation

• Synchronized signal BS has a very low probability of 

failure

Regeneration time constant ts = 200ps

tafAexp(-tw/ts)
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Completion Detection

• During metastability (decision time), outputs are not 

validated

– Only after the outputs diverge beyond decision voltage Vd, 

completion signal Done is asserted.

– Asynchronous circuit following arbiter operates only after 

Done is asserted. No sync failure!

– Done is a request signal for the next stage

– Less latency, no worst-case waiting time.
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Common Sync Mistakes

• Properly designed synchronizer exhibits very low 

probability of failure

• Common errors in synchronization

– Using dynamic latch w/o regeneration

– Load cap inside regeneration loop
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StrongArm Latch(schematic)

When CLK=L (precharge), both sb and rb are H.

When CLK=H (evaluation), one goes down to L and the other remains H.

When CLK=L, data must be held. Both s and b are L. So SR-latch with NOR 

gates must be used.
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StrongARM Latch tsetup/thold Sim.
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On input 0->1 transition,

1 sampled at output (0->1)

No transition at out (0->0)

For hold time, apply 1->0  at input



StrongARM Latch tsetup/thold Sim.

• Decision takes longer due to setup/hold time violation.

• Metastable point is varied with PVT variation. 
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sb and rb

0->1 sampling1->0 sampling

Setup time

Metastable Point

Hold time



Offset of StrongARM Latch

• “Offset” is due to mismatch in the supposedly 

identical matched pair.

• From process variations:

- Random dopant fluctuations

- Interface-state density fluctuations

- Mask misalignment, W and L variations

• Offset voltage is determined by mismatch of

- Threshold voltage, transconductance, capacitance
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Offset of StrongARM Latch

• Different discharge rates at P and Q
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What is a serializer?

• Takes n-bits of parallel data changing at rate y and 

transforms into a stream at a rate of n*y

• Converts input parallel data-bits into serial for inter-

IC transmission across lossy channel

• Serial link reduces the number of required pins
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Serializer for high-speed links

• In serializing data, clock rate is important

• Usually uses half-rate clock (2:1) / quarter-rate clock 

(4:1) depending on the process, power, and speed.
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Typical Serializer Architecture
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‘Development of A 16:1 serializer for data transmission at 5 Gbps’, Gong et al



2:1 Serializer Using MUX
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(b) Block diagram of 2:1 Serializer

(a) Schematic
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2:1 Serializer Using MUX
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(a) Block diagram of 2:1 Serializer

(b) Timing diagram of 2:1 Serializer
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Timing Constraints for N:1 MUX
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Timing Constraints for N:1 MUX
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• Setup time

– N:1 stage driven by N-phase input clock of f0/N

(f0 = output bitrate)

– CKIN<1> triggers transition at CKDIV<1> after delay tDIV

– Triggers a transition after delay t(C-Q)MUX

[7] ‘A 32-48 Gb/s Serializing Tx using Multiphase Serialization in 65nm CMOS Tech.’, JSSC,2015, UCLA

tsu= set up time

θ : phase shift between CKIN<1> and CKIN<i>



Timing Constraints for N:1 MUX
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• Hold time

– Delay from CKIN<1> to the last sampling edge, CKIN<j> has 

to be short enough to avoid data switch

[7] ‘A 32-48 Gb/s Serializing Tx using Multiphase Serialization in 65nm CMOS Tech.’, JSSC,2015, UCLA

thold= hold time

φ : phase shift between CKIN<1> and CKIN<j>



Conventional half-rate 4:1 Serializer
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Conventional 4:1 half-rate serializer architecture

[8] ‘140 Gb/s Serializer Using Clock Doublers in 90 nm SiGe Technology’, JSSC,2015, Rensselaer Polytechnic

Institute

Ex) For 140Gbps serial output, 70 GHz clock is required

Hard to implement such high-speed clock

Problems with PLL, clock distribution

Should place clock source 

very close to the last stage



Example (1) MUX-based triple stack
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[5] ‘A Supply-Scalable-Serializing Transmitter With Controllable Output Swing and Equalization

for Next-Generation Standards’, Transactions on Industrial Electronics ,2018, WRBae



Example (1) MUX-based triple stack
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180,270

180,270

[5] ‘A Supply-Scalable-Serializing Transmitter With Controllable Output Swing and Equalization

for Next-Generation Standards’, Transactions on Industrial Electronics ,2018, WRBae

Pre-driver aligns data with the clock using 

NAND gate and inverter chains



Example (1) MUX-based triple stack
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[5] ‘A Supply-Scalable-Serializing Transmitter With Controllable Output Swing and Equalization

for Next-Generation Standards’, Transactions on Industrial Electronics ,2018, WRBae

• Aligned-data is then MUXed with clocks (4:1 MUX)

• Has issues with ISI



Examples (2) 2-step time multiplexing
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• Create 2-UI RZ data and MUX it with clock

• Timing relaxation

• Reduced ISIs compared to example (1)

[4] ‘A 2.5–28 Gb/s Multi-Standard Transmitter With Two-Step Time-Multiplexing Driver’, 

TCAS-II, 2018, M. Choi



Example (3) Unstacked 4:1 MUX 
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[6] ‘A 128-Gb/s 1.3-pJ/b PAM-4 Transmitter With Reconfigurable 3-Tap FFE in 14-nm CMOS’, 

JSSC, 2020, IBM

Triple-stacked 4:1 MUX double-stacked 4:1 MUX unstacked 4:1 MUX

• Nodes highlighted with * indicates undriven nodes, which results in ISIs



Example (3) Unstacked 4:1 MUX 
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[6] ‘A 128-Gb/s 1.3-pJ/b PAM-4 Transmitter With Reconfigurable 3-Tap FFE in 14-nm CMOS’, 

JSSC, 2020, IBM

• AND 2 clocks to create 1-UI wide pulse and then AND it with data

• Reduced un-driven nodes for ISI reduction



Applications

• Examples of widely used serial links
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Phase Interpolator

• Phase interpolator mixes between input phases to 

produce a fine sampling phase

– Ex) Quadrature 90˚ PI inputs with 5 bit resolution provides 

sampling phases spaced by 90˚/(25-1) = 2.9 ˚
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[J. Bulzacchelli, JSSC 06’]



Phase Interpolator(PI) Based CDR

• The D/PLL and PI combination produces adjustable 

clock phase clock generator

©  2020 DK Jeong Topics in IC Design 4

[B. Casper, TICAS1 09’]



Operation Principle
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[R. Kreienkamp, JSSC 05’]

Vout = Asin ωt − ϕ
= cos ϕ Vin,I + sin ϕ Vin,Q = a1Vin,I + a2Vin,Q

Vin,I = Asin(ωt)

Vin,Q = Asin(ωt − π/2)

𝑎1
2 + 𝑎2

2 = 1



Linearity

• PI linearity is a function of the phase spacing, ∆t , to 

output time constant, RC, ratio
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[Weinlader, PhD Thesis]



Non-Linearity Parameter

• INL : suppressed by the large feedback gain 

• DNL : severely degrades the recovered clock jitter 
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[P. Hanumolu, JSSC 08’] [H. Kim, EL 20’]



PI structures

• Voltage-mode[CMOS] PI

• Current-mode[CML] PI
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[B. Casper, TICAS1 09’]

Voltage-mode Current-mode



Comparison of PI

Type-I PI
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[S. Sidiropoulos, JSSC 97’]

Type-II PI

Does not satisfy seamless 

boundary switching (CGD)

Seamless boundary switching 

(input is isolated from output)



Simulated PI transfer function
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[S. Sidiropoulos, JSSC 97’]

• Type-I PI: Maximum step of 3.8° due to CGD

• Type-II PI: large area, more nonlinear characteristics 

due to data-dependent loading 



Case Study: PI [1/5]

• I/Q polarity selection (POL)

• Slew rate control @ input nodes
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[J. Bulzacchelli, JSSC 06’]



Case Study: PI [2/5]

• Cap @ output nodes for slew rate control
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[S. Joshi, VLSI 09’]



Case Study: PI [3/5]

• Two step PI (TSPI): trigonometric PI (TPI) + linear PI (LPI)

• Tunable LPF for wide-range operation (4-8GHz)

• TPSI achieves high bandwidth & linearity
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[B. Wu, T-VLSI 16’]



Case Study: PI [3/5]

Trigonometric PI (TPI)
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[B. Wu, T-VLSI 16’]

Linear PI (LPI)

• TPI generates middle phase 

• LPI mixes the phases between 0 & π/4



Case Study: PI [4/5]

• 4-16 GHz CMOS-based PI w/ slew rate controller
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[S. Chen, ISSCC 18’]



Case Study: PI [4/5]

• PI supports a wide frequency range (4-16 GHz)

– Slew rate needs to be adjusted and optimized for target bands

– Achieve better linearity without significant RJ increase
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[S. Chen, ISSCC 18’]



Case Study: PI [4/5]

• Measured PI linearity

©  2020 DK Jeong Topics in IC Design 17

[S. Chen, ISSCC 18’]



Case Study: PI [5/5]

• Tournament-based PI
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[A. Narayanan, JSSC 2016]
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