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An LU-factorization of a given square matrix A is of the form

) ‘ |A=LU

where L is lower triangular and U is upper triangular. For example,

- [2 3:| [1 OJ[z 3]
A= = LU = .
8 S 4 14L0 -7
It can be proved that for any nonsingular matrix (see Sec. 6.7) the rows can be reordered
so that the resulting matrix A has an LU-factorization (2) in which L turns out to be the
matrix of the multipliers my of the Gauss elimination, with main diagonal 1, - - -, 1, and

U is the matrix of the tnanoula.r system at the end of the Gauss ehmlnatlon (See Ref.
[E3], pp. 155—156, listed in Appendix 1.)

The crucial idea now is that L and U in (2) can be computed directly, without
solving simultaneous equations (thus, without using the Gauss elimination). As a count
shows, this needs about n%3 operations, about half as many as the Gauss elimination,
which needs about 21%3 (see Sec. 18.1). And once we have (2), we can use it for
solving Ax = b in two steps, involving only about n* operations, simply by noting that

= LUx = b may be written

) @ Ly=b whee (b Ux=y

and solving first (3a) for y and then (3b) for x. This is called f)oolittle s method. Both
systems (3a) and (3b) are triangular, so their solution is the same as back substitution in

the Gauss elimination.
A similar method, Crout’s method, is obtained from (2) if U (mstead of L) is required
to have main diagonal 1, , 1. In either case the factorization (2) is unique.

Doolittle’s method
Solve the system in Example | of Sec. 18.1 by Doolittie’s method.

Solution. The decomposition (2) is obtained from

305 2 10 0] [uy,  w  ugg
A= [a]k] =10 8 2| = "1_21 I 0 0 Ugo ) Uog
6 2 8 mgy mgg [ 0 0 i3z

by determining the m;, and ujy, using matrix multiplication. By going through A row by row we get successively

ayp =3 =uy aj2 =5=up; a3 =2 = u3 )
)
agp = 0 = myyueyy agz = 8 = mayuyp + Ugg agy = 2 = Magyy + U :
ma; =0 ugy =8 uzg = 2
agy = 6 = mgyuyy agg = 2 = mgyujp + magugy a3z = 8 = maiuy3 + maguaz + Uz
=mgy -3 =25+ mgy -8 =22 =12+ uy
m31=2 m32=—1 ‘ u;3=6
u1k=a1k k:l,-..’n
a.
= 1 D
mj, = Jj=2..n
4)
“jk=ajk—zmjs“sk k=j--,n jz=2

1
Mje = 7— ( szs“sk) J=k+Lon kz2
Upeke
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Cholesky’s Method

For a symmetric, positive definite matrix A (thus A = AT, x"Ax > 0 for all x # 0) we
can in (2) even choose U = LT, thus uj, = my; (but impose no conditions on the main

The popular method of solving Ax = b based on this factorization A = LLT is called
Cholesky’s method. In terms of the entries of L = [/;;;] the formulas for the factorization .
are -

—
Uy =Vay
ljl = ] = 2,  n
=1 :
(6) ' by =\ -2 0 ' J=2..n i
s=1
L i
[pj=r<apj—zljstps> p=j+ L n jE2
N s=1

If A is symmetric but not positive definite, this method could still be applied, but then
leads to a complex matrix L, so that it becomes impractical.

Cholesky’s method
Solve by Cholesky's method:

dxp + xg + ldxg = 14
= dxy + 17xg — Sxz = —101
fdxy — 3Sxp + 83x3 = 135
Solution. From (6) or from the form of the factorization
4 2 14 I 0 0 [ o1 31
2 17 =5 = 121 122' 0 0 122 1_32
14 —5 83 [31 132 133 0 0 133
we compute, in the given order,
a 2 as 14
lyy =Vay =2 121=“£=—=| 131=l=—'=7
hy 2 Iy 2

lzg = Vagy = lg)2 = V1T = 1=4

! 1
lgg = ~—(agg = Izaha) = 7 (=5 = 7: 1) = =3
Lo

las = Vagg = lag® = s> = V83 =72 = (-3 = 5.
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Gauss-Seidel Iteration Method

This is an iterative method of great practical importance, which we can simply explain in -
terms of an example.

Gauss—Seidel iteration

We coansider the linear system

x; — 0.25x; — 0.25x3 = 50
—0.2511 + Xo - 0.25X4 =50

(h .
=0.25x; + x3 — 025x4 = 25

- 0.25x5 — 0.25x5 + x4 = 25.
(E,quntions' of this form arise in the numerical solution of partial differential equations and in spline fnterpolation.)
We write the system in the form

X = 0.25x9 + 0.25x3 ) + 50
, Xg = 0.23x + 0.25x4 + 50
@ x3 = 0.25%, + 02514 + 25
xg = 0.25x5 + 0.25x3 +25.

We use these equations for iteration, that is, we start from a (possibly poor) approximation to the solution, say,
£ =100, ,r(zm =100, t = 100, x{¥ = 100, and compute from (2) a presumably better approximation

Use “old” values

(*New" values here not yet available)

X = 0255 + 0.2558 . oy, | +50.00 = 100.00
3 x5 = : + 50.00 = 100.00
x5 = x| +25.00 = 75.00
xP = +125.00 = 68.75.

Use “new” values

We see that these equations are obtained from (2) by substituting on the right the most recent approximations.
In fact, corresponding elements replace previous ones as soon as they have been computed, so that in the second

and third equations we use x{" (not x{”), and in the last equation of (3) we use x5 and 5P (not x5 and x5”).
The next step yields

P = 0.25x5" + 0.25x§" + 50.00 = 93.75

.\:(22) = 0_25)‘&2) + Q.ZSxftl) + 50.00 = 90.62‘

2 = 025x + 0255 +25.00 = 65.62

P = 0.25x2 + 0.25x§ +25.00 = 64.06.

In practice, one would do further steps and obtain a more accurate approximate solution.
The reader may show that the exact solution is Xy = xg = 87.5, x3 = x4 = 62.5. . -«



To obtain an algorithm for the Gauss—Seidel iteration, let us derive the general formulas
for this iteration.

We assume that a;; = | for j = 1, - - -, n. (Note that this can be achieved if we can
rearrange the equations so that no diagonal coefficient is zero; then we may divide each
equation by the corresponding diagonal coefficient.) We now write

(4) A=I1+L+U (a”==1)

where [ is the n X 7 unit matrix and L and U are respectively lower and upper triangalar
matrices with zero main diagonals. If we substitute (4) into Ax = b, we have

Ax=(I+L+Ux=b.
Taking Lx ana Ux to the right, we obtain, since Ix = x, .
(5) x=b — Lx — Ux.

Remembering from our computation in Example | that below the main diagonal we took
“new” approximations and above the main diagonal “old” approximations, we obtain from
(5) the desired iteration formulas

(6) ‘ x(m-i-l) =p — Lx(m+1) — Ux(m) (ajj =1)

where X™ = [x{™] is the mth approximation and X™*? = [x{™*V] is the (m + 1)st

approximation. In components this gives the formula in line 1 in Table 18.2. The matrix

Jacobi Iteration

The Gauss-Seidel iteration is a method of successive corrections because we replace

approximations by corresponding new ones as soon as the latter have been computed. -

A method is called a method of simultaneous corrections if no component of an
approximation x"™ is used until all the components of x™™ have been computed.
A method of this type is the Jacobi iteration, which is similar to the Gauss—Seidel iteration
but involves not using improved values until a step has been completed and then replacing
x"™ by x™*1 at once, directly before the beginning of the next cycle. Hence, if we write
AX = b (with a;; = | as before!) in the form x = b + (I — A)x, the Jacobi iteration in
matrix notation is

13) (a;; = 1).

This method converges for every choice of x. if and only if the spectral radius of
I — A is less than 1. It has recently gained greater practical interest since on parallel
processors all n equations can be solved simultaneously at each iteration step.
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