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ROBOT ARM KINEMATICS

And see! she stirs, she starts,
she moves, she seems {0 feel
the thrill of life!

HMHenry Wadsworth Longfellow

2.1 INTRODUCTION

A mechanical manipulator can be modeled as an open-loop articulated chain with
several rigid bodies (links) connected in series by either revolute or prismatic
joints driven by actuators. One end of the chain is attached to a supporting base
while the other end is free and attached with a tool (the end-effector) to manipulate
objects or perform assembly tasks. The relative motion of the joints results in the
motion of the links that positions the hand in a desired orientation. In most
robotic applications, one is interested in the spatial description of the end-effector
of the manipulator with respect to a fixed reference coordinate system.

Robot arm kinematics deals with the analytical study of the geometry of
motion of a robot arm with respect to a fixed reference coordinate system as a
function of time without regard to the forces/moments that cause the motion.
Thus, it deals with the analytical description of the spatial displacement of the
robot as a function of time, in particular the relations between the joint-variable
space and the position and orientation of the end-effector of a robot arm. This
chapter addresses two fundamental questions of both theoretical and practical
interest in robot arm kinematics:

1. For a giver manipulator, given the joint angle vector qir) = (g (¢},
i), - .. ,q,l(t)}‘r and the geomelric link parameters, where n is the number
of degrees of freedom, what is the position and orieatation of the end-effector
of the manipulator with respect to a reference coordinate system?

2. Given a desired position and corientation of the end-effector of the manipulator
and the geometric link parameters with respect to a reference coordinate sys-
tem, can the maripulator reach the desired prescribed maniputator hand position
and orientation? And if it can, how many different manipulator configurations
will satisfy the same condition?

The first question is usuaally referred to as the direct {or forward) kinematics prob-
lem, while the second question is the inverse kinematics {or arm solution) problem.
12
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Figure 2,1 The direct and inverse kinematics problems.

Since the independent variables in a robot arm are the joint variables and a task is
usually stated in terms of the reference coordinate frame, the inverse kinematics
problem is used more frequently, A simple block diagram indicating the relation-
ship between these two problems is shown in Fig. 2.1.

Since the Hnks of a robot arm may rotate and/or translate with respect 10 a
reference coordinate frame, the total spatial displacement of the end-effector is due
o the angular rotations and linear translations of the links. Denavit and Harten-
berg {1955] proposed a systematic and generalized approach of utilizing matrix
algebra to describe and represent the spatial geometry of the links of a robot arm
with respect to a fixed reference frame. This method uses a 4 x 4 homogeneous
transformation matzix to describe the spatial relationship between two adjacent
rigid mechanical finks and reduces the direct kinematics problem to finding an
equivalent 4 x 4 homogeneous transformation matrix that relates the spatial dis-
placement of the “hand coordinate frame” 1o the reference coordinate frame.
These homogeneous transformation matrices are also useful in deriving the
dynamic equations of motion of a robot arm.

In general, the inverse kinematics problem can be solved by several tech-
nigues, Most commonly used methods are the matrix algebraic, iterative, or
geometric approaches. A geometric approach based on the link coordinate systems
and the manipulator configuration will be presented in obtzining a closed form
joint solution for simple manipulators with rotary joints. Then a more general
approach using 4 X 4 homogeneous matrices will be explored in obtaining a joint
solution for simple manipulators.

2.2 THE DIRECT KINEMATICS PROBLEM

Vector and matrix aigebrat are utilized to develop a systematic and generalized
approach to describe and represent the location of the links of a robot arm with

T Vectors are represented in lowercase bold letters; matrices are in uppercase boid,
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respect to a fixed reference frame. Since the links of a robot arm may rotate and/
or translate with respect to a reference coordinate frame, a bedy-attached coordi-
nate frame will be established along the joimt axis for each link. The dircct
kinematics problem is reduced to finding a transformation matrix that refates the
body-attached coordinate frame to the reference coordinate frame. A 3 % 3 rota-
tion matrix is used to describe the rotational operations of the body-attached frame
with respect to the reference frame. The homogencous coordinates are then used
to Fepresent position vectors in a three-dimensional space, and the rotation matrices
will be expanded 10 4 x 4 homogeneous transformation matrices to inchade the
translational operations of the body-attached coordinate frames. This matrix
representation of a rigid mechanical link to deseribe the spatial geometry of
robot arm was first used by Denavit and Hartenberg [1953]. The advantage of
using the Denavit-Hartenberg representation of linkages is its algorithmic uaiver-
sality in deriving the kinematic equation of & robot arm.

2.2.1 Rotation Matrices

A 3 x 3 rowtion matrix can be defined as a transformation matrix which operates
on a position vector in a three-dimensional euclidean space and maps its coordi-
nates expressed in a rotated coordinate system OUVW (hody-attached frame) to a
reference coordinate system OXYZ. In Fig. 2.2, we are given two right-hand rec-
tangular coordinate systems, namely, the OXYZ coordinale system with OX, OY,
and OZ as its coordinate axes and the OUFW coordinate system with OU, OV, and
QW as its coordinate axes. Both coordinate systems have their origins coincident at
point O. The OXYZ coordinate system is fixed in the three-dimensionai space and
is considered to be the reference frame. The OUVW coordinate frame is rotating
with respect to the teference frame OXYZ. Physically, one can consider the
OUVW coordinate system to be a body-attached coordinate frame. That s, it is

¢} ¥

X

Figure 2.2 Refereace and body-attached coordinate systems.
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permanently and conveniently attached to the rigid body (¢.g., an aircraft or a link
of a robot arm) and moves together with it. Let (i, Jy k) and (3, §, k) be
the unit vectors along the coordinate axes of the OXYZ and OUFW systems,
respectively. A point p in the space can be represented by its coordinates with
respect 1o both coordinate systerns.  For ease of discussion, we shall assume that p
is at rest and fixed with respect to the OUFW coordinate frame. Then the point p
can be represented by its coordinates with respect to the QUVIW and OX¥Z coordi-
nate systems, respectively, as

puvw - {;?u‘ ])V’ pw)T 35(‘1 pxy: = (a{)"(’ IJV,’,, p:)} (2'?'“1'}

where p,,. and p,,,. represent the same point p in the space with reference to
different coordinate systems, and the superseript T on vectors and matrices denotes
the franspose eperation.

We would like to find a 3 x 3 transformation matrix R that wil} transform the
coordinates of p,,,, to the coordinates expressed with respect 1o the OXYZ coordi-
nate system, afier the OUVW coordinate system has been rotated. That is,

P = Rpys 2.2-2)
Note that physically the point p,,., has been rowmted together with the OUVW coor-

dinate systern.
Recalling the definition of the components of a vector, we have

P = puiu + Py + Pn-i‘w (2.2.3)

where p,, p,, and p, represent the compenents of p along the OX, OY, and OZ
axes, respectively, or the projections of p onto the respective axes. Thas, using
the definition of a scalar product and Eq. (2.2-3},

Pe= i ep = ichp, + L siepe 0 “Kp,
Py = }y p = jy ‘iapu + j)‘ 'jvpv + .;_v 'kwpw (2.2-4)
p? = l(-7 * p = kz, .iﬂpu "+" kg .jt‘i)l’ _§_ k: ’kK‘IJ\V

or expressed in matrix form,

{ Pe B I =) k 'kw i Py
[R22 Nl I M2 PR MY MR FRL N S {2.2-5)
P, k.«, M iu kz 'jv k; 'kn- E_ P
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Using this notation, the matrix R in Eq. (2.2-2} is given by

i1: * iu i_r 'jv i.x 'kw
R = j)‘ 'iu j_v '.Ev .§y 'i{w {22‘6)
k: <, i"‘z v k; +k,,

Similarly, one can obtain the coordinates of p,,, from the coordinates of py;.:

Pure = QPsy: 2.2-7)
iu * ivt i:‘s 'j_v ii.r * t*"z N Py

or = Lk bl bk Py (2.2-8)
I ;{‘i“ .i‘k' kw -jl' _RW .k: p:

Since dot products are commutative, one can see from Egs, (2.2-6) w0 (2.2-8)
that
Q=R"'=FR (2.29)

and OQR=RR=R'R=L (2.2-10)

where I, is a 3 x 3 identity matrix. The transformation given in Eq. (2.2-2) or
(2.2-7) is calied an orthogonal transformation and since the vectors in the dot pro-
ducts are all unit vectors, it is also called an orthorormal transformation.

The primary interest in developing the above transformation matrix is o find
the rotation matrices that represent rotations of the OUVW coordinate system about
each of the three principal axes of the reference coordinate system OXYZ. H the
OUVW coordinate system is rotated an o angle about the OX axis to arrive at a
new logation in the space, then the point p,., having coerdinates (p,. p,, P’
with respect to the OUVW system will have different coordinates (py, py. po)"
with respect to the reference system OXYZ. The necessary transformation matrix
R, . is calied the rotation matrix abour the OX axis with o angle. R, can be
derived from the above transformation matrix concept, that is

Py = R.r,a L. 2.2-11)
with i, = i,, and
[ b ek 10 o
R, = | J.°L iy dv Jycky | = | 0 cose —sing €2.2-12)
k; i, k. -j. k, -k, 0 sinoe  cosw

Similarly, the 3 x 3 rotation matrices for rotation about the QY axis with ¢ angle
and about the OZ axis with 8 angle are, respectively (see Fig. 2.3},
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cosp 0 sing . cosf —siné );
R, = 0 10 R,o = |sinf cosé 0 2.2-13)
~sim¢ O cosé¢ 0 0 1

The matrices R, ., R,,, and R ; are called the basic rotarion matrices. Other
finite rotation matrices can be obtained from these matrices.

Example: Given two points a,,, = (4, 3, 2)7 and by, = {6, 2, 4)7 with
respect to the rotated QUVW coordinate system, determing the corresponding
points a,,., b, with respect 1o the reference coordinate system if it has been
rotated 60° about the OZ axis.

SoruTion: Ay = B oot Ay and h,\cyz = Rz,é(}" buvw
0.500 ~0866 0] |4
a,. = | 086 050 0|3
0 o 1|2
4(0.5) +3( —0.866) +2(0) ~0.598
= | 4(0.866)+3(05)+2(0) | = | 4.964
4(0)+3(0) +2(1) 20
0500 —0.866 0 |6 1.268
b, = |086 0500 0| 2|=619%
0 0 1| 4 4.0
-

Thus, &, and b, are equal to (—0.598, 4.964, 2.0)7 and (1.268, 6.196,
4.0)7, respectively, when expressed in terms of the reference coordinate sys-
tem. £

Example: If a,, = (4,3, 23" and By, = (6,2, 437 are the coordinates
with respect to the reference coordinate system, determine the corresponding
puints a,,.., b,,., with respect o the rotated OUVW coordinate system if it has
been rotated 60° about the OZ axis.

7 7
SoLunon: A, = (R, 5) 2., and bow = (R, 40 by,

0500 0866 0 [4 4(0.5) +3(0.866) +2(0) |
a,.= | —0866 0.500 0| | 3| = | 4(—0.866)+3(0.5)+2(0)
0 0 112 4(0)+3(0)+2(1)
[ 4,508
= | 1964
2.0
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0.500 0.866 0| | 6 4.732
b = | —0866 05000 | 2] =1 —4.19
0 0 1 [4 1 40 .

2.2.2 Composite Rotation Matrix

Basic rotation matrices can be mukiplied together to represent a sequence of finite
rotations about the principal axes of the OXYZ coordinaie system. Since matrix
multiplications do not commute, the order or sequence of performing rotations is
important. For example, to develop a rotation matrix representing a rotation of o
angle about the OX axis followed by a rotation of # angle about the OZ axis fol-
lowed by a rotation of ¢ angle about the OY axis, the resultant rotation matrix
representing these rotations is

6 0 Sp [co -s6 o] 11 0 ©
R=R,,R,R, .= 0 1 0 | 8 ¢ 07 0 Co —Sa
—S¢ 0 Cod: | 6 g 1110 Se¢ Co

Co(h SoSoe — ChSCe CopS8Sa + S¢la
= RY] CoCe — CBSer (2.2-14)
| - SH B So80Co + CorSue CoCor ~ SoHS850

where C¢ = cosd; 5¢ = sing; (¥ = cosf; S8 = sinf; Co = coso; So =
singe. That is different from the rotation matrix which represents a rotation of ¢
angle about the OY axis followed by a rotation of & angle about the OZ axis fol-
lowed by a rotation of « angle about the OX axis. The resultant rotation matrix is:

I o 0 Cf -8 0 Cé 0 So
R=R, R,R,,= |0 Ca —Sa| | S € 0 0 1 0
L0 Sa Cu 0 0 1 —S6 0 Co
CoC 58 CHSe
= | CouS8C$+5aSé  CaCh  CaShSe — SaCod 2215)

SaS6Ceh — CaSe SeeCH Sas8Se + Cald

In addition o rotating about the principal axes of the reference frame OXYZ,
the rotating coordinate system QUVW can also rotate about its own principal axes.
In this case, the resuitant or composite rotation matrix may be eobtained from the
following simple rules:
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1. Initially both coordinate systems are coincident, hence the rotation matrix is a
3 x 3 identity mairix, L.

2. If the rotating coordinate system OUFW is rotating abowt one of the principal
axes of the OXYZ frame, then premulriply the previous (resultant) rotation
matrix with an appropriate basic rofation matrix.

3. If the rotating coordinate system OUFW is rotating about its own principal
axes, then postmultiply the previous (resultant) rotation matrix with an appropri-
ate basic rotation matrix,

xample: Find the resultant rofation matrix that represents a rotation of ¢
angle about the OF axis followed by a rotation of @ angle about the OW axis
followed by a rotation of o angle about the OU axis,

SoLuTioN:

R = R_V.ea 13 Rw,ﬁ Ru,cs - R}*,r_t} Rw, 3 Ri(.(z

6 0 s¢ | [0 ~-s8 0 1 6 0
= 6 1 0 E 58 o 0 0 Co —Su
=5 0 Cé | L0 0 1 0  Sa Co

Cola S¢pSx — ChSHCr CopSiSer + SpCa
= 59 CBCx — Ch5ce
L —SelH SeS6CH + CohpS CopCor — Sp58S

Note that this example is chosen so that the resultant mairix is the same as Eg.
(2.2-14), but the sequence of rotations is different from the one that generates
Eq. (2.2-14). L

2.2.3 Rotation Matrix About an Arbitrary Axis

Sometimes the rotating coordinate system OUVW may rotate ¢ angle about an
arbitrary axis r which is a unit vector having components of r,, r,, and r, and
passing through the origin . The advantage is that for certain angular motions
the OUVW frame can make one rotation about the axis r instead of several rota-
tions about the principal axes of the OUVW and/or OXYZ coordinate frames. To
derive this rotation matrix R, ;, we can first make some rotations about the princi-
pal axes of the OXYZ frame to align the axis ¥ with the OZ axis. Then make the
rotation about the r axis with ¢ angle and rotate about the principal axes of the
OXYZ frame again to return the r axis back to #s original location, With refer-
ence to Fig. 2.4, aligning the OZF axis with the r axis can be done by rotating
about the OX axis with o angle (the axis r is in the XZ plane}, followed by a rota-
tion of —g angle about the OY axis (the axis r now aligns with the OZ axis).
After the rotation of ¢ angle about the OF or r axis, reverse the above sequence
of rotations with their respective opposite angles. The resultant rotation matrix is



Rr.e:) = Rx. —a R}z‘.ﬂ Rz. -] RY; -8 RX;‘*

i 0
= [ Co

0 ~Sa Ca
- 88

cg 0
x 1 0 1

S8 0
From Fig. 2.4, we easily find that

Sif Qe =

sinf =

Substituting into the above equation,

0|

Sor

0

Fx

Vrlitr?

8 0 S8
0 1 ¢
-5 0 CB
10 0
0 Ca —Sa
0 Sa Cuo

It

COS o

ROBOT ARM KINEMATICS 21

(6 —S6 O
S6 Co O
0 0 1
,

4

Vrlar?

¥

cosf = +/ply,?

¥

r3V¢+C¢ fxny¢_fzS¢ rerV¢+ryS¢
R, , = | rr,Vo+rSe rive+Co ror Ve —r.Se 2.2-16)
ror, Vg —r S r Vo +r.Se rfi/d; +Co
Y, ¥
____________________ 2
f‘/ =~ // i
// ~ / ]
,/ T~ R , i
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Figare 2.4 Rotation about an arbitrary axis.
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where V¢ = vers ¢ = 1 — cos¢. This is a very useful rotation matrix.

Example: Find the rotation matrix R, , that represents the rotation of ¢ angle
about the vector ¥ = (1, 1, 1),

Sorvmion:  Since the vector r is not a unit vector, we reed to normalize it and
find its components along the principal axes of the OXYZ frame. Therefore,

ry o= 1 = - r : . :
Y S TRImm—————— W e Fy = o= p o= e
Vierded T3 T

Substituting into Eq. {2.246}, we cbtain the R, , matrix:

i
WV + Co %Vq)m“\%w ¥o+ Lo
1
s H ;
R.,= | %Vo+ =S WV + Co v V%qu

1
14 B — 5
ST ZY vt ce

2.2.4 Rotation Matrix with Euler Angles Representation

The matrix representation for rotation of a rigid body simplifies many operations,
but it needs nine elements o completely describe the orientation of a rotaling rigid
body. It does not lead dircetly to a complete set of generalized coordinates. Such
a set of generalized coordinates can describe the orientation of a rotating rigid
body with respect to a reference coordinate frame. They can be provided by three
angles called Euler angles ¢, 4, and . Although Euler angles describe the orien~
tation of a rigid body with respect to a fixed reference frame, there are many
different types ef Euler angle represemtations. The three most widely used Euler
angles representations are tabulated in Table 2.1.

The first Euler angle representation in Table 2.1 is usually associated with
gyroscopic motion, This representation is usually called the eulerian angles, and
corresponds to the following sequence of rotations (see Fig. 2.5):

Table 2.1 Three types of Euler angle representations

Eulerian angles Euler angics Roll, pitch, and yaw
system | system IE system 11

Sequence ¢ about OZ axis ¢ about OF axis ¥ about OX axis

of # about OU axis # abouot OV axis & about OY axis

ratations ¥ about OW axis ¢ about OW axis ¢ aboul OZ axis
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Kigure 2.5 Fulerian angles system L

. A rotation of ¢ angle about the OZ axis (R_ )
. A rotation of 8 angle about the rotated QU axis (R, )
. Finally a rotation of ¢ angle about the rotated OW axis (K, )

et b o—

The resultant eclerian rotation matrix is

Rax 0,d = R:’.x,h Ru,f} Rw, ¥

6 ~s¢ 0 [1L 0o o | [y -s¢ 0
= 1S Co O] |0 8 —88 | S C&b 0
00 ;J ose ¢ | Lo o 1
[ CoCy — S6C8Sy  — CaSY — SHCOCY S689
= | SoC¢ + CopCoSYy  —SoSy + CoCHCY  —~CoSh (2.2-17
| 585y §8CY '8

The above eulerian angle rotation mamrix Ry, 4 can also be specified in terms
of the rotations abeout the principal axes of the reference coordinate system: a rota-
tion of ¥ angle about the OZ axis followed by a rotation of # angle about the OX
axis and finally a rowmtion of ¢ angle about the OZ axis.

With reference to Fig. 2.6, another set of Euler angles ¢, 4, and ¢ representa-
tion correspends to the following sequence of rotations:

1. A rotation of ¢ angle about the OZ axis (R 4)
2. A rotation of § angle about the rotated OV axis (R, 5
3. Finally a rotation of ¢ angle about the rotated OW axis (R,, )
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Figure 2.6 Eulerian angles system 1.
The resultant rotation matrix is
Rs\”. 6.4 = Rz. o Rv,g Rw, ¥
(6 —-5¢ 0] [ 8 0 s8 oy ~-S¢ 0
= S¢ Co 0 4] 1 ¢ S C¢ o
_ 0 0 1 -5 0 8 0 0 i

]

[ CoCCY ~ $6.5¢ —CHOISY ~ SoCy  CoSP
= | SeCOCY + CopSy —SHCHSY + CoCy SS9

{2.2-18)
—88CY S65¢ ce

The above Euler angle rotation matrix Ry 4, can also be specified in terms of
the rotations about the principal axes of the reference coordinate system: a rotation
of ¥ angle about the OZ axis followed by a rotation of # angle about the OY axis
and finally a rotation of ¢ angle about the OZ axis.

Another set of Buler angles representation for rotation is called rofl, pirch, and
yaw (RPY). This is mainly used in aeronautical engineering in the analysis of
space vehicles. They correspond to the following rotations in sequence:

L. A rotation of  about the OX axis (R, ))-—yaw
2. A rotation of # about the OY axis (R, p)—pitch
3. A rotation of ¢ about the OZ axis (R, z)—roll

The resultant rotation matrix is
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X

Figure 2.7 Roli, pitch and yaw.

c6 ~S6 0| @ o s8]t o o
Ryoy =R R R ,= 1S Co 0 0 1 0|0 ¢y ~S%
0 0 1| |-s8 o0 c8l|o sy oy

[ CpC CoS05¢ — SoCy CoSECY + SoSy

= | S6C8  SeSOSY + CPCY  SeSHCY — CpSy 2.2-19)
— 58 CoSy Cocy

3
L

The above rotation matrix Ry 5 ¢ for roll, pitch, and yaw can be specified in
terms of the rotations about the principal axes of the reference coordinate system
and the rotating coordinate system: a rotation of ¢ angle about the OZ axis fol-
lowed by a rotation of # angle about the rotated OV axis and finally a rotation of ¢
angle about the rotated OU axis (sec Fig. 2.7).

2.2.5 Geometric Interpretation of Rotation Matrices

It is worthwhile to interpret the basic rotation matrices geometrically. Let us
choose a point p fixed in the QUVW coordinate system to be (1, 0, 0), that is,
Pure = 1,. Then the first column of the rotation matrix represents the coordinates
of this point with respect to the OXYZ coordinate system. Similarly, choosing p to
be (0, 1, 0)T and (0, 0, 1)7, one can identify that the second- and third-column
elements of a rotation matrix represent the OF and O axes, respectively, of the
OUVW coordinate system with respect to the OXYZ coordinate systermn. Thus,
given a reference frame OXYZ and a rotation matrix, the column vectors of the
rotation matrix represent the principal axes of the QUVW coordinate system with
respect to the reference frame and onec can draw the location of all the principal
axes of the OUVW coordinate frame with respect to the reference frame. In other
words, a rotation matrix geometrically represents the principal axes of the rotated
coordinate system with respect to the reference coordinate system.
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Since the inverse of a rotation matrix is equivalent to its transpose, the row
vectors of the rotation matrix represent the principal axes of the reference system
OXYZ with respect to the rotated coordinate system QUVW. This geometric
interpretation of the rotation matrices is an important concept that provides insight
into many robot arm kinematics problems. Several useful properties of rotation
matrices are hsted as follows:

1. Each column vector of the rotation matrix is a representation of the rotated axis
upit vector expressed in terms of the axis unit vectors of the reference frame,
and cach row vector is a representation of the axis unit vector of the reference
frame expressed in terms of the rotated axis unit vectors of the QUVW frame,

2. Since cach row and column is a unit vector representation, the magnitude of
each row and column should be equal to . This is a direct property of ortho-
normal coordinate systems. Furthermore, the determirant of a rotation matrix
is +1 for a right-hand coordinate system and —~1 for a left-hand coordinate
system.

3. Since each row is a vector representation of ortherormal vectors, the inner pro-
duct (dot product) of each row with each other row equals zero. Similarly, the
inner product of cach column with each other column equals zero.

4. The inverse of a rotation matrix is the transpose of the rotation matrix.

R'=R and RR =1,
where Iy is a 3 X 3 identity matrix.

Properties 3 and 4 are especially useful in checking the results of rotation matrix
multiplications, and in determining an erroneocus row or columa vector.

Example: If the OU, OV, and OW coordinate axes were rotated with « angle
about the OX axis, what would the representation of the coordinate axes of the
reference frame be in terms of the rotated coordinate system OUVW?

Sorution:  The new coordinate axis urit vectors become i, = (i, 0, mY,
Jo = (0 L0 and k, = (0, 0, 17 since they are expressed in terms of
themnselves. The original unit vectors are then

io= li, + 0, + 0k, = (1, 0,7

i, = 0i, + cosaj, — sinak, = (0, cosq, —sine)”

=
o
lf

(0, sine, cosa)’

01, + sinaj, + cosak,.

Applying property 1 and considering these as rows of the rotation matrix, the
R, matrix can be reconstructed as
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1 0 0
R, . = 0 cosa $in o
0 —sing cos
which is the same as the transpose of Eq. (2.2-12). C

2.2.6 Homegencous Coordinates and Transformation Matrix

Since a 3 x 3 rotation matrix does not give us any provision for transkation and
scaling, a fourth coordinate or cemponent is introduced to & position vector
P = (P Py pz)f in a three-dimensional space which makes it p = (wp,, wp,,
wp,, w)l. We say that the position vector p is expressed in homogeneous coordi-
nates. In this section, we use a “hat” {i.e., D} to indicate the represcrtation of a
cartesian vector in homogeneous coordinates. Later, if no confusion exists, these
“hats” wiil be lifted. The concept of a homogeneous-coordinate representation of
points in a three-dimensional cuclidean space is useful in deveioping matrix
transformations that include rotation, translation, scaling, and perspective transfor-
mation. In general, the representation of an N-component position vector by an
(N+ 1}-component vector is called homogeneous coordinute represeniation. In a
homogeneous coordinate representation, the transformation of an N-dimensional
vector is performed in the (N + I)-dimensional space, and the physica] N-
dimensional vector is obtained by dividing the homogeneous coordinates by the
(N + 1)th coordinate, w. Thus, in & three-dimensional space, a position vector
P = (P P ;) is represented by an avgmented vector {wp,, wp,, wp., w)l
in the homogeneous coordinate representation. The physical coordinates are
related to the homogeneous coordinates as follows:

Wi Wpy WP,
Py = P =

w - W W

Py =

There is ne unique homogeneous coordinates representation for a position vec-
tor in the three-dimensional space. For example, Py = {w| p,. w| Py, WP, Wy )7
and Py = (wap,, wyp,, wap, w; 37 are all homogeneous coordinates representing
the same position vecior p = (p,, Py, p.37. Thus, one can view the the fourth
component of the homegeneous coordinates, w, as a scale factor. If this coordi-
nate is unity (w = 1), then the transformed homogencous coordinales of a position
vector are the same as the physical coordinates of the vector. In robotics applica-
tions, this scale factor will always be equal to 1, although it is commonly used in
computer graphics as a universal scale factor taking on any positive values.

The homogencous transformation matrix is a 4 X 4 matrix which maps a posi-
tion vector expressed in homogencous coordinates from one coordinate system to
another coordinate system. A homogeneous transformation matrix can be con-
sidered fo consist of four submatrices:
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rotation

) | position
Ryvs | Paxs matrix | vector
T = - | - = — ! . (2.2-20)
L fl.s | 1x1 perspective | scaling
transformation

The upper left 3 x 3 submatrix represents the rotation matrix; the upper right
3 x 1 submatrix represents the position vector of the origin of the rotated coordi-
nate system with respect to the reference system; the lower left § % 3 submairix
represents perspective transformation; and the fourth diagonal element is the global
scaling factor. The homogeneous transformation matrix can be vsed to explain the
geometric relationship between the body-attached frame OUVW and the refercnce
coordinate system OXYZ.

M a position vector p in a three-dimensional space is expressed in homogene-
ous coordinates [i.e., p = (p., py, P.. 1)7}, then using the transformation matrix
concept, 2 3 X 3 rotation matrix can be extended to a 4 x 4 homogeneous
transformation matrix Ty, for pure rotation operations. Thus, Eqgs. (2.2-12) and
(2.2-13), expressed as homogeneous rotation matrices, become

1 0 0 0 cos¢g O sing O
0 cosee —sing O 0 } 6 O
Tio= 0 sing coso O Tys —sing 0 cos¢p O
L 6 0 { | 0 0 1t |
cosf —siné 0 9O
sinff cosff 0 @
T,s= 0 0 1 o €2.2-21)
Y 0 0 I

These 4 x 4 rotation matrices are called the basic homogeneous rotation matrices.

The upper right 3 X 1 submatrix of the homogeneous (ransformation maltrix
has the effect of translating the OUVW coordinate system which has axes parallel
to the reference coordinate system OXYZ but whose origin is at {(dx, dy, dz) of the
reference coordinate system:

dx

100
0 1 0 dy

Ten = | g 0 1 4 (2.2-22)
000 1

This 4 x 4 transformation matrix is called the basic homogeneous translation
matrix.
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The lower left | % 3 submatrix of the homogeneous transformation matrix
represents perspective transformation, which is useful for computer vision and the
calibration of camera models, as discussed in Chap. 7. In the present discussion,
the elements of this submatrix are set to zero to indicate null perspective transfor-
mation.

The principal diagonal elements of a homogeneous transformation matrix pro-
duce local and global scaling, The first three diagonal elements produce local
stretching or scaling, as in

- ! (2.2-23)
i

[ R e A =

=TS T e B o]

L= = =

— b e e
|

A TR

s T e v T

Thus, the coordinate valucs are stretched by the scalars a, b, and ¢, respectively.
Note that the basic rotation matrices, Ty, do not produce any local scaling effect.
The fourth diagonal element produces global scaling as in

1 00 0 X x
g1 00 Y| _ ¥
001 0| z| |z (2.2:24)
i» 0 0 0 s i s
where 5 >> (. The physical cartesian coordinates of the vector are
P = £ Py = l p.= £ W= L= ] (2.2-25)
5 5 5 5

Therefore, the fourth diagonal element in the homogeneous transformation matrix
has the effect of globally reducing the coordinates if 5 > 1 and of enlarging the
coordinates if 0 < s < [.

In summary, a 4 X 4 homogeneous fransformation matrix maps a vector
expressed in homogeneous coordinates with respect to the OUVW coordinate sys-
tem to the reference coordinate system OXYZ. That is, with w = 1,

Peye = Thaw (2.2-26a)

and

n, S, 4, Py O 0 0 1

2

Hy 8, 4y Py n s a p
= 777 =[ } (2.2-260)

0 0 0 1
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2.2,7 Geometric Interpretation of Homogeneous
Transformation Matrices

In general, a homegeneous transformation matrix for a three-dimensional space
can be represented as in Eq. (2.2-268). Let us choose a point p fixed in the QUVW
coordinate system and expressed in homogeneous coordinates as (0, 0, 9, 1)7; that
i8S, Py, 18 the origin of the GUVW coordinate system. Then the upper right 3 X 1
submatrix indicates the position of the origin of the OUVW frame with respect ©
the OXYZ reference coordinate frame. Next, let us choose the point p to be
(1, 0,0 7 that is p,,, = i,. Furthermore, we assume that the origins of both
coordinate systems coincide at a point 3. This has the effect of making the ele-
ments in the upper right 3 x T submatrix a null vector. Then the first column (or
n vector) of the homogeneous transformation matrix represents the coordinates of
the O axis of QUVW with respect to the OXYZ coordinate system. Similarty,
choosing p to be (0, 1,0, )Y and (0,0, 1. 1)7, one can identify that the
second-column (or s vector) and third-column (or a vector) elements of the homo-
geneous transformation matrix represent the OF and OW axes, respectively, of the
OUVW coordinate system with respect to the reference coordinate system. Thus,
given a reference frame OX¥Z and a homogencous transformation matrix T, the
column vectors of the rotation submatrix represent the principal axes of the OUVW
coordinate system with respect to the reference coordinate frame, and one can
draw the orientation of all the principal axes of the OUVW coordinate frame with
respect to the reference coordinate frame, The fourth-column vector of the homo-
geneous transformation matrix represents the position of the origin of the OUVW
coordinate system with respect to the reference system. In other words, a homo-
geneous fransformation matrix geometrically represents the location of a rotated
coordinate system (position and orientation} with respect to a reference coordinate
system,

Since the inverse of a rotation submatrix is equivalent to its transpose, the row
vectors of a rotation submatrix represent the principal axes of the reference coordi-
nate system with respect to the rotated coordinate system OUVW. However, the
inverse of a homogeneous transformation matrix is #or equivalent {0 s transpose.
The position of the origin of the reference coordinate system with respect to the
QUVW coordinate system can only be found after the inverse of the homogeneous
transformation matrix is determined. In general, the inverse of a homogeneous
transformation matrix can be found to be

L ~n'p
T T o Sy 8 - Srp = fo E - ST]]
r s | @2an
a; a, a4, —a'p —-a'p
¢ 0 0O 1 9 o 0 H

Thus, from Eq. (2.2-27), the column vectors of the inverse of a homogeneous
transformation matrix represent the principal axes of the reference system with
respect 1o the rotated coordinate system QUVFW, and the upper right 3 X | subma-
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trix represents the position of the origin of the reference frame with respect to the
OUVW systers.  This geometric interpretation of the homogeneous transformation
matrices is an important concept used frequently throughout this book.

2.2.8 Composite Homogeneous Transformation Matrix

The homogeneous rotation and translation matrices can be multiplied together to
obtain a composite homogeneous transformation matrix {we shall call it the T
matrix). However, since matrix multiplication is not commuiative, carcful atten-
tion must be paid to the order in which these matrices are muitiplied. The follow-
ing rules are useful for finding a composite homogencous transformation matrix:

1. Initially both coordinate systems are coincident, hence the homogeneous
transformation matrix is a 4 x 4 identity matrix, .

2. If the rotating coordinate system OUFW is rotating/translating  about the princi-
pal axes of the OXYZ frame, then premultiply the previous (resuhtant) homo-
geneous transformation matrix with an appropriate basic homegensous rotation/
translation matrix.

3. If the rotating coordinate system GUFW is rotating/translating about its own
principal axes, then postmuliiply the previous (resultanty homogeneous transfor-
mation matrix with an appropriate basic homogeneous rotation/translation
matrix.

Example: Two points a,, = (4, 3, 2y and by, = (6,2, 4y are 10 be
transhated a distance + 5 units along the OX axis and —3 units along the OZ
axis. Using the appropriate homogeneous transformation matrix, determine
the rew points a,,, and by,..

SOLLUTION:

100 5 [4} A+ 1(5) | 9
i = |0 L O O B (S D IS SN ({1 S 3
ée o1 -3 2 2(1) + 1(=3) -1
1o 0o 1| N t

too 5|6 11

b= 010 2. 12

‘ 001 -3 4 !

000 1] 1 I

The translated points are a,,. = (9,3, —1)¥and b, = (11,2, DT. ]

Example: A T matrix is to be determined thal represents a rotation of o
angle about the OX axis, followed by a translation of & units along the rotated
OV axis,
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Sorurion:  This problem can be tricky but illustrates some of the fundamental
components of the T matrix. Two approaches will be utilized, an unorthodox
approach which is illustrative, and the orthodox approach, which is simpler.
After the rotation T, ., the rotated OV axis is (in terms of the unit vectors
i;, jy. k; of the reference system) J, == cosaj, + sinak;; ie., column 2 of
Eq. (2.2-21). Thus, a translation along the rotated OV axis of b units is b j, =
beosaj, + bsinak,. So the T matrix is

1 00 )] 1 0 t] 1]
T=T,,T,, = g 1 © bc?sa 0 c?sa —sing O
' ’ 0 0 1 bsina 0 sing  cose O
0 0 0 I 0 0 t] I
1 0 0 0
- 0 cosa —sinae beosa
0 sine cosa  bsing
o ¢ 0 1

In the orthodox approach, following the rules as stated earlier, one should
realize that since the T, , matrix will rotate the OF axis to the OV axis, then
translation along the OV axis will accomplish the same goal, that is,

1 0 0 4] 1000
T=T, T, = 0 cos ~sina 0 01 9 b
O sinoe coso O 00190
¢ 0 0 | 0 00 1
i 0 0 0
_ | 0 cosa —sina boosa
0 sinae cosa bsing
6 0 0 1 [

Example: Find a homogeneous transformation matrix T that represents a rota-
tion of o angle about the OX axis, followed by a translation of ¢ units along
the OX axis, followed by a translation of 4 units along the OZ axis, followed
by a rotation of 9 angle about the OZ axis.

SoLyTioN:

T = Tl‘eTZ.d Tx.a Tz,u
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o

cos  —sing

0 0| 0 E 1 00
_{singd cosf® 0O O 01 9 T 10 cosa wsine O
oo 0 10|00 10 sine cosa 0
0 0 01 00 ¢ _l 0 0 0 1
cosf —cusasing singsing acosf
o sinf coswcosf  —sinacosd asin®
- Po sino COS @ 4
Lo 0 0 (I r

We have identified two coordinate systems, the fixed reference coordinate
frame OXYZ and the moving (franslating and rotating) coordinate frame OUVW.
To describe the spatial displacement relationship between these two coordinate sys-
terms, a 4 X 4 homegeneous transformation matrix is used. Homogeneous transfor-
mation matrices have the combined effect of rofation, translation, perspective, and
global scaling when operating on position vectors ¢xpressed in homogeneous coor-
dinates.

If these two coordinate systems are assigned to each link of a robot arm, say
link i — 1 and link i, respectively, then the link i — 1 coordinate system is the
reference coordinate system and the link ¢ coordinate system is the moving coordi-
nate system, when joint { is activated. Using the T mairix, we can specify & point
p; at rest in link / and expressed in the link i {or OUVW) coordisate system in
terms of the link i — I (or OXYZ) coordinate system as

pi.y = Tp (2.2-28)

where

T = 4 x 4 homogeneous transformation matrix relating the two coordinate
systems

p: = 4 x | augmented position vector (x, ¥, 4, 137 representing a point
in the link  coordinate system expressed in homogeneous coordinates

P = is the 4 x 1 augmented position vector (X, Yi—p G-y 13
representing the same point p; in terms of the link / — 1 coordinate
syster

2.2.9 Links, Joints, and Their Parameters

A mechanical manipulator consists of a sequence of rigid bodies, called links, con-
nected by either revolute or prismatic joints (see Fig. 2.8). Each joini-link pair
constitutes 1 degree of freedom. Hence, for an N degree of freedom manipulator,
there are N joint-link pairs with link © (not considered past of the robot) attached
to a supporting base where an inertial coordinate frame is usually established for
this dymamic system, amnd the last link is attached with a tool. The joints and links
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Joiat 3
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Link 4

Fesing 8

o

Joint 6

Figure 2.8 A PUMA robot arm illustrating joints and links.

are numbered outwardly from the base; thus, joint 1 is the point of cornection
between link 1 and the supporting base. Each link is connected to, at most, two
others so that no closed loops are formed.

In general, two links are connected by a lower-pair joint which has two sur-
faces sliding over one another while remaining in contact. Only six different
lower-pair joints are possible: revelute (rotary), prismatic (sliding), cylindrical,
spherical, screw, and planar (sce Fig. 2.9). Of these, only rotary and prismatic
joints are common in manipulators.

A joint axis (for joint ) is established at the connection of two finks (see Fig.
2.10). This joint axis will have two normals connected to it, one for each of the
links. The relative position of two such connected links {link i — 1 and link D is
given by 4; which is the distance measured along the joint axis between the nor-
mals. The joint angle §; between the normals is measured in & plane normal to the
joint axis. Herce, d; and 6, may be called the distance and the angle between the
adjacent links, respectively. They determine the relative position of neighboring
links.

Alinki¢ =1,...,6) is connected to, al most, two other links {z.g., link
i — 1 and link i + 1); thus, two joint axes are established at both ends of the con-
nection. The significance of links, from a kinematic perspective, is that they main-
tain a fixed configuration between their joints which can be characterized by two
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Figure 2.9 The lower pair.

Jomlf + 1

Qﬁnt
/f

VLink i + 1

Figure 2.10 Link coordinate system and ifs parameters.

parameters: a; and «;. The purameter a; is the shortest distance measured along
the common normal between the joint axes {i.e., the z, _ | and z, axes for joint ¢
and joint i + 1, respectively), and «; is the angle between the joint axes measured
in a plane perpendicular to @;. Thus, a; and «; may be called the length and the
twist angle of the link 7, respectively. They determine the structure of link .
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In summary, four parameters, a;, o, 5, and ;, are associated with each link
of a manipulator. If 4 sign convention for each of these parameters has been esta-
blished, then these parameters constimute a sufficient set to compietely determing
the kinematic configuration of each link of a robot arm. Note that these lour
parameters come in pairs: the link parameters {(a;, ;) which determine the struc-
ture of the link and the joint parameters (d;, 8;) which determine the relative posi-
tion of neighboring links.

2.2.10 The Denavit-Hartenberg Representation

To describe the translational and rotational relationships between adiacent links,
Denavit and Hartenberg [1955] proposed a matrix method of systematically estab-
lishing a coordinate system (body-attached frame) to each link of an articulated
chain. The Denavit-Hartenberg (D-H) representation results in a 4 x 4 homogene-
ous transformation matrix representing each link’s coordinate system at the joint
with respect to the previous link’s coordinate system. Thus, through sequential
transformations, the end-effector expressed in the “hand coordinates™ can be
transformed and expressed in the “base coordinates” which make up the inertial
frame of this dyramic system.

An orthonormal cartesian coordinate system {(x;, ¥, ;)7 can be established
for each link at its joint axis, where i = 1,2, ... ,n (# = number of degrees of
freedom) plus the base coordinate frame. Since a rotary joint has only 1 degree of
freedom, each (x;. ¥;, 7;) coordinate frame of a robot arm corresponds to joint
i+ 1 and is fixed in link /. When the joint actuator activates jeint i, link 7 will
move with respect to link i — I. Sigee the ith coordinate system is fixed in link i,
it moves together with the link & Thus, the ath coordinate frame moves with the
hand (link n). The base ceordinates are defined as the Oth coordinate frame (xg,
Yo, Zg) which is also the incrtial coordinate frame of the robot arm. Thus, for a
six-axis PUMA-like robot arm, we have seven coordinate frames, namely,
(%0, Yo 200, (%), ¥1. Z1), -« ., {Fe, Yo Zg).

Every coordinate frame is determined and established on the basis of three
rules:

I. The 7;_ axis lies along the axis of motion of the ith joint.
2. The x; axis is normal to the z;_; axis, and pointing away from it,
3. The y; axis completes the right-handed coordinate system as required.

By these rules, one is free to choose the location of coordinate frame 0 any-
where in the supporting base, as long as the 7 axis lies along the axis of motion
of the first joint. The last coordinate frame (ath frame) can be placed anywhere in
the hand, as long as the x,, axis is normal to the z, _, axis.

The D-H representation of a rigid link depends on four geometric parameters
assoctated with each link. These four parameters completely describe any revolute

T (%, ¥ %) actually represent the unit vectors along the principal axes of the coordinate frame 7,
respectively, but are used here to denote the coordinate frame 7.
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or prismatic joint. Referring to Fig. 2.10, these four parameters are defined as
follows:

G-

 is the joint angle from the X; | axis to the x; axis about the 2;. axis {using the
right-hand rule).

d; is the distance from the origin of the (/- 1)th coordinate frame to the intersec-

tion of the z;..| axis with the x; axis along the z,_, axis.

a; is the offset distance from the intersection of the 2;_, axis with the X, axis to

the origin of the ith frame along the x; axis {or the shortest distance between

the z;_; and Z; axes).

is the offset angle from the z;. | axis to the z; axis about the x; axis {using the

right-hand rule).
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Flgure 2.11 Establishing iink coordinate systems for a PUMA robot,
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Figure 2.12 Establishing link coordiaate systems for a Stanford robot.

For a rotary joint, d;, a,, and o; are the joint parameters and remain constart
for a robot, while 6; is the joint variable that changes when link § moves (or
rotates) with respect to link { — 1, For a prismatic joint, §;, @;, and «; are the
joint parameters and remain constant for a robot, while &; is the joint variable.
For the remainder of this book, joinr variable refers w §; or d)), that is, the vary-
ing quantity, and joini parameters refer to the remaining three geometric constani
values {d;, a;, o) for a rotary joint, or (#;, a;, «;) for a prismatic joint.

With the above three basic rules for establishing an orthonormal coordipate
system for each link and the geometric interpretation of the joint and link parame-
ters, a procedure for establishing consistent orthonormal coordinate systems for a
robot is outlined in Algorithm 2.1. Examples of applying this algorithm to a six-
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axis PUMA-like robot arm and a Stanford arm are given in Figs. 2.11 and 2.12,
respectively.

Algerithm 2.1: Link Coordinate System Assignment. Given an n degree of free-
dom robot arm, this algorithm assigns an orthonormal coordinate system to each
link of the robot arm according to arm configurations similar to those of human
arm geometry. The labeling of the coerdinate systems beging from the supporting
base to the end-effector of the robot arm. The relations between adjacent links can
be represented by a 4 x 4 homogencous transformation matrix. The significance
of this assignment is that it will aid the development of a consistent procedure for
deriving the joint solution as discussed in the later sections. (Note that the assign-
ment of coordinate systems is BOt unigue.)

D1. Establish the base coordinate system. Establish a right-handed orthonormal
coordinate system {Xg. ¥p. %o} at the supporting base with the z; axis iying
along the axis of motion of joint 1 and pointing toward the shoulder of the
robot arm. The X, and y, axes can be conveniently established and are nor-
mal to the 7, axis.

D2. Initialize and loop. Foreach i, i=1, ... ,n - 1, perform steps D3 to D6,

D3, Establish joimt axis. Align the z; with the axis of motion {rotary or sliding)
of joint { + 1. For robots having left-right arm configurations, the z, and #,
axes are pointing away from the shoulder and the “trunk” of the robot arm.

D4. Establish the origin of the ith coordinate system. l.ocate the origin of the ith
coordinate system: at the intersection of the z; and 7, axes or at the inter-
section of common normal between the z; and z; | axes and the #; axis.

D5, Establish x; axis. Eswblish x; = =+ (z; | X % M|#_, x z;] or along the
common normal between the Z;. and z; axes when they are parallel,

D6, Establish vy, axis. Assign y; = + (z; X x;M/g x x| to complete the
right-handed coordinate system. (Extend the z; and the x; axes if nocessary
for steps D9 to D12).

D7. Establish the hand coordinate svstem. Usually the nth joint is a rotary joint.
Establish z, along the direction of z,_; axis and pointing away from the
robot. Establish x, such that it is normal to both z,. | and z, axes. Assign
¥, 10 complete the right-handed coordinate system. (8ee Sec. 2.2.11 for
more detail.)

D8. Find joint and link parameters. For each i, i =1, ... ,n, perform steps D9
w0 DI2.

D9, Find d;. d; is the distance from the origin of the (i — 1)th coordinate sys-
tem to the intersection of the #;_; axis and the x; axis.along the z,_; axis. It
is the joint variable if joint / is prismatic. )

D). Find a;. a; is the distance from the intersectior of the ;. axis and the x;
axis to the origin of the ith coordinate system along the X; axis.

DI11. Find #,. 8, is the angle of rotation from the X, axis to the x; axis about
the 2., axis. It is the joint variable if jomt i is rotary.

DI12. Find «;. o is the angle of rotation from the z,_; axis to the z; axis about
the x, axis.
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Once the D-H coordinate systemn has been established for each link, a homo-
geneous transformation matrix can easily be developed relating the ith coordinate
frame to the (i - 1)th coordinate frame. Looking at Fig. 2,10, it is obvious that a
point ¥; expressed in the ith coordinate system may be expressed in the (7 — 1)th
coordinate system as r;_; by performing the following successive transformations;

I. Rotate about the z;.; axis an angle of &; to align the x,_ axis with the x; axis
{x;_; axis is parallel to x; and pointing in the same direction).

2. Transkate along the z;_; axis a distance of d; to bring the x,.., and x, axes into
coincidence.

3. Translate along the x; axis a distance of a; to bring the two origins as well as
the % axis into coincidence,

4. Rotate about the X, axis an angle of ¢ to bring the two coordinate systems into
coincidence,

Each of these four operations can be expressed by a basic homogeneous
rotation-translation matrix and the product of these four basic homogeneous
transformation matrices yiclds a composite homogeneous transformation matrix,
=1A;, known as the D-H transformation matrix for adjacent coordinate frames, i
and i — 1. Thus,

JWIA}‘ - Tz(d Tz.ﬂrra)a ri‘;,a

[t 0 0 of [costy —sind 0 071 00 &1 [1 o 6 0
01 0 0 sinf; cosf; O 0 ¢ 1 0 0|0 coseyy ~sine;, O
Tl0 0 1 4 0 0 1 0||@ 01 0|0 singg cosa; O
6 0 0 1 G g 0 1|0 001 o0 o ] 1
wcos 8, —coso; siné; sintoy; sin f; a; cos 8; |
. | sin8  cosey cosf ~ sing; cosd, e sing; 22.20
B 0 sin oy COS o o 2.2:29)
L o 0 0 1
Using Eq. (2.2-27), the inverse of this transformation can be found to be
cos sin g, 0 —a
et a1 i ~008w; sind;  cose; cosf;  sine;  —d; singy
[TAT ="A = . . .
sing; sin §; —sinoycost; cosop  —d;cosoy
0 0 0 i
€2.2-30)

where a;, a;, d; are constants while 8; is the joint variable for a revolute joint.
For a prismatic joint, the joint variable is d;, while o, 4;, and 8 are con-
stanis. In this case, ‘~'A, becomes
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cosf;,  —cosa; sinf;  sing; simd,; 8
p =T T T siné; cose; cosf;, ~sing; cosd, O
i = Ao p g e . -
’ R 0 sin oy COS €y d; (2.2-31)
0 0 0 .
and ity inverse is
] cos d, sin B, 0 0
" . . —cosa;sind;,  cosoy cosf;  siney  —d; sing;
(Al ='A = ) ,
cos ; sind, —sing; cos®;, coso;  —d;cosoy
0 0 1] i
(2.2.32)

Using the '~ ‘A, matrix, one can relate a point p; at rest in link i, and expressed in
homogeneous coordinates with respect to coordinate system i, to the coordinase
system 7 — | gstablished at link i — 1 by

pioy = AR (2.2-33)

where pi_y = (X_p, Yo, 2o 1) and g = (e, 3,2, D

The six "7'A, transformation matrices for the six-axis PUMA robot arm have
been found on the basis of the coordinate systems established in Fig. 2.11. These
'A, matrices are listed in Fig. 2.13.

2.2.11 Kinematic Equations for Manipulators

The homogeneous matrix °T; which specifies the location of the ith coordinate
frame with respect to the base coordinate system is the chain product of successive
coordinate transformation matrices of *7'A,, and is expressed as

O =04, A, - A = JTPA, fori= 12,000
L
_ -X; Yi % Pi“
0 0 0 1

Lx;, ¥:, %] = orientation matrix of the ith coordinate system established at link
i with respect to the base coordinate system. It is the upper left
3 x 3 partitioned matrix of °T;.

position vector which points from the origin of the base coordi-
nate systemn to the origin of the ith coordinate system. It is the
upper right 3 x I partitioned matrix of *T,.

o
R (2.2-34)
o0 1

where

1f

P
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cosf; —coso; sind;,  sine; sinf,  g; cosé,
) sinfl;, cose; cosf; —sing, cos#; g sinfl
A= 0 sin g oS @ d;
0 O 6 1
0 -5 0 ¢ -8 0 G
oy _ s 0 ¢ 0 " S, G 0 45
: 0 -t 0 0 Z 0 0 1 4
0 0 ¢ 1 | O LU
o008 aG 0 =S, 0
A 5, 0 -G @S . S 0 ¢ 0
1T L0 10 0 ME L0 o~ 0 d
0 60 1 00 0 1
G 0 S 0 ', -8, 0 0
$ 0 -G 0 S Co 0D
As= g 1 0 o A= o 0 1 o4
0 6 0 1 0 0 0

GG ~S O8G0+ a0 =S
SC; O S8 afGH4asG+4C
=8 0 Oy —ay$) —aySy

L 0 0 0 1 J

Ti = GA; IAZ 2A3 =

CyCsCo — 5uSe —CyCsSs — $aCs CuSs  deCuSs
S.CsCo + CuSy —8:Cs86 + CaCq 5185 daSiSs
~85Cs 855 Cs  dCs +dy
0 0 0 :
where C; = cosfy; §; = siné;; Gy = cos(§; + 6;): 8, = sin(8; + 8;).

Ty = A, A5 Ay =

Figure 2.13 PUMA link coordinate transformation matrices.

Specifically, for § = 6, we obtain the T matrix, T = A, which specifies the posi-
tion and orientation of the endpoint of the manipulator with respect to the base
coordinate system. This T matrix is used so frequently in robot arm kimematics
that it is called the “arm matrix.” Censider the T matrix to be of the form
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" Xg Yo Zg
o o0 o0

[ne 5 a,

Ry Sy iy

= moos q
9 0 ¢

where {see Fig. 2.14)

n =

"
i

P Rg %P | _ I s a p

I R 1_§mﬁ_eeo}}

P

Py

P, (2.2:35)
1

norral vector of the hand. Assuming a parailel-iaw hand., it is orthogonal
to the fingers of the robot arm.

sliding vector of the hand. It is pointing in the direction of the finger
motion as the gripper opens and closes.

approach vector of the hand. 1t is pointing in the direction normat to the
paim of the hand (i.¢., normal to the ool mounting plate of the arm).

position vector of the hand.

It pomnts from the origin of the base

coordinate system to the origin of the hand coordinate system, which is
ustally located at the center point of the fully closed fingers.

If the manipalator is related to a reference coordinate frame by a transforma-
tion B and has a tool attached to its last joint’s mounting plate described by H,
then the endpoint of the tool can be related to the reference coordinate frame by
multiplying the matrices B, °T,, and H together as

e = B T, H (2.2-36)

Note that H = %A, and B = A,
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The direct kinematics solution of a six-link manipulator is, therefore, simply a
matter of calculating T = %A, by chain multiplying the six ‘" ‘A; matrices and
evaluating each clement in the T matrix. Note that the direct kinematics solution
yields a unique T matrix for a given g = (g, 42, ..., ge)7 and a given set of
coordinate systems, where ¢; = §; for a rotary joint and ¢; = d; for a prismatic
joint. The only constraints are the physical bounds of 8, for eack joint of the robot
arm. The table in Fig. 2.11 lists the joint constraints of a PUMA 560 series robot
based on the coordinate system assigned in Fig. 2.11.

Having obrained all the coordinate transformation matrices "~'A; for a robot
arm, the next task is to find an efficient method to compute T on 2 general purpose
digital computer, The most efficient method is by multiplying all six 1A,
matrices together manually and evaluating the elements of T matrix out explicitly
on a computer program. The disadvantages of this method are (1) it is laborious
to mudtiply all six ‘7'A; matrices together, and (2) the arm matrix is applicable
only to a particalar robot for a specific set of coordinate systems (it is not flexible
enough). On the other extreme, one can input zll six “™'A; matrices and let the
computer do the multiplication. This method s very flexible but at the expense of
computation time as the fourth row of "' A; consists mostly of zero elements.

A method that has both fast computation and flexibility is to “hand™ muliiply
the first three " A; matrices together to form T, = A, 'A,?A; and also the last
three '~ 'A, matrices together to form T, = "A,*Ag>A,, which is a fairly straight-
forward task. Then, we cxpress the elements of Ty and T, out in a computer pro-
gram explicitly and let the computer multiply them together to form the resultant
arm matrix T = T, T,

For a PUMA 560 scries robot, T, is found from Fig. 2.13 to be

i

T, = "A; = °A'A%A;

CiCp -5 Ci 8y @ C G+ a;C 0 — dp S
- SE C23 C; S;SB Cle; C') + 613,51 ng “+ dzcl
-8 Y Cy —~ay$; — @35y (2250
0 0 0 1
and the T, matrix is found to be
T, = 3A{, = 3A4 4A5 SA(i
- CoCsCg ~ 848 =Gy Cs 8 — 5, Cy Cy 85 iy Cy S5 l
- S4 C5 C& + C456 - 54 CS S5 + C4 Cf, S4 S5 dﬁ S4 Ss %
—35C 8535 s dyCs + dy
0 0 0 i
(2.2-38)

where C; = cos (8; + 8;) and §; = sin(§; + 4;).
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The arm matrix T for the PUMA robot arm shown in Fig. 2.11 is found to be

Ry S dc Py

Op 14 24 34 44 5 Ty Sy By Py
T= T} T2 = A; Az A3 : A4 A5 " A(, = n, 5, a p, (22-39)
g 0 0 1

where

o= GG (GGG — 83860 — 508G ] — Si1(85GC + CySg)

ny = 8 ICH{C G0 — 538) — S §5Cs ] + CrS GG + G 8) (2.2-40)
n, o S5 {C G0 — 8.8 1 — € 855G

8, = C [ —Cu (GG + 85C) + 5385551 — S1{~3,Cs 85 + GG

Sy = S5~ Cn(CiCs8g + 85, C5) + SnSs8s | + Cr( =8, Cs8 + C4Cy)

5, = 83 (CCs 8 4 8,C6) + Oy 555 (2.2-41)
ay = Cl{CpCySs + 53C5) — 818,55

ay = S (C3CySs + S Cs) + €15 55 (2.2-42)
a, = =55 + CnCs

P = Clds (G CaSs + 533 Cs) + Spndy + a3 Oy + a0y ] = 5, (55485 + )
Py = S {de{CnCeSs + 83Cs) + Szdy + asCon + y Gy} + € (48,85 + )

Pr =g (Cos0s — S CySs ) + Cnely —aydyy —~ @2 % (2.2-43)

As a Check, if 81 = 9@0, 92 = 9“, 93 = 900,94 e 00, 65 = 05,96 = OG, then
the T matrix is

0 -1 0 —149.09
T = Y 0 I 921.12
- 0 0 20.32

0 0 Y 1

which agrees with the coordinate systems established in Fig, 2.11,

From Egs. (2.2-40) through (2.2-43), the arm matrix T requires 12 transcen-
dental function calls, 40 multiplications and 20 additions if we only compuie the
upper right 3 X 3 submatrix of T and the normal vector n is found from the
cross-product of (B = s X a). Furthermore, if we combine dg with the tool
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length of the terminal device, then dy = O and the new tool length will be
increased by d, umit. This reduces the computation to 12 transcendental function
calls, 35 muitiplications, and 16 additions.

Example: A robot work station has been set up with a TV camera (see the
figure). The camera can see the origin of the base coordinate system where a
six-joint robot is attached. It can also see the center of an object (assumed to
be a cube) to be manipulated by the robot. If a local coordinate system has
been established at the center of the cube, this object as seen by the camera
can be represented by a homogeneous transformation matrix Ty, If the origin
of the base coordinate system as seen by the camera can aiso be expressed by
a homogereous transformation matrix T, and

0 i 0 i 1 0 0 —10

I 0 0 10 - 0 -1 0 20
Tl — 13 =

y G -1 9 O 0 -1 10

0 0 0 1 0 60 0 1

(«) What is the position of the center of the cube with respect to the base
coordinate system?

(b Assume that the cube is within the arm’s reach. What is the orieatation
matrix [n,s, a] if you want the gripper {or finger) of the hand to be
aligned with the ¥ axis of the object and at the same time pick up the

object from the top?

——
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SoLuTION:
{ 1 0 1
C&E]‘iﬂi’a’i‘ h = T] o l O {) 10
0 0 —1 9
0 0 1] 1
and

i 0 0 -1
0 -1 0 20
O 6 -1 10
0 0 0 1

CIAIHCI‘BT%)RSE = T’,‘ e

To find ", 4., we use the “chain product™ rule:
buse — bue CxIveER e (L]
Tmbﬁ ™ Tmsﬂera Tcube - ( EE) Ti

Using Eq. (2.2-27) to invert the T, matrix, we obtain the resultant ransforma-
fion marrix:

I 0 o1 |01 o0 1
wep o |0 =1 0200 |10 010
0 0 -1 10| 00 —1 9
9901{0001j
01 0 1
_ -1 0 0 10
00 1
000 1

Therefore, the cube is at location ¢(11, 10, 1)¥ from the base coordinate 5YS-
tert. Tts X, y, and 7 axes are parallel to the —y,x, and z axes of the base
coordinate system. respectively.

To fird {n, s, 8}, we make use of

op o MOS8 P
Y =
000 1

where p = (11,10, 1)7 from the above solution. From the above figure, we
want the approach vector a to align with the negative direction of the OZ axis
of the base coordinate system [ie., a = {0,0, —1)]; the s vector can be
aligned in cither direction of the ¥ axis of T . [1e., s = (£1,0,0)7];
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and the n vector can be obtained from the cross product of s and a:

i Jj ok i § Kk 0
n= (s s, s | = |x1 0 0= |l
a, a, a G 0 -1 0

‘Therefore, the orientation matrix [n, s, a] is found to be

01 0 0 -1 0
fn,s.8] = +i 0 0 or -} 0 0
g 0 -1 0 0 —1

2.2.12 Other Specifications of the Location of the End-Effector

In previous sections, we analyzed the tramslations and rotations of rigid bodies (or
links) and introduced the homogeneeus transformation matrix for describing the
position and orientation of a link coordinate frame. Of particular interest is the
arm matrix *Ty which describes the position and orientation of the hand with
respect to the base coordinate frame. The upper left 3 x 3 submatrix of i
describes the orientation of the hand. This rotation sebmatrix is cquivalent to "Rq.
There are other specifications which can be used to describe the location of the
end-effector.

Euler Angle Representation for Orientation. As indicated in Sec. 2.2.4, this
matrix representation for rotation of a rigid body simplifies many operations, but it
does not lead directly to a complete set of generalized coordinates. Such a set of
generalized coordinates can be provided by three Euler angles (¢, &, and ).

Using the rotation matrix with eulerian angle representation as in Bq. (2.2-17),
the arm matrix “T; can be expressed as:

[ CoCy ~ S6COSY — —CoSy — SeCocy  S¢se Px

o | SoCH+ CociSy  —SeSu+ CoCHCY  ~Cose Py

Ts = S5y SOCY o p, | G4
L 0 0 0 :

Another advantage of using Euler angle representation for the orientation is that
the storage for the position and orientation of an object is reduced to a six-element
vector XYZofy. From this vector, one can construct the arm matrix T by Eq.
(2.2-44).

Roll, Pitch, and Yaw Representation for Orientation. Another set of Euler
angle representation for rotation is roll, pitch, and yaw (RPY). Again, using Eq.
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{2.2-19), the rotation matrix representing roll, pitch, and vaw can be used to obtain
the arm matrix T, as:

{ CoCt  Cos8Sy — SoCy  CoSICY + Sy Pr |

. | S6CO  SeSOSY + CoCy  SeSHCY — CoSY Py

To= 1 _g Cosy IC Y Py (2.2-45)
0 a 0 1

As discussed in Chap. !, there are different types of robot arms according to
their joint motion (XYZ, cylindrical, spherical, and articulated arm). Thus, one can
specify the position of the hand (p,, p,, pa)? in other coordinates such as eylindri-
cal or spherical. The resultant arm transformation matrix can be obtained by

100 p | |

. 0

. 1o p, | R 0
T, = 001 p ol (2.2-46)

00 0 1 g 0 0 1

where "Ry = rotation matrix expressed in either Euler angles or fn, s, al or roli,
pitch, and yaw.

Cylindrical Coordinates for Pesitioning Subassembly. In a cylindrical coordinate
representation, the position of the end-eftector can be specified by the following
transiations/rotations (sec Fig. 2.15)

I A transiation of 7 unit along the OX axis (T, )
2. A rotation of « angle about the OZ axis (T, )
3. A wranslation of & unit along the OZ axis (T, ;)

Figure 2.15 Cylindrical coordinate system representation.



S0 ROBOTHCS: CONTROL, SENSING, VISION, AND INTELLIGENCE

The homogeneous transformation matrix that represents the above operations
can be expressed as:

1 00 0 Ca -3« 0 0
4 1 0 0 Sae Co O 0O
Tq’iindricaﬁ = Tz,d Tz,rx?.r,r - 0 6 1 d 0 0 1 0
000 1 0 0 01
100 r Ca ~S« 0  rCul
01 00 See  Ca 4] rSo |
loo010 5] 0 o0 1 d | (2.2-47)
¢ 0 01 4] 0 ] 1 J

Since we are only interested in the position vectors {(i.e., the fourth column of
Teytindricad- the arm matrix 9T, can be obtained utilizing Fq. (2.2-46).

"
1 00 rCa _ 0}
op, = |0 1 0 rSa Ry 0 _
» 00 1 4 0 (2.2-48)
000 1 0 0 01

and p, = rCo, p, = rSa, p. = d.

Spherical Coordinates for Positioning Subassembly. We can also utilize the
spherical coordinate system for specifying the position of the end-effector. This
involves the following translations/rotations {see Fig. 2.16):

1. A translation of r unit along the OZ axis (T, ;)
2. A rotation of 8 angle about the QY axis (T, )
3. A rotation of o angle about the OZ axis (T,

Fi &

X

Figure 2.16 Spherical coordinate system representation.
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The transformation matrix for the above operations is

Co ~Sax 0 0 8 6 SB O
L =T, R, | $* € 00 0 1 0 0
Tl 0 0 10 S8 0 €8 0
0 0 01 0 0 0 1
L0000 CaCB —Sa  CaS8  rCaSB
0100 SaCB  Co  SaSE  rSaSP
P00 ~% 0 Ch reg | @349
1000 1 0 0 0 :

Again, our interest is the position vector with respect to the base coordinate sys-
tem, therefore, the arm matrix ®T whose position vector is expressed in spherical
coordinates and the orientation matrix is expressed in [a, 8, a] or Euler angles or
roll, pitch, and yaw can be obtained by:

[ ' 1
|1 0 0 rCaSB 0
op, = | 0 1 0 sSaSp l Ry 0
T oo 1 re8 0 (2.2-30)
Le 00 1 o 0 o1

where p, = rCalf. p, = rSuSf, p. = (4.

In summary, there are several methods (or coordinate systems) that one can
choose to describe the position and orientation of the end-effector. For position-
ing, the position vector can be expressed in cartesian (p,, p,, p.)’, cylindrical
(rCex, ¥Sa, d)7, or spherical (rCoSB, rSaS8, rC3)7 terms. For describing the
orientation of the end-effector with respect to the base coordinate sysiem, we have
cartesian [m, s, a], Buler angles (¢, 6, ¥), and (roll, pitch, and yaw). The result of
the above discussion is labulated in Table 2.2.

Fable 2.2 Various positioning/orientation representations

Positioning Orientation

Cartesian (p,, p,, 2t Cartesian [0, §, a}

Cylindricat {rCo, rSe, a4 Euler angles (¢, 4, )

Spherical (~CoS8, rSaS8, OBy Roll, pitch, and yaw
1 ¢ 0 p [ 0
016 p, [n,s,a] or Rysy O

Tpms‘li.m = 00 i P: i T = 0
0 G 4 1 J [ 4 H] 1

[t T
fo - Tposinon Tmi
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2.2.13 Classification of Manipulators

A marspulator consists of a group of rigid bodies or links, with the first Hnk con-
nected o a supporting base and the last link contairing the terminal device (or
tool). In addition, each link is conrected to, at most, two others so that closed
loops arc not formed. We made the assumption that the connection between links
{the foints} have only 1 degrce of freedom. With this restriction, two types of
joints are of interest: revolute (or rotary) and prismatic. A revolute joint only per-
mits rotation about an axis, while the prismatic joint allows sliding alorg an axis
with no rofation (sliding with rotation is called a screw Joint). These links are
connected and powered in such a way that they are forced 1o move relative to one
another in order {0 position the end-effector (a hand or tool) in a particular posi-
tion and orieniation.

Hence, a manipulator, considered to be a combination of links and jeints, with
the first Hink connected to ground and the last link containing the “*hand,” may be
classified by the rype of joints and their order (from the base to the hand). With
this conventior, the PUMA rebot amm may be classified as 6R and the Stanford
arm as 2ZR-P-3R. where R is a revolute joint and P is a prismatic joint.

2.3 THE INVERSE KINEMATICS PROBLEM

This section addresses the sccond problem of robot arm kinematics: the inverse
kinematics or arm solution for a six-joint manipulator. Computer-based robots are
usually servoed in the joint-variable space, whereas objects to be manipulated are
usually expressed in the world coordinate system. In order to control the position
and orientation of the end-cffector of a robot to reach its object, the inverse
kinematics solution is more important. In other words, given the position and
orientation of the end-effector of a six-axis robot arm as T and its joint and link
parameters, we would like to find the corresponding joint angles g =
(d1.42. 43, 44, G5, g6 )| of the robot so that the end-effector can be positioned as
desired.

In general, the javerse kinematics problem can be solved by various methods,
such as inverse transform (Paul et al. [1981]), screw algebra (Kohii and Soni
[1975]}, dual matrices {Denavit [1956]), dual quaternian {Yang and Freudenstein
[1964]), iterative {Uicker et al. [1964]), and geometric approaches (Lee and
Ziegler [1984]). Pieper [1968] presented the kinematics solution for any 6 degree
of freedom manipulator which has revolute or prismatic pairs for the first three
Joints and the joint axes of the last three joints intersect at a point. The solution
car be expressed as a fourth-degree polynomial in one unknown, and closed form
solution for the remaining unknowns. Paul et al. [1981] presented an inverse
transform technigue nsing the 4 X 4 homogeneous transformation matrices in solv-
ing the kinematics solution for the same class of simple manipulators as discussed
by Pieper. Although the resulting solution is correct, it suffers from the fact that
the solution does not give a clear indication on how to select an appropriate solu-
tion from the several possible solutions for a particular arm configuration. The
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user often needs to rely on his or her intuition to pick the right answer. We shall
discuss Pieper's approach in solving the inverse solution for Enler angles. Uicker
et al. [1964] and Milenkovic and Huang [1983] presented iterative solutions for
most industrial robots, The iterative solution often requires more computation and
it does not guarantee convergence to the correct solution, especially in the singular
and degenerate cases. Furthermore, as with the inverse transform technique, there
is no indication on how fo choose the correct solution for a particular arm
configuration.

H is desirable to find a closed-form arm solution for manipulators. For-
wnately, most of the commercial robots have either one of the following sufficient
conditions which make the closed-form arm solution possible:

1. Three adiacent joint axes intersecting
2. Three adjacent joint axes parallel to one another

Both PUMA and Stanford robot arms satisfy the first condition while ASEA and
MINIMOVER robot arms satisfy the second condition for finding the closed-form
solution,

From Eq. (2.2-39), we have the arm transformation matrix given as

nﬁ’ ‘g.)i a.l p X

R, 5, 4, Py )
To= | Y P s oA aca @3
R, 5, 4, P
¢ 0 0 1
The above equation indicates that the arm matrix T is a function of sine and cosine
of #,8,, ..., 8. For example, for a PUMA robot arm, equating the elements

of the matrix equations as in Eqs. (2.2-40) to (2.2-43), we have twelve equations
with six unknowns (joint angles) and these equations involve complex tri-
gonometric functions. Since we have more equations than unknowns, one can
immediately conclude that multiple solutions exist for a PUMA-like robot arm.
We shall explore two methods for finding the inverse solution: inverse transform
technique for finding Euler angles solution, which can also be used to find the joint
solution of a PUMA-like robot arm, and a geometric approach which provides
more insight into solving siraple manipulators with rotary joints.

2.3.1 Inverse Transform Technique for Euler Angles Solution

In this section, we shall show the basic concept of the inverse transform technigue
by applying it to solve for the Euler angles. Since the 3 X 3 rotation matrix can
be expressed in terms of the Euler angles (&, #, ¥) as in Eq. (2.2-17), and given

n, s, ay
ry 5. a, | =R 4R, eRy g

n, s, d,
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CHpCf — 58Sy - CoSY — SHpCICY: SoSt
= | §6CY + CHpC8SY —3¢5¢ + CHpCOCY: —CoSo
SoSy SeCy e

(2.3-2)

we would like to find the corresponding value of ¢, 8, . Equating the elements of
the above matrix equatior, we have:

n, = CHCyY — S@CHSY (2.3-3a)
n, = §¢C4 + CHpCHSy (2.3-3b)
n, = S85Y {2.3-30)
sy = = C@SY — SeCoCY (2.3-3d)
5y = —SpSY + CHCHCY (2.3-3¢)
s, = S8CY {2.3-3H)
a, = 5650 2.3-3g)
a, = —CoS8 (2.3-3h)
a, = €8 (2.3-3)

Using Egs. {2.3-31), (2.3-3f), and (2.3-3k), a solution to the above nine eguations
is:

6 = cos™' (a,) (234
¥ = cos™! [%} (2.3-5)
¢ = cos”' [ _;'Z"J {2.3-6)

The above solution is inconsistent and ill-conditioned because:

L. The arc cosine function does not behave well as its accuracy in determining the
angle is dependent on the angle. That is, cos () = cos { —#).

2. When sin (6) approaches zero, that is, § = 0° or ¢ = % 180°, Egs. {2.3-5)
and (2.3-6} give inaccurate solutions or are undefined.

We must, therefore, find a more consistent approach to determining the Fuler
angle solution and a more consistent arc trigonomelric function in evaluating the
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angle solution. In order fo evaluate 4 for —7 < @ € «, an arc tangent function,
atan? {y, x), which returns tan~'(y/x) adiusted to the proper quadrant will be
used. It is defined as:

0° g€ 8 £ 90° for +x and +y
90)° € 8 € 180° for —x and +vy

§ = a@n2(y,x) = 4 _yg0° & 0 € ~90° for —x and —y 2.3-7)
-90° g 6 £ 0° for +xand —y

L
Using the arc tangent function {atan2) with two arguments, we shall take a look at
a general solution proposed by Paul et al. [1981].

From the matrix eguation in Eq. {2.3-2), the elements of the matrix on the left
hand side ¢(LHS) of the matrix equation are given, while the elements of the three
matrices on the right-hand side (RHS) are unknown and they are dependent on
o, 8, . Paul et al, [1981] suggest premudtiplying the above matrix equation by its
unknown inverse transforms successively and from the elements of the resultant
matrix equation determine the unknown angle. That is, we move one unknown (by
its inverse transform) from the RHS of the matrix equation to the LHS and solve
for the unknown, then move the next unknows to the LHS, and repeat the process
untii all the unknowns are solved.

Premuitiplying the above matrix equation by RZ; we have one unknown (g)
on the LHS anrd two unknowns (4, ¥) on the RHS of the matrix equation, thus we
have

Co S 0| a s a 10 o cy ~S¢ 0|
~86 Co6 O o, s, a, = |0 C8 -SH| S Ci O

0 0 1 n, s, a 0 S (8 ioo;
or
Cén, + Spn,  Cbs, + S¢s, Céa +Sea, | | G —S¢ 0
—Sgn, + Con, ~Sps, + Cos, —Séa, + Céa, | = | CBSYy COCY —59
n, 5 a, s9Sy  SCY €D
(2.3-8)

Equating the (1, 3) elements of both matrices in Eq. (2.3-8), we have:
Cha, + Spa, = 0 2.3-9)

which gives

N
¢ = tan™' La't ! = atan2 (q,, —a,) {2.3-1)
i
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Equating the (1, 1) and {1, 2) elements of the both matrices, we have:
Cy = Con, + Son, 2.3-11a)
S = ~Cos, — Seps (2.3-11b)

which lead to the selution for ¢,

et | S -1 =~ Cops, — Sebs,
Vo=t [ C‘f/] = mn ( Con, + Sen,

il

atan2 { — Cgs, — Sés,, Con, + Son, ) 2.3-12)

Equating the (2, 3} and (3, 3) elements of the both matrices, we have:

S8 = S¢a, — Coa,
€8 = a, (2.3-13)

which gives us the solution for 8,

) N

# = tan"? [m%{,} = tan~ ! {M = atan? (S¢a, — Coa,, a.)

Co i J o

i ' 2.3-14)

Since the concept of inverse transform technique is to move one unknown to

the LHS of the matrix equation at a time and solve for the unknown, we can try to

solve the above matrix equation for &, 6, by possmultiplying the above matrix
equation by its inverse transform R, )

‘n s oa Y Sy 0 Cé ~56 0 1 0 o
ny 8§ a4, -8 &4 0 = S¢ Cop O 0 O -5
n, 8 a ¢ 0 1 0 0o 1 ¢ 8

Multiplying the mairices out, we have,

[ nCY— 550 mSE+s Y a Co ~SpC8  SoS8
a,Cf — 5,.8¢ nSy + 5,00 a, | = | S¢ Col® —CoS
nCy— 5S¢  nSy+s5Cy 0 s v

) (2.3-15)

Again equating the (3, 1) elements of both matrices in the above matrix equation,
we have

Gy — 5.8y =0 (2.3-16)
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which gives

r - E_ — a3t -
¥ = tan = atan2 {n,, 5.} {2.3-17)

52
Equating the (3, 2) and (3, 3) elements of both matrices, we have:
S6 = n Sy + 5, Y (2.3-18a)
Cl = g (2.3-18h)
which leads us to the selution for 8,

Sy + 5,04
6 = tan”’ [m"’_z_"’} = atan2 (n,5¢ + 5,Cf, @)  (2.3-19)

a,
Equating the (1, 1) and (2, 1) elements of both matrices, we have

Cop = n (Y — 5,5 (2.3-200)

So = n O ~ 5.5¢ 2.3-20b)

which gives
L O — 5,5

= atan2 (n,Cf — 5,8¢, n,Cb — 5 5%} {2.3.21)

Whether one should premultiply or postmultiply a given matrix eguation is up ©
the user’s discretion and it depends on the intuition of the user.

Let us apply this inverse transform technique to solve the Euler angles for a
PUMA rebot arm (OAT solution of a PUMA robot). PUMA robots use the sym-
bols O, 4, T to indicate the Euler angles and their definitions are given as follows
{with reference 10 Fig. 2.17):

O (orientation) is the angle formed from the ¥, axis to the projection of the tool a
axis of the XY plane about the z, axis.

A (altirude) is the angle formed from the XY plane to the tool a axis about the s
axis of the tol.

T (tool} is the angle formed from the XY plane to the tool 8 axis about the a axis
of the tool.

Initially the tool coordinate system {or the hand coordinate system) is aligned
with the base coordinate system of the robot as shown in Fig. 2.18. That is, when
O =A =T = 0° the hand points in the negative ¥, axis with the fingers in a
horizontal plane, and the s axis is pointing to the positive Xy axis. The necessary
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O, s measurement of the
angle formed between
the WORLID ¥ axis and
a projection of the
TOOL Z on the WGRLD
XY plane

A, & measurcraent of the angle
fermud between the TGOL 2
and & plane parallet 10 the
WORLD XY planc

TOOL ¥
e

T, a measurement of the angle
formed between the TOOL ¥
and a plang parallel to the
WORLD XY plune

Figure 2.17 Definition of Euler angles O, A, and 7. (Taken from PUMA robot manual
398H.)

transform that describes the orientation of the hand coordinate systems (a1, s, a)
with respect to the base coordinate system (X, ¥o, Zo) is given by
o1 o
6 0 -1 (2.3-22)
-1 0 0 ]
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7] mmmmm

S n

'

Figure 2.18 [nitial alignment of tool coordinate system,

From the definition of the OAT angles and the initial alignment matrix [Bg. (2.3-
223}, the relationship between the hand transform and the OAT angle is given by

P 0 1 0
n, $, d, =R, 00 -1 R 4R, 7
n, 8 4 -1 0 GJ
co -so ol o1 ollcai o sallcr —st o
= { 80 o 0 0 0 i § 1 0 ST Cr 0

0 O 1 -1 G 0 -54 0 €4 | g 0 1

Postmultiplying the above matrix equation by the inverse transform of R, 1,

a5, oa || €T ST 0 co -50 0 01 o
n, sy ay | | =ST €T 0 = |50 CO 0 00 —1
n, s, a 0 0 1 0o 0 1 10 OJ
cA 0 54
x 0 i 0

—54 O CA

and multiplying the matrices out, we have:

n,CT ~ 5 ST nST+s,CT  a, 5054 CO  SOCA
n,CT~s,ST  aST+s,CT  a, | = | COS4 SO —COCA
n,CT — 5.8T n, ST+ 5,CT a, —CA4 0 — 54

(2.3-23)

Equating the (3, 2) elements of the above matrix equation, we have;

nST + s,CT = 0 (2.3-24)
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which gives the solution of 7,
] . SZ
T = gan — | = atanl{s,, —n,) (2.3-25)
L

Equating the (3, 1) and (3, 3) elements of the both matrices, we have:

5S4 = —a, (2.3-26a)
and
Ca = —nCT + 5,5T (2.3-26k)
then the above equations give
A = tan™" ’f & ] = atan2 ( ~a,, —n,CT + 58Ty  (2.3-27)
| =mCT + 55T oo ‘ '

Equating the (1, 2) and (2, 2) elements of the beth matrices, we have:
CO = n 5T + s CT (2.3-28a)
SO = n, ST 4 5,CT (2.3-28b)

which give the solution of (,

0 = tan-! A, 8T + 5,CT
4= 1, 8T + 5. CT

If

atan2 (n, 8T + 5,C7T, n ST + 5.CT) (2.3-20)

The above premultiplying or postmultiplying of the unkpown inverse transforms
can alse be applied to find the joint solution of a PUMA robot. Details about the
PUMA robot arm joint solution can be found in Paul et al. [19811.

Although the inverse transform technique provides a general approach in
determining the joint solution of a manipulator, it does not give a clear indication
on how 1o select an appropriate solution from the several possible solutions for a
particular arm configuration. This has to rely on the user’s geometric intuition.
Thus, a geometric approach is more useful in deriving a consistent joint-angle
solution given the arm matrix as in Eq. (2.2-39), and it provides a means for the
user to select a unique solution for a particular arm configuration. This approach
is presented in Sec. 2.3.2.

2.3.2 A Geometric Approach

This section presents a geometric approach to solving the inverse kinematics prob-
lem of six-link manipulators with rotary joints. The discussion focuses on a
PUMA-like manipulator. Based on the link coordinate systems and human arm
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geomelry, various arm configurations of a PUMA-like robot (Fig. 2.11) can be
identified with the assistance of three configuration indicators (ARM, ELBOW, and
WRIST)—iwo associated with the solution of the first three joints and the other
with the last three joints. For a six-axis PUMA-like robot arm, there are four pos-
sible solutions to the first three joints and for cach of these four solutions there are
two possible solutions to the last threc joints. The first two configuration indica-
tors aflow one to determine one solution from the possible four solutions for the
first three joints. Similarly, the third indicator selects a solution from the possible
two solutions for the last three joints. The arm configuration indicators are
prespecified by a user for finding the inverse solution. The solation is calculated
in two stages. First, a position vector pointing from the shoulder to the wrist is
derived. This is used to derive the solution of each joint i (i = I, 2, 3) for the
first three joints by looking at the projection’ of the position vector onto the
%;_1 ¥;—, plane, The last three joints are solved using the calculated joint solution
from the first three joints, the orientation submatrices of OT, and
~1A, (i = 4,5,6), and the projection of the link coordinate frames onto the
X;,_; ¥ plane. From the geometry, one can easily find the arm solution con-
sistently. As a verification of the joint solution, the arm configuration indicators
can be determined from the corresponding decision equations which are functions
of the joint angles. With appropriate modification and adjustment, this approach
can be generalized to solve the inverse kinematics problem of most present day
industrial robots with rotary joints.

If we are given "™'T,,, then we can find T, by premultiplying and post-
multiplying Ty, by B~" and H™', respectively, and the joint-angle solution can
be applied to °T4 as desired.

n)( SK ax P X
n, s, 8y py
n, § 4, p
0 0 0o 1

Oy = T = B I®T  H ! = (2.3-30)

Definition of Various Arm Cenfigurations. For the PUMA robot arm shown in
Fig. 2.11 (and other rotary robot arms), various arm configurations are defined
according to human arm geometry and the link coordinate systems which are esta-
blished using Algorithm 2.1 as (Fig. 2.19)

RIGHT (shoulder) ARM: Positive §, moves the wrist in the posirive z; direction
while joint 3 is not activated.

LEFT (shoulder) ARM: Positive 4, moves the wrist in the negative 2, direction
while joint 3 is not activated.

ABOVE ARM {(clbow above wrist): Position of the wrist of the

{ ngg } arm with respect to the shoulder coordinate system has
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~
ive | . .
nega_ﬁ‘n:‘e coordinate value along the y; axis.
positive & ¥z
) J

BELOW ARM (elbow below wrist): Position of the wrist of the

-
1?&{?} arm with respect to the shoulder coordinate system has

[ positive \L

inf:gative J ceordinale value along the y; axis,

WRIST DOWN: The s unit vector of the hand coordinate system and the ys unit
vector of the (X5, ¥s, Zs) coordinate system have a positive dot product.

WRIST UP: The s unit vector of the hand coordinate system and the y5 unit vector
of the (Xs, ¥s, Z5) coordinate sysiem have a ncgative dot product,

(Note that the definition of the arm configurations with respect to the link coordi-
pate systems may have to be slightly modified if one uses different fink coordinate
SYSIems. )}

With respect 1o the above definition of various arm configurations, twe arm
configuration indicators (ARM  and ELBOW) are defined for cach arm
configuration. These two indicators are combined to give one solution out of the
possible four joint solutions for the first three joints. For each of the four arm
configurations (Fig. 2.19) defined by these two indicators, the third indicator
(WRIST) gives one of the two possible joint solutions for the last three joints.
These three indicators can be defined as:

+1 RIGHT arm
ARM = (2.3-31)
-1 LEFT arm
+1 ABOVE arm
ELBOW = < 1 BELOW arm (2.3-32)

1 WRIST DOWN
WRIST = < (2.3-33)
L-1 WRIST UP

In addition to these indicators, the user can define 2 “FLIP” toggie as:

{

i +1 Flip the wrist orieatation
FLIP = { (2.3-34)
=1 Do not flip the wrist orientation

The signed values of these indicators and the toggle are prespecified by a user for
finding the inverse kinematics solution. These indicators can also be set from the
krowledge of the joint angles of the rebot arm using the corresponding decision
equations. We shall Iater give the decision equations that determine these indicator
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Left and below arm

Right and below arm

Figure 2.19 Definition of various arm configurations.

values. The decision equations can be used as a verification of the inverse
kinematics sohution.

Arm Solution for the First Three Joints. From the kinematics diagram of the
PUMA robot arm in Fig. 2.11, we define a position vector p which points from
the origin of the shoulder coordinate system (Xy, ¥a, 2Zp) 1 the point where the last
three joint axes intersect as {see Fig. 2.14):

P=0ps— dd = (py Py P (2.3-35)
which corresponds to the position veetor of °T,:
[I’x GG + asC3 + ds Sy ) — 425,
Py | = | Sila Gy F G +deSn ) + 4, G {2.3-36)

P dCn — a8 — 4§,
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Joint I solution. I we project the position vector p onto the Xy ¥, piane as in Fig.
2.20, we obiain the following equations for solving 8;:

bl=¢—a =1+06+a (2.3-37)
r=~pl+p; —dt  Re=Apl+p} (2.3-38)
sing = m%i COS ¢ = % {2.3-39)
. dZ Hd
sing = Mf? OS¢y = 3 (2.3-40)
Xq¥p plane
¥
z% (pfe f’y)
# 04 = dy
A o ay
@ o AB = = NPT IR
// -~ \ o xi
! g 0 =6 - o o8 = VPTt Fl = R
{ o } Xp :
| /
\ Left arm /
N s
\\\-_m_,///
Inner cylinder with radins dy
Yo
04 = d
(P Py} :
/,,—«-m”--._,_\ B
e N A A8 == NPT PEE
Berrsrs] v
*:tgﬂwa o o Y .. OB= VP4
i } 9
\
\ @
AA
~ —— - d Z?
Right arn:
xf

Figure 2.20 Solution for joint 1.
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where the superscripts L and R on joint angles indicate the LEFT/RIGHT arm
configurations. From Egs. 2.3-37) to (2.3-40), we obtain the sine and cosine
functions of &; for LEFT/RIGHT arm configurations:

" r(f‘)

SN = sin (¢ — «) = sindcosa — cosPsine = fiwmﬁ;mim 2.3-41)
cosfF = cos(¢p — @) = cos¢cosa + singsine = La €2.3-42)
- por e g
singf = sin(n + ¢ + o) = mﬁmgfm (2.3-43)

R — Pt p 5=d2 .
cosf = cos{w + ¢ + a) = —————— (2.3-44)

R'Z

Combining Egs. (2.3-41) to (2.3-44) and using the ARM indicator to indicate the
LEFT/RIGHT arm configuration, we obtain the sine and cosine functions of 8,
respectively:

sing; = (2.3-45)

2 T2 4 pud
cos B, = £ Py —dy TP (2.3-46)

pl+ p;

where the positive sguae root i taken in these equations and ARM is defined as
in Eg. (2.3-31). In order to evaluate ) for —» < 6, € . an arc tangent fune-
tion as defined in Eq. (2.3-7) will be used. From Eqs. €2.3-45} and (2.3-46), and
using Eg. (2.3-7), 8, is tound to be:

. ™~
sinf,

¢ = tan~! { ‘
L cost |

R [ ~ ARM p/p? ¢
~ ARM p~/p? 4 p?

{2.3-47)

Jaint 2 solution. To find joint 2, we project the positior vector p onto the X, ¥y
plane as shown in Fig. 2.21. From Fig. 2.21, we have four different arm
configurations. FHach arm configuration correspords to different values of joint 2
as shown in Table 2.3, where 0° € o € 360°and 0° € B <€ 90°.
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Table 2.3 Various arm configurations for joint 2

Arm configurations 8y ARM ELBOW ARM « ELBOW
LEFT and ABOVE arm o — B — I +1 - ]
LEFT and BELOW arm o+ A -] - i +1
RIGHT and ABOVE arm x4+ B + 1 + i +1
RIGHT and BELOW arm a — f +1 —1 ]

From the above table, #, can be cxpressed in one equation for different arm
and elbow configurations using the ARM and ELBOW indicators as:

6 = o + (ARM - ELBOW)B = o + K + § (2.3-48)

where the combined arm configuration indicator K = ARM « ELBOW wil} give
an appropriate signed value and the “dot™ represents a mubliiplication operation on
the indicators. From the arm geometry in Fig. 2.2}, we obtain:

R=~Np?+ pi+pl—di = Vp? + pi —di (2349

sing = —%‘1 = - P (2.3-50)
Vpl4pl+pl-di
. ARM » /.2 2 _ g2
CoOS = — ARM - r = — \/p" + Iz“ {2 (2.3-51)
R Npi o+ opy o+ pl - di
ai + R — (di + ad)
osf = 2.3-52
¢ Sﬁ ZazR ( )
Pl ek plval —dF = (df + a})
2“2\/;{3 + p;“. + pf — di
sind = Vi _ cos2g (2.3-53)

From Eqs. (2.3-48) to (2.3-53), we can find the sine and cosine functions of #;:

sinfl; = sin(ae + K+B) = sinewcos (K+8) + cosasin(K-3)

It

sincos S + (ARM - ELBOW ) cosasin§ {2.3-54)

cost = cos{a + K+)

= cosacos ¥ — (ARM - ELBOW)sinasinf {2.3-55)
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(P pe b}
7y i a2y
¥6
C g
s X
/ g i E OA = ds EF = P,
B AB =uy LG =P,
, BC = uy DE = P,
B x CO - iy
ix
“ RN ot A =R =P e P AP
S R AE = r= VPl Pl
A
/ /N
E 7 i Xp

e I

Figure 2.21 Solution for joint 2,

From Egs. {2.3-54) and (2.3-53), we obtain the solution for 6,

§, = tan™! sing; - - & 0 < {2.3-56)
L cosé, TRRsT ’

Joint 3 solution. For joint 3, we project the position vector p onto the x,y; plane
as shown in Fig. 2.22. From Fig. 2.22, we again have four different arm
configurations. Each arm configuration corresponds to different values of joint 3
as shown in Table 2.4, where (°py), is the y component of the position vector
from the origin of (x;, ¥, %3} to the point where the last three joint axes intersect.

From the arm geometry in Fig. 2.22, we obtain the following equations for
finding the solution for By

R =~p2+ pl v p? — d (2.3-57)
2 2 z Z
ar; + (dj + a3) — R
cosP = — (di * a3) - (2.3-58)
2%\/573 + a?
sing = ARM - ELBOW V] _ cos’p
{
sinfi = & cosB = las | (2.3-39)

Vd? + a T+ al

<
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X2¥y plane

AB = &

BC = a3
CD = dy
A ™ - % 80 = Jaiidt
X3
by = gp o~
Eeft and below arm
(& dy

iy = & —~ 3 = 50°

Left and above arm

Figure 2.22 Solution for joint 3,

From Table 2.4, we can express 8; in one equation for differemt arm
configurations:

=9 — 8 (2.3-60)

From Eq. (2.3-60). the sine and cosine functions of §; are, respectively,
sinfly = sin(¢ — B) = singcosf — cosgsing {2.3-61)
costy = cos{¢ — B8) = cosdeosf + singsing (2.3-62)

From Egs. (2.3-61) and (2.3-62), and using Egs. (2.3-57) to (2.3-59), we fiad the
sotution for 8;:
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Table 2.4 Various arm configurations for joint 3

Arm configurations p)y B ARM  ELBOW  ARM - ELBOW
LEFT and ABOVE arm =0 $ —~ 8§ -1 +1 -4
LEFT and BELOW arm £ 0 ¢ - —1 —1 +1
RIGHT and ABOVE arm <0 ¢ — 8 + 1 +1 + i
RIGHT and BELOW arm =20 b -~ 3 +1 | ~ k
_y | sy h _
fy, = tan E - g Lo (2.3-63)
cos b3 J

Arm Solution for the Last Three Joints. Knowing the first three joint angles, we
can evaiuate the "T. matrix which is used extensively o find the solution of the
fast three joints. The solution of the last threc joints of a PUMA robot arm can be
found by setting these joints to meet the following criteria:

1. Set joint 4 such that a rotation about joint § will align the axis of motion of
joint 6 with the given approach vector (a of T).

2. Set joint 5 to align the axis of motion of joint 6 with the approachk vector,

3. Set joint 6 to align the given orientation vector {or shiding vector or yg) and
normal vector.

Mathematically the above criteria respectively mean:

+(z; X a3}

7y = —eeeee given a = {a,, a,, 4,)7 (2.3-64)
T Tmxal ® o4

a = gz given a = (4, a,, az)"r (2.3-65)
§ = ¥ givens = (s, 5,, 5.) and n = (n,, n,, n)"  (2.3-66)

In Eq. (2.3-64), the vector cross product may be taken to be positive or nega-
tive. As a result, there are two possible solutions for 6. If the vector cross pro-
duct is zero (i.e., 23 is parallel 10 a), it indicawes the degenerate case. This hap-
pens when the axes of rotation for joint 4 and joint 6 are parallel. It indicates that
at this particular arm configuration, a five-axis robot arm rather than a six-axis one
would suffice,

Joint 4 solurion. Both orientations of the wrist (UP and DOWN) are defined by
locking at the orientatior of the hand coordinate framc (n, s, a) with respect to
the (xs, ¥s, z5) coordinate frame. The sign of the vector cross product in Eq.
(2.3-64) cannot be determined without referring to the orientation of cither the n
or § unit vector with respect to the X5 or ¥ unit vector, respectively, which have a
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fixed relation with respect to the 2, unit vector from the assignment of the hink
coordinate frames. (From Fig. 2.11, we have the z, unit vector pointing at the
same dirgction as the y5 unit vector.)

We shall start with the assumption that the vector cross product in Eq.
(2.3-64) has a positive sign. This can be indicated by an orientation indicator Q
which is defined as:

-
j 0 if in the degenerate case
0 = $4Y¥s ifseys # 0 {2.3-67)

neys  ifsey; =0

From Fig. 2.11, ys = 7, and using Eq. (2.3-64), the orientation indicator @ can
be rewritten as:

0 if in the degencrate case
Q ey X ) 0 2.3-68
= g (2 X #
S xal S (208
%
-M if s«{z; x a) =10
lles x al

I our assumption of the sign of the vector cross product in Eq. (2.3-64) is not
correct, it will be corrected later using the combination of the WRIST indicator
and the orientation indicator Q. The @ is used to indicate the initial orientation of
the 7, unit vector (positive direction) from the link coordinate systems assignment,
while the WRIST indicator specifies the user’s preference of the orientation of the
wrist subsystern according to the definition given in Eq. (2.3-33). I both the
arientation { and the WRIST indicators have the same sign, then the assumption of
the sign of the vector cross product in Bg. (2.3-64) is correct. Various wrist
orientations resulting from the combination of the various values of the WRIST
and orientation indicators are tabulated in Table 2.3,

Table 2.5 Various orientations for the wrist

Wrist orientation @ = seysorm-ys WRIST M = WRIST sign (£}

DOWN z 0 + 1 +1
DOWN < @ +1 -1
UP =2 0 -1 -1

UP < ¢ -1 +1
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Again looking at the projection of the coordinate frame (X4, ¥4, Z4) on the
%3 ¥; plane and from Table 2.5 and Fig. 2.23, it can be shown that the following
are true (see Fig. 2.23);

sinfly = —M{z, * X3) cosfy = Mz, + ¥3) (2.3-6%9)

where x; and y; are the x and y column vectors of °T3, respectively, M =
WRIST sign (), and the sign function is defined as:

it x>0
sign (x) = {4’: ;f i ~ . (2.3-70)

Thaus, the solution for 8, with the orientation and WRIST indicators is:

.o .
B, = tan~! | w51n64
* L cos by

= fan” MG, ~ 5ia:) —r €8 < (237D
MG Cpap + 5 Cyay — Spyat;) DR '

If the degenerate case occurs, any convenient value may be chosen for 8, as long
as the otientation of the wrist {(UP/DOWN) is satisfied. This can always be
ensured by setting 8, equals to the current value of §;. In addition to this, the user
can turn on the FLIP toggle to obtain the other solution of 8, that is,
94 = 64 e 1803

Joint 5 solution. To find #5, we use the criterion that aligns the axis of rotation of
joint 6 with the approach vector {or a = zs). Looking at the projection of the

sin By = — {2, « %9}

cob g = Fg e ¥

X3

Figure 2.23 Solution for joint 4.
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coordinate frame (Xs, ¥s, #5) on the x,y, plane, if can be shown that the following
are true (see Fig, 2.24);

sinfs = a «xy cosfs = — {8 ryy) €2.3-72)

where X4 and vy, are the x and y column vectors of T, respectively, and a is the
approach vector. Thus, the solution for 5 is:

6 = tan-! sin és < 6 <
3 = lan COSG - Y 5 & T
s

= tan-t [ (€10 Cs —81855)a, + (5 Cy Gy + €, 55 ), — G S,

2.3-TH
CySnay +5, 8530, + Cna, :f (

I 85 = 0, then the degenerate case occurs.

Joint 6 solution. Up to now, we have aligned the axis of joint & with the approach
vector, Next, we need to align the orientation of the gripper to ease picking up
the object. The criterion for doing this is to set s = y,. Looking at the projection
of the hand coordinate frame (n, s, @) on the x5 y; plane, it can be shown that the
following are true (see Fig. 2.25):

sinfly = n » ysx cosly = § * ¥5 {2.3-74)

where ys is the y column vector of T and n and s are the normal and sliding
vectors of "Ty, respectively. Thus, the solution for 8 is:

0 = tan! sinfe -1 £ 6 £
6= c0s 8 Ts% =T

il

(=81C —CCo8y )5+ (GG =51 Cra Sy )5, + (84853 )5,
{2.3-75)

2~ { (=8, G — C Gy S + (€1 Gy — 5, Coa 84 Iy + (8,803,

sinfs =a.xy

08 85 = —{&.¥s)

Figure 2.24 Solution for joint 5.
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i fg = 3 - ¥

cos ffy 8. ¥y

X5

Figure 2.25 Solution for joint 6.

The above derivation of the inverse kinematics solution of a PUMA robot arm is
based on the geometric interpretation of the position of the endpoint of link 3 and
the hand (or tool) oriedtation requirement, There is one pitfall in the above
derivation for 44, 5, and 6,. The criterion for setting the axis of motion of joint 5
equal to the cross product of #; and a may not be valid when sinés; = 0, which
means that #5 = 0. In this case, the manipulator becomes degenerare with both
the axes of motion of joints 4 and 6 aligned. In this state, only the sum of 6, and
fs ts significant. If the degenerate case occurs, then we are free to choose any
value for ,, and usually its current value is used and then we wouid like to have
#: + 8 equal to the total angle required to align the sliding vector s and the nor-
mal vector n. 1If the FLIP toggle is on (ie., FLIP = 1), then 8, = 8¢ + u, s =
""’“35, and B(, = B(, + 7.

In summary, there are eight solutions to the inverse kinematics problem of a
six-joint PUMA-like robot arm. The first three-joint solution (8, 8,, 05} positions
the arm while the last three-joint solution, (6, 85, 85), provides appropriate orien-
tation for the hand. There are four solutions for the first three-joint solutions—two
for the right shoulder arm configuration and two for the left shoulder arm
configuration. For each arm configuration, Egs. (2.3-47), (2.3-56), (2.3-63), (2.3-
), {2.3-73), and (2.3-75) give one sot of solutions (@, #,, 65, 6, &5, 6,) and
{0y, 63, O3, B4+ =, — 85, 8¢ + 1) {with the FLIP toggle on} gives another set of
solutions.

Becision Equations for the Arm Configuration Indicators. The solution for the
PUMA-like robot arm derived in the previous section is not unigue and depends
on the arm configuration indicators specified by the user. These arm configuration
indicators (ARM, ELBOW, and WRIST) can also be determined from the joint
angles. In this section, we derive the respective decision equation for each arm
configuration indicator. The signed value of the decision equation (positive, zero,
or negative) provides an indication of the arm configuration as defined in Egs.
{2.3-31) 10 (2.3-33).
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For the ARM indicator, following the definition of the RIGHT/LEFT arm, a
decision equation for the ARM indicator can be found to be:

f i i Kk
glt.p) = & LR Zo + | —sinf, cosd; O 1
’ Cmox el T P e % p
Pr Py
- p,sinfy ~ p.cost
- p_\ i H P i {23w76)

Iz < 9

where p’ = (p,, p,, 07 is the projection of the position vector p [Eq. (2.3-36)]
onto e Xg¥p plane, £ = (—sind;, cosd, 07 from the third column veetor of
(’T,, and zg = {0, 0, 1)7. We have the following possibilities:

i, I g(0, p) > O, then the arm is in the RIGHT arm configuration.

2. 1f g(0, py < 0O, then the arm is in the LEFT arm configuration.

3. If g6, py = 0, then the criterion for finding the LEFT/RIGHT arm
configuration cannot be uniquely determined. The arm is within the inner
cylinder of radius o, in the workspace (see Fig. 2.19). In this case, it is
defauit to the RIGHT arm (ARM = +1).

Since the denominator of the above decision equation is always pesitive, the
determination of the LEFT/RIGHT arm coafiguration is reduced to checking the
sign of the numerator of g(g, p):

ARM = sign{g(d, p)} = sign{ —p,cos, — p,sinf)) 2.3

where the sign function is defined in Bq. (2.3-70). Substituting the x and y com-
ponents of p from Eq. (2.3-36), Eq. (2.3-77) becomes:

ARM = sign [g(0. p)] = sign{g(0)] = sign{ —d4Sn ~a:Cyn — & Gy)  (2.3-78)

Hence, from the decision equation in Eq. (2.3-78), one can relate its signed value
to the ARM indicator for the RIGHT/LEFT arm configuration as:

41 = RIGHT arm

ARM = Sigi’l(—'d4523 ""a}(:z3 - Gng} = .
-1 = LEFTarm 379

For the ELBOW arm indicator, we follow the definition of ABOVE/BELOW
arm to formulate the corresponding decision eguation. Using (*py) , and the ARM
indicator in Table 2.4, the decision equation for the ELBOW indicator is based on
the sign of the y component of the position vector of *A; “A, and the ARM indica-

tor:
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Position and oricntarion

Juint angles . . ) of -ty cad-elfenior
Direct kinemarics
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?;\ Plecision equations

Error

ARM. ELBOW. WRIST

laverse kenematics

Figure 2,26 Computer simulation of joint solution.

ELBOW = ARM «sign (d;C; — 4385 ) = { +1 = ELBOWabovewrist , 4 g0,

~—1 = ELBOW below wrist

For the WRIST indicator, we follow the definion of DOWN/UP wrist to
obtain a positive dot product of the s and s (or 24 ) urit vectors:

" +1 if sz, > 6

1 if sez, <o = Sign(sezy) (2.3-81)

WRIST = {

Ifs+2y = 0, then the WRIST indicator can be found from:

+1i if mezy >0

WRIST = <

L ~1 i ez, <0 = sigr (0 - 24) (2.3-82)

Combining Egs. (2.3-8D) and (2.3-82), we have

" osign (s v z4) if s+z4 # 0 :
WRIST = { _ | +1 = WRIST DOWN

ign (n -2 if sezg=0" T U
sign (n +24) If s-zy  —1 = WRIST UP

(2.3-83)

These decision equations provide a verification of the arm solution. We use
them to preset the arm configuration in the direct kinematics and then use the arm
configuration indicators to find the inverse kinematics solution (see Fig, 2.26).

Computer Simulation. A computer program can be written to verify the validity
of the inverse solution of the PUMA robot arm shown in Fig. 2,11, The software
initially generates all the locations in the workspace of the robot within the joint
angles limits. They are inputed into the direct kinematics routine to obtain the anm
matrix T. These joint angles are also used to compute the decision equations to
obtain the three arm configuration indicators. These indicators together with the
arm matrix T are fed into the inverse solution routine to obtain the joint angle
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solution which should agree to the joint angles fed into the direct kinematics rou-
tine previously. A computer simulation block diagram is shows in Fig. 2.26.

2.4 CONCLUDING REMARKS

We have discussed both direct and inverse kinematics in this chapter. The param-
eters of robot arm links and joints are defined and a 4 X 4 homogeneous transfor-
mation matrix is introduced to describe the location of a link with respect to a
fixed coordinate frame. The forward kinematic equations for a six-axis PUMA-
like robot arm are derived.

The inverse kinematics preblem is introduced and the inverse transform tech-
nigue is used to determine the Euler angle solution. This technique can also be
used o find the inverse solution of simpie robots. However, it does not provide
geometric insight to the problem. Thus, a geometric approach is introduced to find
the inverse solution of & six-joint robot arm with rotary joints. The inverse solu-
tion is determined with the assistance of three arm configuration indicators (ARM,
ELBOW, and WRIST)., There are cight solutions 10 a six-joint PUMA-like robot
armi—four solutions for the first three joints and for each arm configuration, two
more solutions for the last three joints. The validity of the forward and inverse
kinematics solution can be verificd by computer simulation. The geometric
approach, with appropriale modification and adjustment, can be generalized to
other simple industrial robots with rotary joints, The kinematics concepts covered
in this chapter will be used extensively in Chap. 3 for deriving the equations of
mation that describe the dynamic behavier of a rebot arm.
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PROBLEMS

2.1 What is the rotation matrix for a rotation of 30° about the OZ axis, followed by a rota-
tion of 60° about the QX axis, followed by a rotation of 90° about the OY axis?

2.2 What is the rotation matrix for a rotation of ¢ angle about the OX axis, followed by a
rotation of ¢ angle about the OW axis, followed by a rotation of & angle about the OY axis?
2.3 Find another sequence of rotations that is differemt from Prob. 2.2, but which results in
the same rotation matrix,

2.4 Derive the formula for sin(¢ + 2) and cos(¢ + ) by expanding symbolically wo
rotations of ¢ and # using the rotation matrix concepts discussed in this chapter.

2.5 Determine a T matrix that represents a rotation of « angie about the OX axis, followed
by a translation of & unit of distance along the OZ axis, followed by a rotation of ¢ angle
about the OF axis.

2.6 For the figure shown below, find the 4 x 4 homogeneous transformation matrices 1A
and "A; for i = 1,2,3, 4, 5.

P
¥3
|
|
| ¥3 Aq
b I
Zs, |
el - l
X5 :
Y B
¥s 1 d___e—,/
Yo -
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/f x‘t // ¥
// - 2
a - pd X
el -
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P y 7 1
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2.7 For the figure shown below, find the 4 x 4 homogeneous transformation matrices 1A,
and A, forj = 1.2, 3, 4.

X

2.8 A robot workstation has been set up with » TV camera, as shown in the example in
Sec. 2.2.1F. The camera can see the origin of the base coordinate system where a six-link
robot arm is attached, and also the cemter of a cube to be manipulated by the robot, If a
local coordinate system has been established at the center of the cube, then this object, as
seen by the carera, can be represented by 2 homogeneous transformation matrix T,. Alse,
the origin of the base coordinate system as seen by the camera can be expressed by a homo-
geneous transformation matrix T, where

9 1 0 1 El 0 ¢ —i0
1 0 o 10 0 -1 0 20
Ti= 10 o0 -1 9 amd  To= 15 g 3 1
6 0 0 1] o 0 ¢ 1

(a) Unfortunately, afler the equipment has been set up and these coordinate systems have
been taken, someonc rotates the camera 90° about the z axis of the camera. What is the
position/orientation of the camers with respect to the robot’s base coordinate system?
{b) After you have calculated the snswer for question {a). the same person rotated the
abject 90° about the x axis of the object and translated it 4 units of distance along the
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rotated y axis, What is the position/orientation of the object with respect to the robot’s base
coordinate system? To the rotated camera coordinate system?

2.9 We have discussed a geometric approach for finding the inverse kinematic solution of a
PUMA robot arm. Find the computational requirements of the joint soletion in terms of
multiplication amxd addition operations end the number of transcendental calls (if the same
ferm appears iwice, the computation should be counted oace only).

2.10 Establish orthonormal link coordinate systems (x, vy, &) for i = 1, 2,. .. ,6 for
the PUMA 260 robot arm shown in the figure below and complete the table.

Waist rotation 330°

3 Shouider rotation 310
ﬁ‘
P

H.itin

Elbow rotation

7 flange
rotation 80 im ,‘/

\< i
/{!‘. Wris
. \\’m{ulinn

PUMA robot arm link
coordinate parameters

Jointi # @ @ 4

i

]

N L fe L
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2.11 Establish orthonormal lizk coordinate systems (x;, y;, %) for i = |, 2,....5 for
the MINIMOVER robot arm shown in the figure befow and compiete the tabie.

Zg

MINIMOVER robot arm link
coordinate parameters

Joint/ & o w &

1

2
3
4
5

2.12 A Swanford robot arm has moved fo the position shown in the fgure below. The joint
variables at this position are: g = (90°, —120°, 22 cm, 0°, 70°, 90°). Establish the
orthonormal link coordinate sysiems (%, ¥, &) for f = 1, 2, ... ,6, for this arm and
complete the table,

Stanford arm link coordinate
parameters

Jointi 6 @ a d

1

2
3
4
5
6

2.13 Using the six '7'A; matrices (f = 1,2,..., 6} of the PUMA robot arm in Fig.
243, find its peosition error at the end of link 3 due to lhe measurement error of the first
three joint angles (Af,, Af,, Af:). A first-order approximation solution is adeguate.

2.14 Repeat Prob. 2.13 for the Stanford arm shown in Fig. 2.12.
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215 A wwo degrec-of-freedom manipulator is shown in the figure below. Given that the
length of each fink s 1 m, establish its link coordinate frames and find °A; and 'A,. Find
the inverse kinematics solution for this manipulator.

7 |

&)

2.16 For the PUMA robot arm shown in Fig. 2.1, assume that we have found the first
three joint solation (8, 6, 8;) correctly and that we are given "'A, i = 1,2,..., 6
and ®T,. Use the inverse transformation lechnique to find the solution for the last three
joint angles (8,. 65, 8s). Compare your solution with the one given in Eqs, (2.3-71), (2.3~
73), and (2.3-75).

2.17 For the Stanford robot arm shown in Fig. 2.12, derive the solution of the first three
joint angles. You may use any method that you feel comfortable with.

2.18 Repeat Prob. 2.16 for the Stanford arm shown in Fig. 2.12.





