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ROBOT ARM DYNAMICS

The inevitable comes to pass by effort.
Oliver Wendell Holmes

3.1 INTRODUCTION

Robot arm dynamics deals with the mathematical formulagions of the eguations of
robot arm meotion. The dynamic equations of metion of a manipulator are a set of
mathematical equations describing the dypamic behavior of the manipulator. Such
equations of motion are usefu] for computer simulation of the robot arm motion,
the design of suitable control equations for a robot arm, and the evaluation of the
kinematic design and structure of a robot arm. In this chapter, we shall concen-
trate on the formulation, characteristics, and properties of the dynamic equations of
motion that are suitable for control purposes. The purpose of manipulator control
is to maintain the dynemic response of a computer-based manipulator in accord-
ance with some prespecified system performance and desired goals. I general,
the dynamic performance of a manipulator dircctly depends on the efficiency of the
control algotithms and the dynamic model of the manipulator. The control prob-
lem consists of obtaining dynamic models of the physical robot arm system and
then specifying corresponding control laws or strategies to achieve the destred sys-
tem response and performance. This chapter deals mainly with the former part of
the manipulator control problem; that is, modeling and evaluating the dynamical
properties and behavior of computer-controlled robots.

The actual dynamic model of a robot arm can be obtained from known physi-
cal laws such as the laws of newtonian mechanics and lagrangian mechanics. This
leads 10 the development of the dynamic equations of motion for the various arti-
culated joints of the manipulator in terms of specified geometric and inertial
parameters of the links. Conventional approaches like the Lagrange-Euler (L-E)
and Newton-Euler (N-E) formulations could then be applied systematically to
develop the actua! robot arm motion equations. Various forms of robot arm
motion equations describing the rigid-body robot arm dynamics are obtained from
these two Formalations, such as Uicker’s Lagrange-Euler equations (Uicker [1965],
Bejczy [1974}). Hollerbachs Recursive-Lagrange (R-L) eguations (Hollerbach
{19801, Luh’s Newton-Euler equations (Luh et al. [1980a]), and Lee’s generalized
d’Alembert (G-D) equations (Lee et al. [1983]). Thesc motion equations are
“equivalent” to each other in the sensc that they describe the dynamic behavior of
the same physical robot manipulator. However, the structure of these equations
82
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may differ as they are obtained for various reasons and purposes. Some are
obtained to achieve fast computation time in cvaluating the nominal joint torques in
servoing a manipulator, others are obtained fo facilitate control analysis and syn-
thesis, and still others are obtained to improve computer simulation of robot
motion.

The derivation of the dyramic model of a manipulator based on the L-E for-
mulation is simple and systematic. Assuming rigid body motion, the resulting
equations of motion, excluding the dynamics of electronic control devices, back-
lash, and gear friction, are a set of second-order coupled nonlinear differential
equations. Bejczy [1974], wsing the 4 X 4 homogencous transformation matfix
representation of the kinematic chain and the lagrangian formulation, has shown
that the dynamic motion equations for a six-joint Stanford robot arm are highly
nonlinear and consist of inertia loading, coupling reaction forces between joints
(Coriolis and centrifugal), and gravity loading effects. Furthermore, these
torques/forces depend on the manipulator’s physical parameters, instantaneous joint
configuration, joint velocity and acceleration, and the load it is carrying. The L-E
equations of motion provide explicit state equations for robot dynamics and can be
utilized to analyze and design advanced joint-variable space control strategics. To
a lesser extent, they are being used to solve for the forward dynamics problem,
that is, given the desired torques/forces, the dynamic equations are used 1o solve
for the joint accelerations which are ther imegrated to solve for the gencralized
coordinates and their velocities; or for the inverse dynamics problem, that is, given
the desired generalized coordinates and their first two time derivatives, the general-
ized forces/torques are computed. In both cases, it may be required to compute
the dynamic coefficients £, hy,,. and ¢; defined in Eqgs. (3.2-31), (3.2-33), and
(3.2-34), respectively. Unfortunately, the computation of these coefficients
requires a fair amount of arithmetic operations. Thus, the L-E equations are vety
difficuit to utilize for real-time control purposes uniess they are simplified.

As an alternative to deriving more efficient equations of motion, attention was
turned to develop efficient algorithms for computing the generalized forces/torques
based on the N-E equations of motion (Armstrong [1979], Orin et al. [1979], Luh
et al, [1980a]). The derivation is simple, but messy, and involves vector cross-
product terms. The resulting dynamic equations, excluding the dynamics of the
control device, backlash, and gear friction, are a set of forward and backward
recursive egquations. This.set of recursive equations can be applied to the robot
links sequentially. The forward recursion prepagates kinematics information—such
as linear velocities, angular velocities, angular accelerations, and linear accelera-
tions at the center of mass of each link—from the inertial coordinate frame o the
hand coordinate frame. The backward recursion propagates the forces and
moments exerted on each link from the end-effecior of the manipulator to the base
reference frame. The most significant result of this formulation is that the compu-
tation time of the generalized forces/torques is found linearly proportional 1o the
number of joints of the robet arm and independent of the robot arm configuration.
With this algorithm, ene can implement simple real-time contrel of a robot arm in
the joint-variable space.
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The inefficiency of the L-E equations of motion arises partly from the 4 % 4
homogeneous matrices describing the kinematic chain, while the efficiency of the
N-E formulation is based on the vector formulatios and its recursive pature. To
further improve the computation time of the lagrangian formulation, Hollerbach
[1980] has exploited the recursive nature of the lagrangian formulation. However,
the recursive equations destroy the “structure” of the dynamic medel which is
quite useful in providiag insight for designing the controller in state space. For
state~-space control analysis, one would like to obtain an explicit set of closed-form
differential eguations (state equations) that describe the dynamic behavior of a
manipulator. In addition, the interaction and coupling reaction forces in the equa-
tions should be easily identificd so that an appropriate costroller can be designed
to compensate for their effects (Huston and Kelly [1982]). Another approach for
obtaining an cfficient set of explicit equations of motion is based on the generalized
d’Alembert principle to derive the equations of motion which are expressed expli-
citly in vector-matrix form swilable for control analysis. In addition to allowing
faster computation of the dynamic coefficients than the L-E equations of motion,
the G-D equations of motion explicitly identily the contributions of the fransla-
tonal apd rotational effects of the links. Such information is usefid for designing
a controfler in state space. The computational efficiency is achieved from a com-
pact formulation using Euler transformation matrices {(or rotation matrices) and
relative position vectors between joints.

In this chapter, the L-E, N-E, and G-I equations of robot arm metion are
derived and discussed, and the motion equalions of a two-link manipulator are
worked out to illustrate the use of these equations. Since the computation of the
dynamic coefficients of the equations of motion is important both in control
analysis and computer simulation, the mathematical operations and their computa-
tional issues for these motion equations are tabulated. The computation of the
applied forces/torgues from the generalized d’Alembert equations of motion is of
order O(n?), while the L-E equations are of order O(n*) for of order O(n?) if
optimized] and the N-E equations are of order G(n), where n is the pumber of
degrees of freedom of the robot arm.

3.2 LAGRANGE-EULER FORMULATION

The general motion equations of a manipulator can conveniently be expressed
through the direct application of the lLagrange-Euler formulation to nonconserva-
tive systems. Many investigators atilize the Denavit-Hartenberg matrix representa-
tion to describe the spatial displacement between the neighboring link coordinate
frames to obtain the link kinematic information. and they employ the lagrangian
dynamics technigue to derive the dyramic equations of a manipulator. The direct
application of the lagrangian dynamics formulation, together with the Denavit-
Hartenberg link coordinaie representation, results in a convenient and compact
algorithmic description of the manipulater equations of motion. The algorithm is
expressed by matrix operations and facilitates both analysis and computer imple-
mentation. The evaluation of the dynamic and control equations in functionally
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explicit terms will be based on the compact matrix algorithn derived in this sec-
tion.

The derivation of the dynamic equations of an » degrees of freedom manipula-
for is based on the understanding of:

1. The 4 x4 homogencous coordinate transformation matrix, ‘~'A;, which
deseribes the spatial relationship between the jth and the (i —1)th link coordi-
nate frames. Tt relfates a point fixed in link § expressed in homogeneous coordi-
nates with respect to the ith coordinate system to the (i —1)th coordinate sys-
tern.

2. The Lagrange-Euler equation

4 | 3L WW%W:T,- i=1,2,....,n (3.2-1)
dr 84 dg;

where

L = lagrangian function = kinetic energy K — potential energy P

K = total kinetic energy of the robot arm

P = total potential energy of the robot arm

¢; = generalized coordinates of the robot arm

g; = first time derivative of the generalized coordinate, g;

#; = generalized force (or torque) apphied to the system at joint / to drive
link ¢

From the above Lagrange-Euler equation, one is required to properly choose a set
of generalized coordinates to describe the system. C(eneralized coordinates are
used as a comvenient sct of coordinates which completely describe the location
(position and orientation) of a system with respect to a reference coordinate frame.
For a simple manipulator with rotary-prismatic joints, various sets of generalized
coordinates are available to describe the manipulator. However, since the angular
positions of the joints are readily available because they can be measured by poten-
tiometers or encoders or other semsing devices, they provide a natural correspon-
dence with the generalized coordinates. This, in effect, corresponds to the geperal-
ized coordinates with the joint variable defined in each of the 4 x 4 link coordinate
transformation matrices. Thus, in the case of a rotary joint, ¢; = #;, the joint
angle span of the joint; whereas for a prismatic joimt, ¢; = d;, the distance trav-
eled by the joint.

The following derivation of the equations of motion of an n degrees of free-
dom manipulator is based on the homogeneous coordinate transformation matrices
developed in Chap. 2.

3.2.1 Joint Velocities of a Robot Manipalator

The Lagrange-Euler formulation requires knowledge of the kinetic energy of the
phiysical system, which in turn requires knowledge of the velocity of each joint. In
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this section, the velocity of & point fixed in link 7 will be derived and the effects of
the motion of other joints on all the points in this link will be explored.

With reference to Fig. 3.1, let ‘r; be a point fixed and at rest in a link § and
expressed in homogeneous coordinates with respect o the ith Iink coordinate
frame,

r, = = (x5 v 7 D7 (3.2:2)

Let “r; be the same point ‘r; with respect to the base coordinate frame, ‘~'A, the
homogeneous coordinate transformation matrix which relates the spatial displace-
ment of the ith link coordinate frame to the (/— 1)th link coordinate frame, and
YA, the coordinate transformation matrix which relates the ith coordinate frame to
the base coordinate frame; then °r; is related to the point 'r; by

O = %A Ty, (3.2-3)

where

i IA;' (32_4)

Figure 3.1 A poit ‘ry in link 7.



ROBOT ARM DYNAMICS 87

If joint 7 is revolute, it follows from Eq. (2.2-29) that the general form of ™A, is
given by

cos 8, —cose;sinf;, sinesind @ cos -
1A = sin , cosea,cosf; —sine;cosf asin@ (3.2-5)
0 sim ey; cos o d;
0 0 0 i
or, if joint { is prismatic, from Eq. (2.2-31), the general form of IMlA, is
cos 8, —cosqsinf;, sing;sinf 0
im1A, = sinf, coso;cosfh, ~sineycost O (3.2-6)
0 sin e; Cos o d;
0 0 0 i

In general, all the nonzero elements in the matrix YA, are a function of
@, 8, ...,0), and «;, a;, d; are known parameters from the kinematic structure
of the arm and 6, or d; is the joint variable of joint /. In order to derive the equa-
tions of motion that are applicable to both revolute and prismatic joinis, we shall
use the variable g; to represent the generalized coordinate of joint i which is cither
0; (for a rotary joint) or &; {for a prismatic joint).

Since the point 'r; is at rest in link #, and assuming rigid body maotion, other
points as well as the poim fy; fixed in the link 7 and expressed with respect to the
ith coordinate frame will have zero velocity with respect to the ith coordinate
frame (which is not an inertial frame). The velocity of r; expressed in the base
coordinate frame (which is an inertial frame) can be expressed as

oy =y, = Loy = Loa i,
vl_v:_ d!{ ri)_ df(Af r!)

OA] EA’Z, . E—§A£ {'ri + UA] IAZ . _i—lAi il.[_ 4

i Op.
+ A ”.rull&. ip, + BA. F = E M i (3.2-T)
H i M i *i aq qj i “

=1 i

The above compact form is obtained becausé 'f; = 0. The partial derivative of
UA, with respect o g; can be easily calculated with the help of a matrix Q; which,
for a revolute joint, is defined as

-1

0

Q = (3.2-8a)

o oo e O
[=]

o D o O

o L S D
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and, for a prismatic joint, as

(3.2-86)

3.29

a; cos B,
o; sin§;
d;

I

fo0o00
Q = 0 000
T 1o o001
0000
1t then foilows that
ai—iAi N Q iMaA
dg; o f
For example, for a robot arm with all rotary joints, g; = 4, and using Eq. (3.2-
5),
—sinf;, —cosa;co88; singcosf; —a;sing ‘
8-, _ cosd;, —cosq;sind;  sinegsing;  a;cosd,
a6 0 0 0 0
0 0 0 0
0 -1 0 0 cosd;  —cosa;sing; sin o;sind;
1 0 O 0 sinf;,  cosa;cosd; = 8in ey cos
=10 0 00 0 sim oy COS &x;
0 0 0 o 0 o 0
= QA

Hence, fori = 1,2,... ,n,

4] i— - o
3 Ai = BAg lAz e d zAj,_,in“I lAj AR EA{

for jgi
0 for j>i

(3.2-10)

Eq. (3.2-10) can be interpreted as the effect of the moton of joint j on all the
points on link 7. In order to simplify notations, let us define Uj; e aﬂAl-/aqj, then

Eqg. (3.2-10) can be written as follows for i = 1, 2, ... ,n,

U, = ﬂAj—-l Q;/ A, for j<i
! 0 for j>1i

Using this notation, v; can be expressed as

i
v, = [ U;jé’j} r;
i=1

(3.2-11)

3.2-12)
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It is worth pointing out that the partial derivative of 7 'A; with respect to g, results
in a matrix that does not retain the structure of a homogeneous coordinate transfor-
mation matrix. For a rotary joint, the effect of premultiplying '~'A; by Q, is
equivalent to interchanging the ¢lements of the first two rows of ©"'A,, negating all
the elements of the first row, and zeroing out all the elements of the third and
fourth rows. For a prismatic joint, the effect is 1o replace the efements of the third
row with the fourth row of "'A, and zeroing out the elements in the other rows.
The advantage of using the ; matrices is that we can still use the ‘A, matrices
and apply the above operations to '~ ' A, when premultiplying it with the Q.
Next, we need to find the interaction effects between joints as

C . "

U, | T AT s s

Ta V0T AT iz ek 3213
Lo i< jori <k

For example, for a robot arm with all rotary joints, { = j =k = ]l and ¢; = 6y,
s0 that

aUI% a I [
e T e Ay e A
%0, %0, (Q"A) = Q,Q7A
Eq. (3.2-13) can be interpreted as the interaction effects of the motion of joint j
and joint & on all the points on link i,

3.2.2 Kinetic Energy of a Robot Manipulator

After obtaining the joint velocity of each link, we need to find the kinetic energy
of link i, Let K; be the kinetic energy of link £, = 1, 2, ... .n, as expressed in
the base coordinate system, and let dK; be the kinetic energy of a particle with
differential mass dm in link #; then

dK, = Wk + 3 + Frdm

W trace (v;v/ydm = % Tr (vv)dm {3.2-14)

where a trace operatort instead of a vector dot product is used in the above equa-
tion to form the tensor from which the link inertia matrix for pseudo-inertia
matrix) J; can be cbtained. Substituting ¥; from Eq. (3.2-12), the kinetic energy
of the differential mass is

1TrA2Y a.
F=1
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- o | T
d[(, = ¥ Tr Z: U!'p(gpir“ L z: U,-,né,zr,} J dm
L opel =1

i ‘ . E e |
% Tr | L LU,rnwUL4,4, J dm

pz=]rm]

Hi

n Tr E E U, (" v, dint'r] )ﬁ,,qf,q, ] (3.2-15)

Lope=lre=i

]

The matrix U, is the rate of change of the points ('r;) on link { relative to
the base coordinate frame #s g; changes. It is constant for all points on link i and
independent of the mass distribution of the link i. Also ¢; are independent of the
mass distribution of link i, so summing all the kinelic energies of all links and put-
ting the integral inside the bracket,

K = j ak, = ATy 2 E U,P(j r'v/dm) Ulg,q, ] (3.2-16)
B

The integral term inside the bracket is the inertia of all the points on link /, hence,

“ jx;’ dm j.xf,- yidm jx;zi dm Sx, din
Sxi yidm S}’JE dm S}"izi dm j}; dm
jxj z dm 5 vizidm ' dm fz,- dm

ng dm 5 v, dm jzi dnt 5 dm

Jo= {ierldm = (3.2-17)

where 'r; = {(x;. v, 7, 1)’ as defined before, If we use inertia tensor £,; which is
defingd as

dmi

A
Iy = § [ & (;xk |

3 4 -

where the indices i, j, k indicate principal axes of the ith coordinate frame and oy
is the so-called Kronecker delia, then J; can be expressed in inertia tensor as

i —f+ Iyy + ]zz ]xy 1. ;)
2
Iy Lo — 1, + L 1, m; v
5 = 2 (3.2-18)
[x: [W. m,;z;
mx; m; 5 m; |



ROBOT ARM DYNAMICS 91

or using the radius of gyration of the rigid body m; in the {x,, ¥;, ;) coordinate
system, J, can be expressed as

2 2 2 2 2 _
—kily + ki + ki ki kit X
2 .
2 kisy — ko + kpy k2 i,
H2 — 33 b
Ji = kz k2 k2
ks k2 R — A &
- 148 —
2
X ¥ i 1

3.2-19)
where kn; is the radius of gyration of link / about the yz axes and 'f; =
frame and expressed in the ith link coordinate frame. Hence, the total kinetic
energy K of a robot arm is

1 7 T H
K=YK=%LT | LT vgp.r;v,iqpcg,}
imi =1 Cplred _
7 i i
=% L ¥ LITr (U, U044 ] (3.2-20)
Pz ] poxfopo)

which is a scalar quantity. Note that the J; are dependent on the mass distribution
of link § and not their position or rate of motion and are expressed with respect 1o
the ith coordinate frame. Hence, the J, need be computed only once for evaluating
the kinefic energy of a robot arm.

3.2.3 Potential Energy of a Robot Manipulator

Let the total potential energy of a robot arm be P and let each of s link’s poten-
tial energy be P

P, = — mg' = —mg®’AFY)  i=12 ... .0 (3.2-21)

and the total potential energy of the robot arm can be obtained by summing all the
potential energies in cach link,
M 7
P=YP =Y —mg(’A;'F) (3.2-22)

i=1 =

where g = (g,. 2,, &, O} i$ a gravity row vector expressed in the base coordi-
nate system. For a lovel system, g = (0, 0, —ig|, 0) and g is the gravitational
constant (g = 9.8062 m/sec?).
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3.2.4 Motion Equations of a Manipulater
From Egs. (3.2-20) and (3.2-22), the lagrangian function L = K — P is given by
L= 1 2: 2: f; [Tr (U, L UDg; 4] + E mgl"A B (3.2-23)
fe=| je=] ki fux ]

Applying the Lagrange-Euler formulation lo the lagrangian function of the robot
arm [Eq. (3.2-23)] yields the necessary generalized torque 7, for joint { actuator to
drive the jth link of the manipuiator,

g =4 |0k _ 9L
boodt | 8, ag;

" i i
= 1 LE THURLUDG+ T L E T (U 3, UZ) i — 1 migU, 7,
i k=1 J=i k=1 m=1 =i
(3.2-24)
for i = 1, 2,...,n The above eguation can be expressed in a much simpler
matrix notation form as
E leqk + E E kikmngm + i=1,2,...,n (32“25)
'E k=l m=1
or in a matrix form as
(1) = D(g(1)) §() + h{q(n). 4(5)) + c{q(n) (3.2-26)
where
ri{t) = n X% 1 generalized torque vector applied at joints i = 1, 2, . . ., n: that is,
(1) = (1 (1), 200, . .. 7(0)) (3.2-27)

q{$) = an n X 1 vector of the joint variables of the robot arm and can be
expressed as

a0 = (@, @), g0 (3.2-28)

q(ry = an # x 1 vector of the joint velocity of the robot arm and can be
expressed as

400 = (@0, g0, .. gl (32-29)

(¢} = an # x 1 vector of the acceleration of the joint variables (7} and can be
expressed as

(0 = (Gi(0, G0, . g {3.2-30)
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Di(q) = an n X n inertial acceleration-related symmetric matrix whose elements
are

Dy= L Tr(UuJUD) ik=12...,n (3.2-31)

J=maxiik)

h(g, §) = an n x 1 nonlinear Coriolis and centrifugal force vector whose ele-

ments are
h(q’ fl) = (hiﬁ fiz; . ,bn}}.
] H
where =3 U thmidn = 1,2,....n (3.2-32)
k= b s |
1
and  hg, = L T (U J;UD Lkm=1,2...,n (3233
Jemaxii, ko m}

e{q) = an n X | gravity loading force vector whose elements are
e(q) = (¢, ¢y e i)t

where G =% (~-mgUi/E)  i=1,2,...,n (3.2-34)
Je=i

3.2.5 Motion Equations of a Robot Arm with Rotary Joints
H the equations given by Eqs. (3.2-26) to (3.2-34) are expanded for a six-axis
robot arm with rotary joints, then the following terms that form the dynamic

motion equations are obtained:

The Acceleration-Related Symmetric Matrix, D(#). From Eq. (3.2-31), we have

D(f) == (3.2-35)

where
Dy = Tr (U, Ul + Tr (U Uy + Tr (U J5US) + Tr (U J,U5)

+ Tr (U JsUD) + Tr (Ug JUL)
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Dy =Dy = Tr (UphUf) + Tr (UpUL) + Tr (U, UD)
+ Tr (UspJsUd)) + Tr (U JsUL)
Dy = Dy = Tr (UyJ;U{)) + Tr (U J UL + Tr (UsyJsUDD + Tr (Uads U2
Dis = Dy = Tr (U U1y + Tr (U, UL + Tr (U JUL)
Dys = Dsy = Tr (UssJsUJ) + Tr (UgsJUL)
Dig = Do = Tr (UgJ Ul
Dy = Tr (UphUL) + Tr (UpdsUD) + Tr (UppJ,UL)
+ Tr (U lsUL) + Tr (UgpJoUd)
Dy = Dy = Tr (UnhUh) + Tr (UnlyUL) + Tr (UsdsUL)Y + Tr (U JoUG)
Dy = Dy = Tr (UpedyUDH) + Tr (Us JsUL) + Tr (UgJUL)
Dys = Dsy = Tr (UssJsUS) + Tr (UgsdsUd)
Dy = Dgy = Tr {UgJgUd)
Dy = Tr (UplsUfy) + Tr (UpJsUL) + Tr (UspJsUS) + Tr (UeJgUly)
Dy = Dy3 = Tr (UuJoUL) + Tr (UsedsUS) + Tr (UgedUf)
Dys = Ds3 = Tr (UssJsUss) + Tr (UgsJUF)
Dig = Dgy = Tr (UgedsUgs)
Dy = Tr (UudyUL) + Tr (U JsUL) + Tr (UJoUL)
Dys = Ds; = Tr (UssJsUL) + Tr (UgsJsUL)
Dys = Dgy = Tr (UgedeUda)
Dss = Tr (UssJsUg5) + Tr (UgsdsUds)
Dys = Dys = Tr (UgedsUsgs)
Des = Tr (UgsdeUls)

The Coriolis and Centrifugal Terms, h(9, 9). The velocity-related coefficients in
the Coriolis and centrifugal terms in Egs. (3.2-32) and (3.2-33) can be expressed
separately by a 6 X 6 symmetric matrix denoted by H; , and defined in the follow-
ing way:
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Bay R oy Baa ps Pae
hio Bpy has o hps Rae

hoa Rpy Bas Moy has Ry
H,, = i3 Mgz Mz Mg Aas e P=1.2 ..., 6 (3.2-36)
Baa hos Bog Mg has Pue
Bus  hgs hps Rus Bss Ruse

hr’lé hz‘zﬁ hi}() h£46 hiﬁé hié&m

Let the velocity of the six joint variables be expressed by a six-dimensional
column vector dencted by &

8(r) = [ 600, (), 65(1), B0, 851}, Bk )T (3.2-37)

Then, Eq. (3.2-32) can be expressed in the following compact matrix-vector pro-
duct form:

b= 0TH, 8 (3.2-38)

where the subscript / refers o the joint (i = 1, ... ,6) at which the velocity-
induced torques or forces are “felt.”

The expression given by Egq. (3.2-38) is a component in a six-dimensional
column vector denoted by h(8, #):

n ] | e
hy éyl‘iz_ ,é
heo gy = | M| = | 0Ha0 (3.2-39)
h i'H, 0
ks ¢'Hs 6
ke 1| 6TH 6 |

The Gravity Terms, ¢(#). From Eq. (3.2-34) we have

e(8) = (¢1, 2, €3, ¢4, C5, €67 (3.2-40)

where
- T N
¢ = —(mgl 'T + mygUy ’F + mgUs; Ty + magUs 't

+ msgUs, °Fs + megUs; °Tg)

e = —(mgUn’f + mgUs’F + mgUas Ty + msgUs Ts + megUs °F)
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€3

Cy

€5

s

It

- (i gUss *Fy + magUs 'ty + mygUsy °Fs + megUs *Fe)

— (mygUay 'Fy + msgUss’Fs + meglls, F5)

w {msgUss Fs + mggUss Tg)

H

” [
= @l Ty

The coefficients ¢;, Dy, and kg, in Egs. (3.2-31) to (3.2-34) are functions of

both the joint varizbles and inertial parameters of the manipulator, and sometimes
are called the dynamic coefficients of the manipulator. The physical meaning of
these dynamic coefficients can easily be seen from the Lagrange-Euler equations of
motion given by Egs. (3.2-26) to (3.2-34):

I.

2.

The coefficient ¢; represents the gravity Joading terms due to the links and is
defined by Eq. (3.2-34).

The coeflicient Dy is related to the acceleration of the joint variables and is
defined by Eq. (3.2-31). In particular, for i = k, Dy is related to the accelera-
tion of joint i where the driving torque 7, acts, while for i=4, Dy is related to
the reaction torque (or force) induced by the acceleration of joint & and acting
at joint I, or vice versa. Since the inertia malrix is symmetric and
Tr(A) = Tr(A"), it can be shown that Dy = D),

. The coefficient hy,, is related to the velocity of the joint variables and is defined

by Egs. {(3.2-32) and (3.2-33). The last two indices, km, are related to the
velocities of joints & and m, whese dynamic interplay induces a reaction torque
(or force) at joint {. Thus, the first index / is always related to the joint where
the velocity-induced reaction torques {or forces) are “felt.” In particular, for
k = m, by, is related to the centrifugal force generated by the angular velocity
of joint k and “felt” at joint {, while for k#m, hy,, is related to the Coriolis
force generated by the velocities of joints & and m and “felt” at joint {. It is
noted that, for a given i, we have hy, = Ay, which is apparent by physical
TEasoRing.

In evaluating these coefficients, it is worth noting that some of the coefficients

may be zero for the following reasons:

I

2

The particular kinematic design of a manipulator can eliminate some dynamic
coupling (I; and Ay, coefficients) between joint motions.

Some of the velocity-related dynamic coefficients have only a dummy existence
in Egs. (3.2-32) and (3.2-33); that is, they are physically nonexistent. (For
instance, the centrifugal force will not interact with the motion of that joint
which generates it, that is, A; = 0 always; however, it can interact with

motions at the other joints in the chain, that is, we can have Ay #0.)

. Due to particular variations in the link configuration during motion, some

dynamic coeficients may become zero at particular instants of time.
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Table 3.1 Computational complexity of Lagrange-Euler equations of metiont

Lagrange-Euler formufation Multiplicationst Additions

A; AZnfa — ) 24nin — 1)

U, /F; 4r(%9% — 7) néi-!-?; 43

i: gl 8 0 Ver{n — 1}

=i

Tr {U B (UL (1283)nin + D(n+2)  (6572)aln + IHn + 23
{_, Tr § U1 "] 0 (Liynin — Din+ 1)

k=ttax(é, ji

Tr AU d{ U7 (12830 n 4+ Dn+2) (632)n*(n+ IHn+2)
)E Tr [Uadul Vi 9 (16) riin ~ Dy + 1)

e (s, 5 k)

ro= D{Q)F + hig, §) + c(q) (1283)a" + (S123)7 (98533a% + (781/6) 0
+ (84473 07 + (76/3n 4+ (6373367 + (1076)n

+ = number of degrees of freedon of (he robot arm.

The motion equations of a manipulator as given by Egs. (3.2-26) w0 (3.2-34)
are coupled, noalinear, second-order ordinary differential equations. These equa-
tions are in symbolic differential equation form and they include all inertial, centri-
fugal and Coeriolis, and gravitational effects of the links. For a given set of applied
torques 7,(i = 1,2,...,n) as a function of time, Eq. (3.2-26) should be
integrated simultaneously to obtain the actual motion of the manipalator in ternis
of the time history of the joint variables q{s). Then, the time history of the joint
variables cant be transformed to obtain the time history of the hand motion (hand
trajectory) by using the appropriate homogeneous transformation matrices. Or, if
the time history of the joint variables, the joint velocities, and the joint accelera-
tions is known ahead of time from a trajectory planning program, then Egs. (3.2-
26} 0 (3.2-34) can be utilized to compute the applied torques 7(7} as a function of
time which is required to produce the particular planned manipulator motion. This
is known as epen-loop control. However, closed-loop control is more desirable
for an autoncmous tobotic system. This subject will be discussed in Chap. 3.

Because of its matrix structure, the L-E equations of metion are appealing
from the closed-loop control viewpoint in that they give a sct of staie equations as
in Eq. {3.2-26). This form allows design of a control law that easily compensates
for ali the nonlinear effects, Quite often in designing a feedback controiler for a
manipulator, the dynamic coefficients are used to minimize the nonfincar effects of
the reaction forces (Markiewicz [1973]).
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It is of interest to evaluate the computational compiexities inherent in obtaining
the coefficients in Eqs. (3.2-31) to (3.2-34), Table 3.1 summarizes the computa-
tional eomplexities of the L-E equations of motion in terms of required mathemati-
cal operations {multiplications and additions} that are required to compute Eq.
{3.2-26) for every set point in the trajectory. Computationally, these equations of
motion are extremely inefficient as compared with other formulations, In the next
section, we shall develop the motion equations of a robot arm which wiil prove to
be more efficient in computing the nominal torques.

3.2.6 A Two-Link Manipulator Example

To show how to nse the L-E equations of motion in Egs. (3.2-26) 1o (3.2-34), an
example is worked out in this section for a two-link manipufator with revolute
joints, as shown in Fig. 3.2. All the rotation axes at the joints are along the z axis
normal to the paper surface. The physical dimensions such as location of center of
mass, mass of each link, and coordinate systems are shown below. We would like
to derive the motion equations for the above two-link robot arm using Egs. (3.2-
26} to (3.2-34).

We assume the following: joint variables = #,, #,; mass of the links = m,,
my; link parameters = o, = oy = 01 dy =, = O and g, = a4, = {. Then,
from Fig. 3.2, and the discussion in the previous section, the homogeneous coordi-
nate transformation matrices ‘'A; (7 = 1, 2) are obtained as

CE ““‘“Sg 0 CQ """"52 O ICZ
S ¢ 0 $ G 0 IS
OAI — i i IAZ = 2 2 2
0o 0 1 0 0 1 0
0 0 0 0o 0 0 1
[ Co  =Sa 0 KCh + G
C 0 Sy, + S
o o | 12 12 32 i
A, = A A, =
2 P 0 ! 0
0 0 0 1

where C; = cosf;; & = sinf; C; = cos(d, + 8;): 5; = sin(8 + 6,).
From the definition of the Q; matrix, for a rotary joint /, we have:

[

Q =

oo =D
- O -
vt B e B
‘ DD D

Then, using Eq. (3.2-11}, we have
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o -1 0 ol o -5 e i
3°A 10 0 0 5 o 18
Uy = L= QA = \ E !
8, 6 0 0 0 00 ] 0
Lo 0 0 0 0 0 0 t
L _s ~¢ 0 -IS,
Lo =s 0 I
= 0 0 ] 0
0o 0 0 o
Simifarly, for ¥, and U,, we have
0 -1 0 0] [ Ca -85 0 KCy +C)
A 1 060 Y US ;
Uy = = 2 Q,°A, = S O 0 U8, + 5)
as, 0 000 0 0 1 0
0 00 0 0 o0 o 1
=8 =y Y =~ {8 + 8:)
Cia ~80 G HCy + €
= 0 0 0 ]
0 0 0 0
U B al?Az
= 3,

I

3
>
S
>
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G -8 0 G 0 -1 0 0 G -5
_ s G0 1 0600 5 G
0o 0 10 0 000 0 0
Lo 9 0 1 0o 000 L0 0
[ s, -Ce 0 IS |
_ Ce =5 0 I, |
] o o
0 (I

Do O D

o)
18,

From Eq. (3.2-18), assuming all the products of inertia are zero, we can derive the
pseudo-inertia matrix J;:

I/L*H‘Z; [‘2
0
0

""'"l’lzmll

oW W W

Then, using Eq. {3.2-31), we have

Dy = Te{Uy 3Ll + Te(UnkUd)

o
I I - o
. ToR 5
0o 0
0o 0
p
HSIZ
+ T Co

For D;; we have

Dy,

sy -

= Tr Cz  —Si2
0 i
0 O

Dy = Tr(U U5

0
0

0
]

0
0

mzlz(""f/.e. + i/‘2 + VZC;}

Yo 12+ ma P+ G P

= Yamy !
0 .
o | k=
—18; | Vi, 2
Gy 0
0 | 0
0 I | - Vapg 1
0 Sy + 8
9 HCo + O
14 0
0 0
—18); 1 Y,
i€y 0
0 i 0
3] [ —Vapnl

[ Wl 0 0

| 0 09

0 o0

=l 00

000 —tami!

co o |
90 o
g 0 N

Vit 0 0

O 0 0

] 0 G

—hmsl 0 0

¢ 0 —tamyi
00 g
00 ¢
20 iy

Yt + Y G,

w Vant, ]

i
U?.i
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For D,, we have

Dy, = Tr(UpL,UL)

o -
| -5 ~Cp 0 =18, : Yoma I O 0 —%aml
w Tr i Ciz ~8&2 0 ICqy | 0 g 0 H
- ‘\E U"'}
i G 0 0 0 & {1 . =2
G a 0 G - Yany | 00 my

L

B */szlefz + %m;l""cfg = 1/3!?1;3[2

To derive the Coriolis and centrifugal terms, we use Eq. (3.2-32), For i = |,
using Eq. (3.2-32}, we have

2 2 - . .. .. .
hy = Y 8 huwbib, = By 67 + hiath0y + by 0,6, + Ay b3

A=l me=t

Using Eq. (3.2-33), we can obtain the value of ky,. Therefore, the above value
which corresponds o joint 1 is

By o= ey §,1%67 — my$,1 6, 6,

Sumilarly, for { = 2 we have

22 . . .o . .
hy = 5 L hoen b = Py 67 + hyp 6,0, + hogy 8) + by 63

k=1 me=1
= Yom, S, 1% 67
Therefore,
. —emy $, 0007 — maS.006, 6
ho, §) = 2y 207 Y U

Yo, 5, 1% 67

Next, we need to derive the gravity-related terms, ¢ = (¢y. o). Using Eq.
(3.2-34), we have:

ey = = (mgly v + mygUy ’Fy)
-5, -G 0 -S| | fé
Cy -& 0 IC

—my (0, —g, 0, 0)



2 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

8 —Cp 0 ~IS: + S)) KA
2 =80 2
— my(0, —g, 0,0 | G2 “Se O MG+
0 0 0 0
0 0 o0 0 0
i.
= Yom glCy + YamaglC)s + myglC)
£y = _ngvzzzi'z
~Sn ~Cp O ““1512] 1
Cis =5 0 ICy, ’
w=o-a (0, —g, 0, 0) 0 0 0 0 0
0 0 0 0 | 0
i1
L 4

= =y {gIC; — glCyy)
Hence, we obtain the gravity matrix terms:

‘ € 14 b 3 -") 7}
(@) = . w _ Ay gIC) + YamoglChy + myglC
B e gICya

Finally, the Lagrange-Euler eguations of motion for the two-link manipulator ar
found to be

Tty = D)6ty + h(h, &) + c(®)

lm Tt _ Vam;!z + ‘%!’!12!2 + mZCQF %ﬁ?g[z + %/2?1’1312(:‘2 1 .ﬂ.l
L B2 + W, PO, Vi 1 J

6,
—Yhmy $, 126} ~ myS,1%8, 6,
+ .
Vi, 8y 12 Bf
‘/zm;g!CI + VZMzg!C;z + nglC;
* Yoy gICy
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3.3 NEWTON-EULER FORMULATION

In the previous sections, we have derived a set of nonlinear second-order
differential equations from the Lagrange-Euler formulation that describe the
dyramic behavior of a robot arm. The use of these equations o compute the nom-
inal joint torgues from the given joint positions, velocities, and accelerations for
each trajectory set point in real time has been a computational bottleneck in open-
foop eontrol. The problem is due mainly te the inefficiency of the Lagrange-Euler
equations of motion, which use the 4 X 4 homogencous transformation matrices.
In order 1o perform real-time control, a simplified robet arm dypamic model has
been proposed which ignores the Coriolis and centrifugal forces. This reduces the
computation time for the joint torques to an affordable limit (e.g.. less than 10 ms
for each trajectory point using a PDP 11/45 computer). However, the Coriolis and
centrifugal forces are significant in the joint torques when the arm is moving at
fast speeds. Thus, the simplified robot arm dynamics restricts a robot arm motion
to slow speeds which are not desirable in the typical manufacturing environment.
Furthermore, the errors in the joint torques resulting from igroring the Coriolis
and centrifugal forces cannot be corrected with feedback control when the arm is
moving at [ast speeds because of excessive requirements on the corrective torques.

As an alternative to deriving more eflicient equations of motion, several inves-
tigators turned to Newton's second law and developed various forms of Newton-
Fuler equations of motion for an open kinematic chain (Armstrong [1979], Orin et
al. [1979], Luh et al. [1980a], Walker and Orin |1982]). This formulation when
applied to a robot arm resulits in a set of forward and backward recursive equa-
tions with “raessy™ vector cross-product terms. The most significant aspect of this
formulation s that the computation time of the applied torques can be reduced
significantly to allow real-time control. The derivation is based on the d’Alembert
principle and a set of mathematical equations that describe the kinematic refation
of the moving links of a robot arm with respect to the base coordinate system. In
order o understand the Newton-Euler formulation, we need 1o review some con-
cepts in moving and rotating coordinate systems.

3.3.1 Rotating Coerdinate Systems

In this section, we shall develop the necessary mathematical relation between a
rotating coordinate system and a fixed inertial coordinate frame, and then extend
the concept to include a discussion of the relationship between a moving coordinate
system (rotating and translating) and an inertial frame. From Fig. 3.3, two right-
handed coordisate systerns, an unstarred coordinate system OXYZ (inertial frame)
and a starred coordinate systern OX* P*Z* (rotating framc), whose origins are
coincident at a point O, and the axes OX*, OY*, OZ% are rotating relative to the
axes OX, OF, OZ, respectively. Let (i, j, k) and (8%, §* k*) be their respective
unit vectors along the principal axes. A point v fixed and at rest in the starred
coordinate system can be expressed in terms of its components on either set of axes:
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z
Y¥
Z¢
[ 4
Y
7]
X+
X
Figure 3.3 The rotating coordinate system.
r=uxi+ vy +zk (3.3-1)
or ro= x*it  yFgF 4 opkge (3.3-2)

We would like to evaluate the time derivative of the point r, and because the coor-
dinate systems are rotating with respect to each other, the time derivative of r{r)
can be taken with respect to two different coordinate systems. Let us distinguish
these two time derivatives by noting the following notation:

.,‘.’%?2., 2 time derivative with respect to the fixed reference coordinate
systern which is fixed = time derivative of r{7) {3.3-3)
() a .. Lo ‘ .
ol time derivative with respect to the starred coordinate

system which is rotating = starred derivative of r(1) (3.3-4)

Then, using Eq. ¢3.3-1), the time derivative of r(r) can be expressed as
dj dk

dr . . . di
— R 3 k e s’ Bl
pr X1+ ¥y} +z %xdt“kydt*_zdr

=X + 3 + 7k (3.3-5)
and, using Eq. (3.3-2), the starred derivative of r(¢) is
d*r d*i*

iy L. . d* j* dek*
— y¥ gk ¥ 3% *k*_‘}. #® T sk & *
a X*5¥ + y¥)¥ + 2 X 7 + ¥ o + z pr

If

P RS L L (3.3-6)
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Using Egs. (3.3-2) and (3.3-6), the time derivative of r(r) can be expressed as

AU i s di* dj* dk*

it T < 1% # |* o il * 7*

7 Pl S S U S a4 + x e + p + &
e g ke _
= TV a YYa Vg (337

In evaluating this derivative, we encounter the difficuity of finding &i%/dr, di*/dr,
and dk*/dt because the unit vectors, i*, j*, and k* are rotating with respect to the
anit vectors i, j, and k.

In order to find a relationship between (he starred and unstarred derivatives,
let us suppose that the starred coordinate system is rotating about some axis OQ
passing through the origin O, with angular velocity w (see Fig. 3.4), then the
angular velocity @ is defined as a vector of magnitude w directed along the axis
Q0 in the direction of a right-hand rotation with the starred coordinate system.
Consider a vector s at rest in the starred coordinate system. Its starred derivative
is zero, and we would like to show that its unstarred derivative is

— iy K § (3.3-8)

Since the time derivative of @ vector can be expressed as

ds . s{z+ Ar) — s8{r) |
dr T~ :ljmme Ar (.39

we can verify the correciness of Bq. (3.3-8) by showing that

B wxs = lim TR =S

31
di Ar-ai) At (3.3-10)

With reference to Fig. 3.4, and recalling that a vector has magnitude and
direction, we need to verify the correctness of Eq. (3.3-10) both ir direction and
magnitude. The magnitude of ds/dt is

ds

— | = lw X 8| = wssin (331D
dt

The above equation is correct because if Ar is small, then
[As] = (ssin8¥w AD (3.3-12)

which is obvious in Fig. 3.4, The direction of @ X s can be found from the
definition of the vector cross product to be perpendicular 0 s and in the plane of
the circle as shown in Fig. 3.4

If Eg. (3.3-8) is applied to the unit vectors (i* j* k*), thean Eq. (3.3-T)
becomes
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[

Figare 3.4 Time derivative of a rotating coordinate system.

dr d*y % £ * T * *
o =g + e X %)+ e X j*) 4+ Fw x k¥
&
- dd:“ e xr {3.3-13)

This is the fundamental equation establishing the relationship between time deriva-
tives for rotating coordinate systems. Taking the derivative of right- and left-hand
sides of Eq. (3.3-13) and applying Eq. (3.3-8) again to r and d*r/dr, we obtain
the second time derivative of the vector v{1):

dr _d {d*r

0

J—%wxﬂ-f-f{ﬁixr

de? @ di dr dt

*2 E 3 £ |
zdr+mxdr+mx[dr+w><r}+ﬂxr
dt dt

dr? dr
d=’r d¥r dw
:dtz +2wxm+wx(wxr}+~£};~xr (3.3-14)

Equation (3.3-14) is called the Coriofis theorem. The first term on the right-hand
side of the equation is the acceleration relative 10 the starred coordinate system.
The second term is called the Coriolis acceleration. The third term is called the
centripetal {toward the center) acceleration of a point in rotation about an axis.
One can verify that @ X (w X r) points directly toward and perpendicular to the
axis of rotation. The last term vanishes for a constant angular velocity of rotation

about a fixed axis.
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3.3.2 Moving Coordinate Systems

Let us extend the above rotating coordinate systems concept further to include (he
translation motion of the starred coordinate system with respect to the unstarred
coordinate system. From Fig. 3.5, the starred coordinate system O%X* ¥Y*2Z# ig
rotaiing and translating with respect to the unstarred coordinate system OXYZ
which is an inertial frame. A particle p with mass m is located by vectors r* and
r with respect to the origins of the coordinate frames OFX*Y*Z* and OXYZ,
respectively. Origin O* is located by a vector b with respect to the origin . The
relation hetween the position vectors r and r¥ is given by (Fig. 3.5)

F=r*+ h (3.3-15)

If the starred coordinate system O*X* Y*Z* i3 moving {rotating and transiating)
with respect to the unstarred coordinate system OXYZ, then
a4 dr de* dh

= e —_— = # 4.'6
vit} - 7 + ar vF 4w, (3.3-18)

where v* and v are the velocities of the inoving particle p refative 10 the coordi-
nate frames OFX*¥Y*Z* and OXYZ, respectively, and ¥, is the velocity of the
starred coordinate system OF X*Y*Z* relative to the unstarred coordinate system
OX¥Z. Using Bg. (3.3-13), Eq. (3.3-16) can be expressed as
dr*  dh _ drrr dh
L i e — + w X ¥+ — 3.3-17
YW= T Ta teX Ty, 3317
Similarly, the acceleration of the particle p with respect to the unstarred coordinate
system is

dvin de# d’h
#(t) = ——= = 2 4 Z . = a¥ 4 g, {3.3-18
" dat 47 dr? ! )

X

Figure 3.5 Moving coordinate system.
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where a* and a are the accelerations of the moving particle p relative to the coor-
dinate frames OFX* Y*Z* and OXYZ, respectively, and &, is the acceleration of
the starred coordinate system O X* Y*Z* relative 1o the unstarred coordinate sys-
tem OXYZ. Using Eq. (3.3-14}, Eq. (3.3-17) can be expressed as

d*’r# d*r* dew dh
a(ry = ot e 23 X o X (@ X FF) b e XOFF e e 3.3-19
} o G @ w 5 o (

With this introduction to moving coordinate systems, we would like to apply
this concept to the link coordinate systems that we established for a robot arm to
obtain the kinematics information of the links, and then apply the d’Alembert prin-
ciple to these transiating and/or rotating coordinate systems to derive the motion
equations of the robot arm.

3.3.3 Kinematics of the Links

The objective of this section is o derive a set of mathematical eguations that,
based on the moving coordinate systems described in Sec, 3.3.2, describe the
kinematic relationship of the moving-rotating links of a robot arm with respect to
the base coordinate system.

With reference to Fig. 3.6, recall that an orthonormal coordinate system

the base coordinate system while the coordinate systems (X, ¥, %) and
(x;, ¥, %) are attached to fink / — 1 with origin O% and link / with origin O,
respectively. Origin € is located by a position vector p; with respect to the origin
& and by a positien vector p* from the origin O with respect to the base coordi-
nate system. Origin O* is located by a position vector p,..; from the origin O
with respect to the base coordinate system.

(%;_1, ¥i_y. #;_y)y with respect to the base coordinate system (Xy, ¥o, Zy), respec-
tively. Let w;, and @ be the angular velocity of O with respect to (%o, Yo, Zn)
and (x;_|, ¥;_;, %;_), respectively. Then, the linear velocity v; and the anguiar
velocity w; of the coordinate system (X, ¥;. z;) with respect to the base coordi-
nate system are {from Eq. (3.3-17)], respectively,

d*p
v, = 4+ w_ oy X pF 4oy (3.3-200
dt
and W = @y @ (3.3-21)

where d*( }/dr denotes the time derivative with respect to the moving coordinate
system (X;_q, ¥;., %.,). The linear acceleration v, and the angalar acceleration
w; of the coordinate system (x;, ¥;, %) with respect to the base coordinate system
are [from Eg. (3.3-19)], respectively,
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*;

Joint § ~ 1

X

Figure 3.6 Relationship between O, OF and O frames.

. _ v ap?
V; = P + (;)im; x p,‘* + Ew;m; X (3.3-22)
+ Wiy X (w;m; X ?1*) + ".'iwi
and L&f = cﬁ,\ml + (J};* {33-23}

then, from Eq. (3.3-13), the angular acceleration of the coordinate system
(X;, ¥, ;) with respect to (X;_q, ¥;_1, #%;_ ) is
d*w;"

(&.!i* = 7 + W) X (a.!;* (33-24)

therefore, Eq. (3.3-23) can be expressed as

a* W;‘*

dt

Q‘!,‘ = (;}g...; + + owp X Q’,-* (3.3“25)

Recalling from the definition of link-joint parameters and the procedure for
establishing link coordinate systems for a robot arm, the coordinate systems
(X~ ¥—1, %) and (X;, ¥;, %) are attached to links i — 1 and {, respectively.
If link 7 is translational in the coordinate system {(X;_,, ¥;_;, Z;_), it travels in the
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direction of z;_, with a joint velocity g; relative to link 7 — 1. If it is rotationat
in coordinate systems (X;_;, ¥i3, %-1), i has an angelar velocity of w* and the
angular motion of link i is about the 7; , axis. Therefore,

ot = | F-14 i link { is rotational 26
" o if link 7 is translational (3.3-26)
where ¢; is the magnitude of angular velocity of link 7 with respect to the coordi-

nate system (X;_;, ¥i_, Z;.¢). Similarly,

d*aw* _ {ana g; if Hek { s rotational

di Lo if link  is translational (3.3:27)

Using Egs. (3.3-26) and (3.3-27), Egs. (3.3-21) amrd (3.3-25) can be
expressed, respectively, as

_ fe-i+ zd iflink i is rotational
i PP if link 7 is translational (3.3-28)
;
o = J @+ %og ooy X {Zey ) if link 7 is rotational iy
: { 6| if link 7 is cranslational 33729

Using Eq. (3.3-8), the linear velocity and acceleration of link i with respect to
link i — 1 can be obiained, respectively, as

d pr rwe‘* X P if link i is rotational
dt 1 T if link { is franslational (3.3-30)
’ d* w? 1 s .
d*ipy - % pF -+ @ X {(wF x p#) if link | is rotational
at (3.3-31)
LY if link i is translational

Therefore, using Egs. (3.3-30) and {3.3-21), the linear velocity of link { with
respect to the reference frame is [from Eg. (3.3-20)]

[w X pr+ v if link i is rotational -
Vi = 1257}4{ + ow; X P+ vl if link { is translational (3.3-32)

Using the following vector cross-product identities,

(ax by Xc=D0ba-+c)—abh- o) £3.3-33)
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ax(bxcy=bla-c¢)— clas+h) (3.3-34)
and Bgs, (3.3-26) to (3.3-31), the acceleration of link ¢ with respect to the refer-
ence system: is [from Eq. (3.3-22)]

W X pF @ X {w, X pF) + ¥ tF link 7 iy

rotational
‘-f',; = Z‘;_;(l]} e (:}j x p;p< + 2&)“ X (me_}é!') i link i is (33"35)
+ @ X {w; X pF) o+ Vi, translational

Note that w; = w,_, if link { is tanslational in Bq. ¢3.3-32). Eguations {3.3-28),
(3.3-29y, (3.3-32, and (3.3-35) describe the kinematics information of Link § that
are wseful in deriving the motion equations of a robot arm.

3.3.4 Recursive Equations of Motion for Manipulators

From the above kinematic information of each link, we weuld like to describe the
motion of the robot arm. links by applying d’Alembert’s principle to each link.
d’Alembert’s pringiple applies the conditions of static eguilibrium to problems in
dynamics by considering both the externaily applied driving forces and the reaction
forces of mechanical elements which resist motion. d’Alembert’s principie applies
for all instants of time. It is acwally a slightly modified form of Newton's second
law of motion, and can be stated as:

For any body, the algebraic sum of externally applied forces and the forces
resisting motion in any given direction is zero.

Consider a link 7 as shown in Fig. 3.7, and let the origin ¢ be situated ar its
center of mass. Then, by corresponding the variables defined in Fig, 3.6 with
variables defined in Fig. 3.7, the remaining undefined variables, expressed with
respect 10 the base reference system (%, ¥y, Zo). are:

m; = total mass of link {

T; = position of the center of mass of fink / from the origin of the base reference
frame

8 = position of the center of mass of link i from the origin of the coordinate
system (X;, ¥, %)

p#* = the origin of the ith coordinate frame with respect to the (i — 1)(h coordi-
nate system

dr;

vV, = -—C—i;’m, linear velocity of the center of mass of link 7

o dv o -

a = ol linear acceleration of the center of mass of link i
&

¥; = total external force exerted on link / at the center of mass
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N, = total external moment exerted on link 7 at the center of mass
I; = inertia matrix of link / about its center of mass with reference to the coordi-
nate system (Xg. Yo, Zg)
f; = force exerted on link i by link i — 1 at the coordinate frame {X;_:, ¥,
#;_1) 10 support link i and the links above it
n; = moment exerted on link 7 by link 7 — 1 at the coordinate frame (Xx,_,, .,
%)

Then, omitting the viscous damping effects of all the joinws, and applying the
d’Alembert principle to each link, we have

F = dim; ¥;) 3336

QT = (3.3-36)
d{l; w;) .

ang N!' - ““'g“““;‘“r;“““““ = i{'w; + w; X (I,‘w,‘) (33”37)

where, asing Egs. (3.3-32) and (3.3-35), the linear velocity and acceleration of the

center of mass of link { are, respectively,t

Vi = w; X & + v (3.3-38)

and a = l’.;)i X gi 4 @y X (wi x S,‘) + ‘.’g (33“39)
Then, from Fig. 3.7, and looking at all the forces and moments acting on link 7,

the total external force ¥; and moment N; are those exerted on link / by gravity
and neighboring links, link / — T and link / + 1. That is,

Fi =, — fi, (3.3-40
and Ny=m — oy + (o) — B X6 — (p — F) x £ ) (334D
=M = By b (P~ F) X B — p?ox £, {3.3-42)

Then, the above equations can be rewritten into recursive equations using the fact
that /; — p_; = p* + 5§

£, =F + §, = mi, + 1, (3.3-43
and o= W, b pE X b (pFH S X Fr 4 N, (3.3-44)

The above equations are recursive and can be used to derive the forces and
moments {f;, n;) at the links for 7 = 1, 2, . ..  » for an n-link manipulator, not-
ing that f,,; and m,,, are, respectively, the forces and moments exerted by the
mantpulator hand upon an external object.

From Chap. 2, the kinematic relationship between the neighboring links and
the establishment of coordinate systems show that if joint { is rotational, then it

T Here (X;, ¥;, Z;) is the moving-rotating coordinate frame.



ROBOT ARM DYNAMICS 113

Link i ~ 1

Figure 3.7 Forces and moments on Hak

actuaily rotates g; radians in the coordinate system (x,_,, ¥,_;. #;_;) about the
2;..; axis. Thus, the input torque at joint 7 is the sum of the projection of »; onto
the z;., axis and the viscous damping moment in that coordinate system. How-
ever, if joint / is ranslational, then it translates g, unit relative to the coordinate
system (X;.;. ¥;.. %1} along the z; | axis. Then, the input force 7; at that joint
is the sum of the projection of f; onto the z;_; axis and the viscous damping force
in that coordinate system. Hence, the input torgue/force for joint 7 is

1,;;!?'«,%] + b, if link i is rotational

T o= 4

; ) (3.3-45)
LETZ:' |+ B if link { is translational

where b; is the viscous damping coeflicient for joint / in the above equations.
If the supporting base is bolted on the platform and link O is stationary, then
wy = wy = 0and vy = 0 and ¥ (to include gravity) is

Vo =g = | g | where|g| = 9.8062 m/s’ (3.3-46)
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In summary, the Newton-Euler equations of motion consist of a set of forward
and backward recursive equations. They are Fgs. (3.3-28), {3.3-29), (3.3-35),
(3.2-39), and (3.3-43) to (3.3-45) and are Hhsted in Table 3.2. For the forward
recursive equations, linear velocity and acceleration, angular velocity and accelera-
tion of e¢ach individual link, are propagated from the base reference system to the
end-cffector.  For the backward recursive equations, the torques and forces exerted
on each link are computed recursively from the end-effector to the base reference
system, Hence, the forward eguations propagate kinematics information of each
link from the base reference frame to the hand, while the backward equations com-
pute the necessary torques/forces for each joint from the hand to the base refer-
eRce system.

Table 3.2 Recursive Newton-Euler equations of motion

Forward equations: = 1,2, ... .«
r : . ) .
P R if Hink { is rotational
o m d
PO if tink ! is translational
i

Wiy o+ Badi F @y X {Feadi) if link / is rotational

W =

o if link i is translational

@G K PE e X (e XOPEY R Y if fink { is rotational
‘C',- = Z,[q‘, + (;lj X p;* + 2{&3; x {Z;,ll;i,'}

+ ow X (e X pfY 4+ ¥y if tink / is transtational

a;za}fng'F{rfo{w,‘XSg}'i'“\t’;

Backward equations: { = n, a—1,..., 1

F, = FR; &

N; = La + w X (L)

fi=¥ +

o= n + pE X F (P E) X E N
iz + b it link / is rotational

T =
2, + b if link i §s translationat

where b, is the viscous damping cocflicient for joint 7,

The “‘usual™ initial conditions are ay = @& = vo = 0 and ¥y = {g,. g,. g:)7 (lo include
gravity), where lg| = 9.8062 m/s’.
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3.3.5 Recursive Equations of Motion of a Link
About Tts Own Coordinate Frame

The above equations of motion of a robot arm indicate that the resulting N-E
dynamic equations, excluding gear friction, are a set of compact forward and back-
ward recursive equations. This set of recursive equations can be applied to the
robot links sequentially. The forward recursion propagates kinematics information
such as angular velocities, angular accelerations, and linear accelerations from the
base reference frame (inertial frame) to the end-cffector. The backward recursion
propagates the ferces exerted on each link from the end-effector of the manipulator
to the base reference frame, and the applied joint torques are computed from these
forces.

One obvicus drawback of the above recursive equations of motion is that all
the inertial matrices I, and the physical geometric parameters (¥, §, p;.;. p*)
are referenced to the base coordinate system. As a result, they change as the robot
arm is moving. Luh et al. [19804] improved the above N-E equations of motion
by referencing all velocitics, accelerations, inertial matrices, location of center of
mass of each link, and forces/moments to their own link coordinate systems.
Because of the nature of the formulation and the method of systematically comput-
ing the joint torques, computations are much simpler. The most important conse-
quence of this modification is that the computation time of the applied torques is
found linearly proportional o the number of joints of the robot arm and indepen-
dent of the robot arm configuration.  This enables the implementation of a simple
reai-time controf algorithm for & robot arm in the joint-variable space.

Let ‘'R, be a 3 % 3 rotation matrix which transforms any vector with refer-
ence 1o coordinate frame (x;, ¥, z;) to the coordinate system (X,_y, ¥, Zi(}.
This is the upper left 3 x 3 submatrix of 77 1A,.

It has been shown before that

((- ..... ;R‘}m| - ;‘R,‘--.-g — (imiRi};r- (33,..47)
where
[ cos 6, —cosasing;  sing; sind;
IR = | osin®,  coseycos®;,  —sino;cos$, (3.3-48)
0 $in ey CO8 & |
cos b, sin B 0
and 'R = —cosa;sing;  coso;cos®;  singy (3.3-49)
L sinw; sin —sino; cosd; cosoy

Instead of computing w;, o;, ¥;, &;, p* 5, F. N;, £, n, and r, which are refer-

enced to the base coordinate system, we compute ‘Row;, ‘Rod;, ‘Rov;, 'Roa;, RyF,,
RyN;, 'Ref., ‘Ren,, and ‘Ryr; which are referenced to its own link coordinate sys-
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tem (X, ¥, #). Hence, Eqs. (3.3:28), (3.3-29), (3.3-35), (3.3-39), {3.3.36),

(3.3-373, (3.3-43), (3.3-44), and (3.3-45), respectively, become:

Bi 16 " "Rowi1 + Tods) i Fink / is rotational

‘Row; s (33"50)
R (7 Row_ ) if link { is transiational
R T Ry b s + O R ) X Zodi b if link £ i
Rya; = rotational (3.3-51)
Ry (7 Ry 1) if link £ is .
. translational
(Ryed:) X CRop*y + ('Rutsr
X [(Rowi}  (Rop?)T + R 7 RV} il ink { is rotationat
Ro¥i = < 0 .. o - ; 3.3-52
Ra, Rio(2if; + ' RoVing) + {Row) ¥ ('Rops) ¢ )
+ Z{Rogw;) X {'Ry 1204}
+ R} X 1{'Rowe;) X (Rep)] if fink 7 is translational
Ro#; = ("Ryy) X UReS) + (Row;) X [(Row;) X ('Re8) ] + Ry¥,  (3.3-53)
Ro¥; = m/Roa, (3.3-54)

&
2
!

= (Rl "R)(Rew)) + (Ryw;) x [(Ryl; "R {( "Ry, 1]
Rof; = R (TR L, ) + RGF,
Ron; = Rivy[""Romey + (F'Rop?) x (VRS )]

+ (‘Rep? + 'Ro8;) X (RoF)) + RN,

('Ren) ('Ri_120) + big; if link § is rotational
and T o=
(R OR,_j20) + big, if link 7 is translational

(3.3-55}

(3.3-56)

(3.3-37)

{3.3-58)

where z5 = (0, 0, 1)%, ‘Rys; is the center of mass of link i referred to its own
link coordinate system (X;, ¥;, %}, and ‘Ryp/ is the location of (x;, y;, z;} from
the origin of (X, ;. ¥, ;. ;) with respect to the ith coordinate frame and is

found to be
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@
iR@ P = d; S o f33“59)

d;cosay

and (‘RoEPR,) is the inertia matrix of link i about its cemter of mass referred to its
own link coordinate system (X;, ¥;, %;).

Hence, in summary, efficient Newton-Euler equations of motion are a set of
forward and backward recursive equations with the dynamics and kinematics of
each link referenced to its own coordinate system, A list of the recursive equa-
tions are found in Table 3.3.

3.3.6 Computational Algorithm

‘The Newton-Euler equations of motion represent the most efficient set of computa-
tional equations running om a uniprocessor computer at the present time. The
computational complexity of the Newton-Euler equations of motion has been tabu-
Jated in Table 3.4. The total mathematical operations (multiplications and addi-
tons) are proportional to 22, the number of degrees of freedom of the robot arm.

Sirce the equations of motion obtained are recursive in nature, it is advisabie
to state an algorithmic approach for computing the input joint torque/force for each
joint actuator. Such an algorithm is given below.

Algorithm 3.1: Newton-Euler appreach. Given an n-link manipulator, this
computational procedure generates the nominal joint torque/force for all the
joint actuators. Computations are based on the equations in Table 3.3.

Initial conditions:

n = number of links {n joints)

wy=ag=vy =0 V¥ =g= (g g, &) where {g] = 9.8062 m/s’
Joint variables are g;, ¢;, q; fori = 1,2,.. . ,n

Link variables are i, ¥, f;, n;, 7;

Forward iterations:

N1. [Set counter for ireration] Seti — 1.

N2. [Forward iteration for kinematics information] Compute 'Ryw;, ‘Rew;,
‘Ry¥;, and 'Rya; using equations in Table 3.3.

N3. {Check i = nT) If i = n, go to step N4; otherwise set i — i+ 1 and
return to step N2,
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Table 3.3 Efficient recursive Newton-Euler equations of motion

Forward equatiens: / = 1,2,. .., n
f’, PO
Rioof' "Rows oy + Zo4,) i link / is rotational
!RQO}( .
‘R‘ T R ) if Hak { is transiational
Rec IR, v+ 2ode + (T'Rowy ) X 2odi] i link /s rotational
R (" Red_ 1} if link 7 is translationat
('Rock) X (Rop#y + (Row;) % 1 {Rawe) % {'Rop*) )
4 R (7 Rov,_ )y i link { is rotational
jR{z"'a' =

Roi(mod, + 7' Re¥isi) + (Roo) x ('Ryp)
+ 2Ry X {iRi—-zzniﬁ}
+ URpw;) X [ {Row;} X {'Rop*) 1 if link { is translational

RoF; = (Row) ® (Ref) + (Rows) % [{Reay x (Ros:y1 + Rov,

Backward equations: { = n,n—1,...,1

ée.
Fr
|

= R (" Rofiy 1)+ Roa,

Rom; = R of " Romie: + CH'Rop?y x (*'Rof 131 + (Rop? + Rys) x (‘RyF)
+ (Rl "R Row) + (Rowy) X [(Rol, °R:)(Rowwy 3]
[{iﬂoﬂi)r(jki'w;&»} + bigs if link { is rotational
T}- ) <
i (ROEDTUR, 1 20) + B if fink / is transiational
L

whete 2, = {0,0, 1) and b; is the viscous damping cocfficient for joint i, The usual initial

conditions are wy = &g = vp = 0 and Vp = (2. £, g)7 {to include gravity), where
lg] = 9.8062 m/s%.

Backward iterations:

N4. [Ser !, and n,, ] Set f,,; and n_,, to the required force and moment,
respectively, to carry the load. If no load, they are set to zero.
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Tabie 3.4 Breakdown of mathematical operations of the Newton-Euler equa-
tions of metion for a PUMA robot arm

Newton-Euler

eguations of motion Multiplications Additions
R; 9nt n

Row; Yn el

;'R&",I 2in 2n
Rea; 132 H4n
R,F, 3n 0

Rof, Sin—1) 9 —6
‘RyN; 24n i8n
Ren, 2in - i3 24n — 15
Total mathematical operations 1170 — 24 103n - 21

tr = number of degrees of freedom of the robot arm.

N3, [Compute joint forceltorgue] Compute ‘RyF;, ‘RoN;, ‘Rofi, ‘Renm;, and 7
with £, and m, . given,

Né&. [Backward iteration] 1If { = 1, then stop; otherwise set { — /i — 1 and
go 1o step N3,

3.3.7 A Two-Link Manipulator Example

In order to illustrate the use of the N-E equations of motion, the same two-link
manipulator with revolute joints as shown in Fig. 3.2 is worked out in this section.
All the rotation axes at the joints are along the z axis perpendicular to the paper
surface. The physical dimensions, center of mass, and mass of each link and coor-
dinate systems are given in Sec. 3.2.6.

First, we obtain the rotation matrices from Fig. 3.2 using Eqgs. (3.3-48) and
(3.3-49):

i

. ¢ s o 6 -5 o . S

‘Riy= |8 ¢ 6| 'Re= |8 G 0 Re= §, € 0
0 0 1 0 0 1 0 0
¢85 0 G 5% 0 Co Sz 0

'R, = =5 € 0] Ri= |~ G 0 Ro= | =Sy Cy 0
0 0 0o o I o o 1]
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From the equations in Table 3.3 we assume the following initial conditions:
wy = = vy =0 and V, = (0, g, 0)7 with g = 9.8062 m/s®

Forward Equations for / = 1, 2. Using Eq. (3.3-50), compute the angular velo-

city for revolute joint for § = 1, 2. So fori = 1, with wy = 0, we have:
Row; = Ro(wy + 2o6))
¢ s ol o 0]
= -8 C 0l|0]8=|0]¢
(¢ 0 1 1 1

For i = 2, we have:

Rowz = "R('Row + 78y)
G 5 0 0 0 0
- —Sg Cg 0 0 91 + G 5‘2 - 4] (@; e 92)
O 0 1 1 1 I

Using Eq. (3.3-51), compute the angular acceleration for revolute joints for
i=12
Fori = 1, with @y = w; = 0, we have:

'Roes

For i = 2, we have:

'Ro(wo + zof; + woxzfy) = (0, 0, 1)7 8,

]

Rody = "Ryl 'Roedy + 208, + ('Row) % zofa] = (0, 0, 7 (6, + 8)

Using Eq. (3.3-52), compute the linear acceleration for revolute joints for
P= 1, 2:
For i = I, with ¥ = (0, g, 0)7, we have:

Ro¥i = CRosdy) X ('Ropr) + ('Row)) x [('Rgw) X (Rop)] + 'Ry¥y
0 i 0 0 7 g5,
= [0 6 x + 0 8 x 06 x|0 + | g0

1 1 | 0 0
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For i = 2, we have:

"Ro¥y = (Rowy) X CReps) + (PRowz) X [CRowz) X CRaps)] -+ “Ri('Ro¥y)
0 3 0 0 !
B 0 X 0] + 0 4 ¢ x o
f, + 6, 0 6, + 6, f, + 6, 0
G 8§ 0] [ 18} +gs
4 1 -8 ¢ 48 1, + gC,
0 0 I 0

15,8, — Cff — 6] — 65 — 2010,) + ¢85
= {(6; + 92 + Cz(}'] + Sglﬁg) + ng
0

Using Eq. (3.3-53), compute the linear acceleration at the center of mass for links
1 and 2:

For i = 1, we have:

Lo [
_L _t !
2 G 5 o0 2 G { -5
S = ngms IR()S§ == _Sl Ci 0 .......i_S = l 0
2 1 0 0 1 ) 1 L 0
0 0
Thus,
{ {
0 . > O 1] "y
‘R, = |0 8§, x o |+ | 0] x 0] x 0
LE 0 6, # 0
- ! s
~16? + g5, 70+ 8%
B+, T % b+ ¢C,
0
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For{ = 2, we have:

o3y = (R} X CRe8) + CRows) X [(Rws) X CRyss)l + 2Rty

where

I i Iy
( _?CB ( Cia 55y _—2—612 } i )
8§ = ! 2 § o= | —5, C [ om :
0T W;_S;E s f S 1512 0
. 0 0 1 E 0
0 )
Thus,
o ] _é 0 | T [
Rpa, = 0 X o | * " 0 v 2
. <a + a « . 0
9, + 6, g .61+62J # + 0y |
N i 6 L i 0 J

0S8, — Cbf — 67 — 6} — 20,6,) + g5, ]
1, + 8, + CF, + 69 + ¢Cpo J
]

186, — €67 ~ W} — %03 — 0,6,) + g8 |
o I(sz}; + Sg{’i" + ;/2§| -+ 1/2&2) + gC‘;z
0

Backward Equations for [ = 2, |, Assuming no-load conditions, f; = ny = 0.
We use Eq. (3.3-56) to compute the force exerted on link i for i = 2, 1
Fori = 2, with f; = 0, we have:

Rofy = *RCRE) + *RF, = RoFz = my Rylis
ml($,8) — GOF — %6} — 1563 — §,6,) + gmrSy) |

mzl{Czé.; + Szélz + '/2@'1 + i/292) + g, Oy
0

Ii

For i = 1, we have:
Rof, = 'Ry(PRofy) + 'RF,

. I - ; ;2 2 s |
G -85 0 ] | M58 — Cofla — VB — 10y — 6,6;) + gm, S, |

=05 G D ke + 56+ 1l + Yaby) -+ gmy Co + my 'Roay
0 0 EH 0
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my i} _éll_ '/3(:3{5?4'9.5}—(32932“ 1S (B +82) ] —mg(Cp Sy ~ Gy i) — '/Zmlffjlz‘lrmlgsa
o[~ Sy (07 +63) — S8+ BC (B, +8) 1+ 1y g0y + Ve, 16, + g, €

G

Using Eq. (3.3-57), compute the moment exerted on link § for { = 2, 1. For
i = 2, with ny = 0, we have:

Rgn, = CRopF + Refy) X CRyFy) + *ReN,

where
[ic, [0 sn 0] [t I
pr = | IS Rop = § ~82 € 0 | Bp | = |0
0 o o0 1J 0 0
Thus,
é_ myl($: 8, — Co — %l — nbi — 6.6,) + gm Sy,
Ron, = o | X mzl(Czé', e 539;2 + */zf}'g A ‘/zéﬁ) + gmy C)y
o 0
¢ 0 ¢ 0
+ |0 yaml® 0 0
.0 0 o maI* 8 +
1 0
= E 0

Varm, 268, + Vamy 120y + mal2(Cafy + 5207) + Wm,glC,

Fori = |1, we have:

Ron; = "Ro[PRom; + CRopi*) X CRof) ]+ ('Rep* + 'Re8) x ('RyF)) + 'RN,
where
I, 1C) I
pf o= 115 Rop = | I8, Rop* = |0
G 0
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Thus,

T
Jm, 0, 0} x 'RyF,

'Ron; = 'Ry("Rgny) + '"Ry[(*Rop*) % (*Rofy)] + [2

+ 'RoNy
Finally. we obtain the joint torques applied to each of the joint actuators for both
links, using Eq. {3.3-58):
Fori = 2, with b; = 0, we have:
72 = (CRom) R Zp)

my !29.1 & Yam, 129-2 + Yamy !2(?29] + Yamn glCy + %mzlezéf

i

For {

I, with by = 0, we have:
71 = (‘Rony) ('Rozo)
%mlilgl + 4/3?772[251 + ‘/31?221232 + m;CZfzé.i

+ Y PGl — my S P8, — Vomy $,1%62 + Yam, glC,
“+ VZMle{C[z + mggZC;

The above equations of motion agree with these obtained from the Lagrange-Euler
formulation in Sec. 3.2.6.

3.4 GENERALIZED d’ALEMBERT EQUATIONS OF MOTION

Computationally, the L-E equations of motion are inefficient due to the 4 x 4
homogeneous matrix manipulations, while the efficiency of the N-E formulation
can be seen from the vector formulation and its recursive nature. In order to
obtain an efficient set of closed-form equations of motion, one can uilize the rela-
tive position vector and retation matrix representation to describe the kinematic
information of each link, obtain the kinetic and potential energies of the robot arm
to form the lagrangian function, and apply the Lagrange Euler formulation to
obtain the equations of motion. In this section, we derive & Lagrange form of
d’Alembert equations of motion or generalized d'Alembert eguations of motion
(G-D). We shall only focus on robot arms with rotary joints.

Assuming that the links of the robot arm are rigid bodies, the angular velocity
w; of link s with respect to the base coordinate frame can be expressed as a st
of the relative angular velocities from the lower joints (see Fig. 3.8),

L
W, = E 5]1]""] (3.4'1)

i=1
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Link i + §

Linki - |

Basg coordinate system

Figure J.8 Vector definition in the generalized ¢’ Alembert equations,

where #;_; is the axis of rotation of joint j with reference to the base coordinate
frame. Premultiplying the above mgular velocity by the rotation matrix 'R,
changes its reference to the coordinate frame of link s; that is,

Row; = f: 9_; ‘Ryz;.. | (3.4.2)
je=1

In Fig. 3.8, let ¥, be the position vector (0 the center of mass of link s from
the base coordinate frame, This position vector can be expressed as

§ 4
FFe L pr+g (3.4-3)
j=
where € is the position vector of the center of mass of lnk s from the (5 ~ 1)th
coordinate frame with reference to the base coordinate frame.
Using Bgs. (3.4-1) o (3.4-3), the linear velocity of link s, v,, with respect to

the base coordinate frame can be computed as a sum of the linear velocities from
the lower links,

51 ko, 5
.= L { [E ﬂjzj—l} X ;};:“J + [}: 6;:;-,} x T {3.4-4)
k=1 =1 =t
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The kinetic energy of link s (1 £ 5 < n) with mass m, can be expressed as
the summation of the kinetic energies due to the translational and rotational effects
at its center of mass:

K, = (K + (Ko = amg(v; = o) + BCRw,) LCRpw, ) (3.4-5)

where 1, is the inertia tensor of link s about its center of mass expressed in the sth
coordinate system,

For ease of discussion and derivation, the equations of motion due o the
translational, rotational, and gravitational effects of the links will be considered and
treated separately. Applying the Lagrange-Euler formalation to the above transla-
tional kinetic encrgy of link s with respect to the gencralized coordinate 8,
(s = I), we have

d [am)m} K D

di | a6, a,
_d v, dv,
V7 a | AL
. 0y d [ dv, A
= LV, e e ¥, v — - -, ¥ v 3.4-6
¥, %, + m,v, 7 [ %, ] m v, s ) { )
where
av, ,
. = Z X APF A+ Pt -+ op F+ € 3.4-7)
=2 X (F —poy) szi
Using the identitics
d | av, v, g av, v, (3.4-8)
— n T g Al T R e e
dr | a4, e, 38, a9, '

Eg. (3.4-6) becomes

d | HEan | 3K an
di 9, J 36,

= MV [ X (T — pin}] (349

Summing ail the links from { to # gives the reaction torques due to the transla-
tional effect of ail the links,

i [ B(IK.E.)“&“ ‘] _ 6(K.E-)|faﬁ _ i { d rr a(KS.)lran 1 _ a(Ks)lranl

dt o, | a, EREET %, |

=EmVlg X (F-p))] (3.4-10)

sz
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where, using Egs. (3.3-8) and (3.3-12), the acceleration of link s is given by

) i 5F ‘] . | -l
+ 48| Eﬁqzqwlj xepzpm;j X T, | (G.4-11)
L | J

g=1

Next, the kinetic energy due to the rotational effect of link s is:

Kb = I/Z(SR{)“’S)TES(SROWS)

- . N
1 o g o 5 !
J=1 i=1 )
Since
a(Kf)roe 8 T s -
e = (R ) L | DO Rz | s 20 (34I3)
a4, - ]
a 3 ) v .
5o (Roz-0) = Roziy X Rozioy i 2] (.4-14)
and

= ‘Ryz;_; X (zéj*xazj_g] (3.4-15)
i=i
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then the time derivative of Eq. (3.4-13) is

d a(K.\‘)mt - d 5 ’ g 5
ar [maéj :l = [E RﬁziwzJ L8 L{;laj ROZ‘MIJ
+ CRozi_ )1, [Xf}.stoljwl} + CRozi. )1 (25; [%xkozjml] J
Fi i=i )
5. r s,
) [fnelim} x EQ,-"ROZJW,} l‘s. [Z:G}vkezfmij
jei i=1
+ (Roz;_ )T [xéjskozj_l}
= .

+ (Rt )7L [ E [éstOzjwl x ¥ ékskﬂzﬁ_]] } (3.4-16)

J=1 LEFR D

Next, using Eq. (3.4-14), we can find the partial derivative of (K,),, with respect
to the generalized coordinate 8; (s > #); that is,

B(Ks)rot "' L 5 T 5 s ¥
6. E E gj AIa(y"lj_] X R()Z,‘ml is E 9} ' R{;ZJ; i (34*17)
i j=t =1

Subtracting Eq. (3.4-17) from Eq. (3.4-16) and summing all the links from i to n
gives us the reaction torques due to the rotational effects of all the links,

d | HKE) | OKE)w (g | 0K)a | K
dt 36, 08, - E dr a4, a6

= f: [{sRozxwl)T!s [f:é;fsaezj—ij
Y] i=1

+ (“‘Rezf—z)rl.«{f: {éfkaljma X Li ék‘R{)zkul] } }
i~ 4
s r 5,
-+ [SR(_)Z[_[ X [EgijOZkl}} IJ liEajSRoljl}J
i=1 j=

i=1,2,...,n {3.4-18)
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The polential erergy of the robot arm equals to the sum of the potential ener-
gies of each link,

= TP, (3.4-19)
wad

where P, is the polential energy of Hnk s given by

P,o= —gem¥, = —gemip. +p*+ - + &) (3420
where g = (g,, &, &7 and |g| = 9.8062 m/s’. Applying the Lagrange-Euler
formulatien 10 the potential energy of link & with respect to the generalized coordi-
nate 8; (s 2 i), we have

d acr,) P} _ Py - Hp_ +pF+ - &)
dar | oh, a6, e B 3,
Hr, — 1)
- gm% =gom [z, X (¥~ p. )] (3.4-21)

where p; ., is not a function of 8,. Summing all the links from { to n gives the
reaction torques due to the gravity effects of all the links,

d [ape) |  8PE) $ P
dt '

a6 | 6, =5,

Togemlz X (f =~ pon) 3422

The summation of Egs. (3.4-10), (3.4-18), and (3.4-22) is equal to the general-
ized applied torque exerted at joint { o drive link 7,

% d | HEKE ),
I

Tle | W 3,

i

YK E b | {d {a(m}m -

B(K E Y . 3(P.E.)
| dr

ka*éur { } E&r,i

L=l

z?,tj [’Hs JL {\Ei é@ Z; ]

kfkji

"

I |

-
-
XC‘} A AF— Px---})]J
+$I€qufh{géﬁﬂf
s=i .j:] J

g (g [0

i bk

Fwi4

ko0 et . 7
-i—<'r ¥ ﬁqlq | B Ep— } XEJ;;*}J } ‘[Z;rrlx(l'.v“‘?irrtﬂ}
p=2 k ; Lyl i

4
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e

o p=t

s 0 (_p--E. ) 3 —! W\‘
+ 2: \‘ } Eﬂgzq--i} Xﬁpzp-i‘l XC_, >'J '[zimix(f\_i}i--i)]

{
Lr=2 | e=l J 5

" s . 5 Al \;
+B {('?&Z;E)Tlsiz [@‘Ruzjma x [ ¥y ekskaszk--ll J j
sl FEE] .

| J

+ {“R{.z,_;x | Ea,,-‘kozﬁﬁ” I, {ga;kﬁzq..ﬂ.;l
gt .

ip=1

“‘g'{lr‘mlx (im,(i‘;*?z—l}} }* (3.4-23)
=i

s
for i=1,2,...,n

The above equation can be rewritten in a more “structured” form as
(fori = 1,2,...,nk

f;pf-jé'j(;; + BT, 0) + BN, 0) + ¢ = 11 (3.4-24)
je=t

where, for { = 1,2, ... . &

L]

D; = Df' + D" = E [CRez- )L, CRoz; ;)]

s=F

# §3 i
o+ E my {zj“"l X [E pf(* + E},
5= .

ke

] Lz X (F - p,-_l);js i<

k4

= ¥ [CRyzi) L 'Rz, 1))

s=f

+ E {ms[z;‘ml X (i-'; - pj l).E * Ezifi X {rs - P;—I)E} Ig]

LR
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also,

_ o 0 r, l f b O 7
EEY 6y = E{m, P { | {23 I i lgﬁqz,;__;] X e E}
#=i L CA J L=t

[ oo E . t

+ ‘E r { (Elﬁazq l} x szp_i} X Pk*}} E ey X (n - op -!)]}
Lp=2 4 VAN

) b, ] ( (E{}?‘I ;J xé‘s}}

p=i Lol

+ {f: { ):quugJ X Bz | X G 1’} L L7 (i‘s—Pe—J}’
g2 | b

(3.4-26)

and

w T s 3 . oo
BB, 6y = }: ("'Rﬂzfl)"ij{g ILGJ‘RQZJ;@; X [ Y %Rz 1] }}

=1

| b
+ rﬂsizimz X kEQ ‘Rz, ;}E

pmi

Finally, we have

j=i

&G = —8 " [le X Yo f — pig) } (3.4-28)

The dynamic coefficients I}; and ¢; are functions of both the joint variables
and inertial parameters of the manipulator, while the £7" and A" are functions of
the joint varisbles, the joint velocities and inertial parameters of the manipulator.
These coefficients have the following physical interpretation:

1. The elements of the D); matrix are related to the inertia of the links in the
manipulator. Equation (3.4-25) reveals the acceleration effects of joint j acting
on joint { where the driving torque 7; acts. The first term of Eq. (3.4-25) indi-
cates the inertial effects of moving link J on joint / due to the rotarional motion
of link j, and vice versa. If i = j, it is the effective inertias felt at joint i due
to the rotational motion of link i; while if { # j, it is the pseadoproducts of
inertia of link j felt at joint / due to the rotational motion of link j. The second
tcrm has the same physical meaning except that it is due to the translational
motion of link j acting on joint /.



132 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

2. The A/™" (4, 8 term is related to the velocities of the joint variables. Equation
(3.4-26) represents the combined centrifugal and Coriolis reaction torques felt at
joint [ due to the velocities of joints p and g resulting from the rransiational
motion of links p and ¢. The first and third terms of Eq. (3.4-26) constitute,
respectively, the centrifugal and Coriolis reaction forces from all the links
below link s and link s #self, due o the transhitional motion of the Bnks. I
p = ¢, then it represents the centrifugal reaction forees felt at joimt i If
p # g, thea it indicates the Coriolis forces acting on joint ¢, The sccond and
fourth terms of Eq. (3.4-26) indicate, respectively, the Coriolis reaction forces
contributed from the links below link s and link s itself, due o the translational
motion of the links.

3. The /™ (6, &) term is also related to the velocities of the joint variables. Simi-
lar o A™" (8,63, Bq. (3.4-27) reveals the combined centrifugal and Coriolis
reaction forques felt at joint / due t the velocities of joints p and ¢ resulting
from the rotationa! motion of links p and g. The first term of Eg. (3.4-27) indi-
cates purely the Coriolis reaction forces of joints p and g acting on joint 7 due
to the rotational motion of the links. The second term is the combined centrifu-
gal and Coriolis reaction forces acting oa joint i, If p = g, then it indicates the
centrifugal reaction forces felt at joint £, but if p # g, then 1t represents the
Coriolis forces acting on joint [ due to the rotational motion of the links.

4. The coeflicient ¢; represents the gravity effects acting on joint ¢ from the links
above joint i.

At first sight, Eqs. (3.4-25) to (3.4-28) would seem to require a large amount
of computation. However, most of the cross-product terms can be computed very
fast.  As an indication of their computational complexities, a block diagram expli-
citly showing the procedure in calculating these coeflicients for every set point in
the trajectory in terms of multiplication and addition operations is shown in Fig.
3.8, Tabie 3.5 summarizes the computational complexities of the L-E, N-E, and
G-D equations of motion in terms of required mathematical operations per trajee-
tory set peoint.

Table 3.5 Comparison of rebot arm dynamics computational complexities?

Approach Lagrange-Euler Newton-Ealer Generalized d’Alembert
w5 gt o gt 53!,16”3 A 103, 7
Multiplications ~ + »wn® + syn 1320 + M 4 69
ot + g g #in + 44n’
Additions + s nt 4 uyn Hin — 4 + s 4+ 45
Kinematics 4 x 4 Homogeneous Rosation matrices Rotation smatrices
representation matrices aad position vectors  and position vectors
Equations of Closed-form Recursive Closed-form
maotion differential equations equations differential equations

Ta = nember of degrees of freedom of the robot arm. No effort is speat here 1o optimize the computatior.
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3.4.1 An Empirical Method for Obtaining a Simplified
Dynamic Model

One of the objectives of developing the G-D equations of metion [Egs. (3.4-24) 10
(3.4.28)] is to facilitate the design of a suitable controller for a manipulator in the

e for sranslation effect
e o rotational effect
A for combined effect
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Figure 3,10 The acceleration-related I} elements.
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state space or io obtain an approximate dynamic model for a manipulator, Similar
to the L-E equations of motion [Eqgs. {3.3-24) and (3.3-25)], the G-D equations of
motion are explicitly expressed in vector-matrix form and all the interaction and

coupling reaction forces can be easily identified. Furthermore, D[P, D

fran
i oe ht’ ]

A, and ¢; can be clearly identified as coming from the translational and the rota-
tional effects of the motion. Comparing the magnitude of the transiational and
rotational effects for each term of the dynamic equations of motion, the extent of
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dominance from the translational and rotational effects can be computed for each
set point along the trajectory. The less dominant ferms or elements can be
neglected in calculating the dynamic equations of motion of the manipulator. This
greatly aids the construetion of a simplified dynamic model for control purpose.

As an example of obtaining a simplified dynamic medel for a specific trajec-
tory, we consider a PUMA 560 robot and its dynamic equations of motion along a
preplanned trajectory. The D™, DI, A™, and A/ elements along the trajectory
are computed and plotted in Figs. 3.10 and 3.11. The total number of trajectory
set points used is 31. Figure 3.10 shows the acceleration-related elements D™
and D[, Figure 3.11 shows the Coriolis and centrifugal elements 2" and A",
These figures show the separate and combined effects from the translational and
rotational terms.

From Fig. 3.10, we can approximate the elements of the B matrix along the
trajectory as follows: (1) The translational effect is dominant for the D)y, Dy,
Das, Dz, Dys, and Dsg elements. (2) The rotational effect is dominant for the
Dy, Dyg. Dss, and Dgg elements. (3} Both translational and rotational effects are
dominant for the remaining elements of the D matrix. In Fig. 3.11, the elements
D" and DE" show a smircase shape which is due primarily to the round-off
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Figure 3,10 (Continued.)



ROBOT ARM DYNAMICS 137

error generated by the VAX-11/780 computer used in the simulation. These ele-
ments are very small in magnitude when compared with the rotational elements.
Similarly, we can approximate the clements of the b vector as follows: (1) The
tramslational effect is dominant for the Ay, h;, and bz clements, (2) The rotational
effect is dominant for the Ay cloment. (3) Both transiational and rotational c¢ffects

are dominant for the 45 and i, clements.
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The above simplification depends on the specific trajectory being considered.
The resuiting simplified model retains most of the major interaction and coupling
reaction forces/torques at a reduced computation time, which greatly aids the
design of an appropriate law for controlling the robot arm. '
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3.4.2 A Two-Link Manipulator Example

Consider the two-link manipulator shown in Fig. 3.2. We would like to derive the
generalized d’Alembert equations of motion for it. Letting my and m; represent
the link masses, and assuming that each link is [ units tong, yields the following
expressions for the link inertia tensors:

0 © 0 0 0 0
L= |0 Vami? 0 L= |0 Voml® 0
0 0 Vi mm £ Y 0 ‘!azmzi-ﬂ

The rotation matrices are, respectively,

¢, -5 o G -5 0
R,yo= | S ¢ 0 R,= |8 G
[0 o |1 o 0 1!
[C‘Ez ~Sp 0
°R; ;QRlinz = |8y Cp 0
o o

and

IRg}

H

CR)Y Ry = (RyT

where (; = cosf;, § = sinf;, C; = cos(#;, + ¢#,), and §; = sin {4, + &,).

Ic, ic,, KC, + Cp)
B =pyo= | 1§ pr = | I8 po= | WS+ Sp)
0| 0| 0
| ! SR
"E*C; 5C0 W + EAE:
¢ =% = | 4§ 6= | ts £o= |5 +L1s
I = 11 = 2 H 2 = 2 12 = i 2 12
0 0 0
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Using Eq. {3.4-25), we obtain the clemenis of the P matrix, as foliows:
Dy o= (Ryz) TLCRyzp) + CRozo) LPRazg) + m {2y X ) « (45 X Fy)

+ myfag X (pF + €)] - {2y X T2)

0 0
=000 0] +(0,0, 1)L |0
n !
I ] I
0 € 0 =,
0 B 0
+ m X I . * 1
L ER B =5
0 0
! | | !
IC, + —Cp | LIC + —C
i‘(ﬂ I 5 o IRASY PR
o) * x
0 X gyt o 1S, + 48,
] : z 2
0 _ 0 ;

= Um P + m P + Coml?

H

Py = (Roz Y LRz + myplz) X &)+ [2; X (F, ~ p) ]

Vel 4+ Yemy* = Ym, P
Thus,

{D | = D]i Dgz _ %m;!z + 4/3!?‘1212 + ??iz!ZCZ %111212 + ‘émzc‘zlz‘
i Dy, Dzz‘ Y lr + Y G2 Yo, [

To derive the £™ (8, 6) and a0, 8) components, we need to consider only

the following terms in Egs. (3.4-26) and (3.4-27) in our example because the other
terms are zero.
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R = myl6 20 X (Bi2 X pF)] - (20 X F2) + mylfyzg x (29 % €))
(g X F) A+ my[(B, 2y + 612) X [(8;29 + B2) X &)
+ (825 X 62)) X B] * (2 X o)
= Ym 5,07 — Yoy 85,87 — vamy 25,65 — my1%5,6,6,
i = ("Rozg X 6 "Rz 11(6) "Rozg) + (*Rozg) (6 *Rozo X 6;*Rozy)
+ [Rozg x (0, *Roto + 0:°Roz))1 (0, Rozy + 6,°Roz,)
=
Thus,
By = ™ 4 B = Yy 125,63 —my 128,6,6,

Similarly, we can find
R = my {629 % (6,29 X pi)] » [z X (B — p) ] + m{(6,2 + 6z,
X {017 + 6:2,) X ©] + (67 X 07, ) X ©} {5 X (B — pp]
Va s 128, 67

(Rozy) "Ly (0 Rozy % 62"Ryzy)
+ [PRozy X (6 "Rozg + 8, Rez )17 106, "Rozg + 6,°Roz))

=
We note that #]% = A% = 0 which simplifies the design of feedback control law.
Thus,

h 50[

By = hE 4 R = Ymy 15,07
Therefore,
hy — Ve, S, 163 — my S, 6,6,
h = { hz} = Yam, S, 1262
To derive the elements of the ¢ vector, we use Eq. (3.4-28):
o = —g [2g X (T + mT)] = (Yamy + mp ) gIC + Ve gICyy

0 = —g [z X my(F; — P)] = YampgiCyy



142 ROBOTICS: CONTROL., SENSING, VISION, AND INTELLIGENCE

where g = (0, —g,0)7. Thus, the gravity loading vector ¢ becomes

|

{c;} [('/zm; + my ) glC, -+ J/ﬁngl’flzi|
{ o= o
|

Yarny gIC5

where ¢ = 9.8062 m/s’. Based on the above results, it follows that the equations
of motion of the two-lisk robot arm by the generalized d’Alembert method are:

ny ] [ sm Bl + mGE o hm P+ ey G ‘.’}(‘i’};
{1} Vamg I* + Y G IF Vi, I 92(”}

-

— Yo, Sg !295 - !flgSzt'zéEézj

%J?’lg SZ !2%9|2

r(l/??‘?h + mz)gl’Cl ks 1{2?’?’%23!(?12
*/zngngg

3.5 CONCLUDING REMARKS

Three different formulations for robot arm dynamics have been presented and dis-
cussed. The L-E equations of motion can be expressed in a well structured form,
but they are computationally difficult to wtilize for real-time contrel purposes
unless they are simplified. The N-E formulation results in a very eflicient set of
recursive equations, but they are difficult to use for deriving advanced control
laws. The G-D equations of motion give fairly well “structured” equations at the
expense of higher computational cost. In addition to having faster computation
time than the L-E equations of motion, the G-I equations of motion explicitly
indicate the contributions of the translational and rotatienal effects of the links.
Such information is useful for control analysis in obtaining an appropriate approxi-
mate model of & manipulator. Furthermore, the G-D equations of motion can be
used in manipulator design. To briefly summarize the results, a user is able to
choose between a formulation which is highly structured but computationally
inefficient (L-E}, & formulation which has efficient computations at the cxpense of
the “structure” of the eqguations of motion (N-E), and a formulation which retains
the “structure” of the problem with only a moderate computational penalty (G-D).
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mechanics books (Symon [1971] and Crandall et al. [1968]). The derivation of
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Lagrange-Euler cquations of motion using the 4 X 4 homogeneous transformation
matrix was first carried out by Uicker [1965]. The report by Lewis [1974] con-
tains a more detailed derivation of Lagrange-Euler equations of motion for a six-
joint manipulator. An excellent report written by Bejezy [1974] reviews the details
of the dypamics and control of an cextended Stanford robot arm (the JPL arm).
The report also discusses a scheme for obtaining simplified equations of motion.
Exploiting the recursive nature of the lagrangian formulation, Hollerbach [1980]
further improved the computation time of the generalized torgues based on the
lagrangian formulation.

Simplification of L-E equations of motion can be achieved via a differential
transformation {Paul [1981]), a model reduction method (Bejczy and Lee [1983]),
and an equivalent-composite approach (Lubh and Lin [19815]}. The differential
transformation  technique converts the partial derivative of the homogencous
transformation matrices into a matrix product of the transformation and a
differential matrix, thus reducing the acceleration-related matrix Dy to a much
simpler form. Hewever, the Coriolis and centrifugal term, /g, which contains
the second-order partial derivative was not simplified by Paul {1981}, Beiczy and
Lee [1983] developed the model reduction method which is based on the homo-
gencous transformation and on the lagrangian dynmamics and wtilized 1patrix
numeric analysis technigue to simphfy the Corielis and centrifugal torm. Luh and
Lin {19815} utilized the N-I eguations of motion and compared their terms in a
computer to eliminate various terms and then reartanged the remaining terms to
form the eguations of motion in 2 symbolic form,

As an alternative o deriving more efficient equations of motion is o develop
efficient algorithms for computing the generalized forces/torques based on the N-E
equations of motion. Armstrong [1979], and Orin et al. [1979] were among the
first to exploit the recursive nature of the Newton-Euler equations of motion. Luh
et al. [1980a) improved the computations by refereneing all velocities, accelera-
tions, inertial matrices, location of the center of mass of each link, and forces/
moments, 1© their own link coordinate frames. Walker and Orin {1982} extended
the N-E formulation to computing the joint accelerations for computer simulation
of robot motion.

Though the structure of the L-E and the N-E equations of motion are different,
Turney et al. [1980] explicitly verified that one can obtain the L-E motion equa-
tions from the N-E egquations, while Silver [1982] investigated the eguivalence of
the 1-E and the N-E equations of motion through tensor analysis. Huston and
Kelly [1982] developed an algoritimic approach for deriving the equations of
motion suitable for computer implementation. Lee et al. [1983], based on the
generalized d’Alembert principle, derived equations of motion which are expressed
explicitly in vector-matrix form suitable for control analysis.

Neuman and Tourassis {1983] and Murray and Neuman [1984] developed
computer software for obtaining the eguations of motion of manipulators in sym-
bolic form. Neuman and Tourassis [1983] deveioped a discrete dymamic model of
2 manipalator.



144 ROBOTICS: CONTROL., SENSING, VISION, AND INTELLIGENCE

PROBILEMS

3.1 {a} What is the meaning of the generalized coordinates for 2 robot arm? (p} Give twa
different sets of generalized coordinates for the robot arm shown in the figure below. Draw
two separate figures of the arm indicating the generalized coordinates that you chose,

Hry

3.2 As shown in the figure below, a particle fixed in an intermediate coordinate frame
(X¢, ¥ Xy} is located at (-1, 1, 2) in that coordinate frame, The intermediste coordinate
frame is moving transiationally with & velocity of 3 + 2§ + 4k with respect (o the refer-
ence frame (Xy, Yo Xo) where |, |, and k are unit vectors along the Xo, yo, and 7o axes,
respectively.  Find the acceleration of the particle with respect 1o the reference frame,

0

- The particle
i

X

Yo

~

3.3 With reference to Secs. 3.3.1 and 3.3.2, a particle at rest in the starred coordinate sys-
tem s located by & vector r{t) = 3 + 27§ + 4k with respect to the unstarred coordinate
system (reference frame), where (i, j, k) are ugit vectors along the principat axes of the
reference frame. If the starred coordinate frame is only rotating with respect to the refer-
ence frame with w = (0, 0, 1)7, find the Coriolis and ceatripeal accelerations.

3.4 Discuss the differences between Eq. (3.3-13) amd Eq. (3.3-17) when {@) h = 0 and
(b} dh/dr = 0 (that is, b is a constant vector}.

3.5 With references to the cube of mass M and side 2a shown in the figure below,
(X ¥o, Zo} is the reference coordinate frame, (0, v, w) is the body-attached coordinate
frame, and {X.,, Yo 2o} is another body-attached coordinate frame at the center of mass
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of the cube. {a) Find the inertia tensor in the {Xg, ¥y, #y) coordinate system. (b} Find the
inertia tensor at the center of mass in the (3., ¥Yem, Zem) coordinate system.

&y

Lo

*

[

[ - N

e e e e

XE')

Yiy

Fem

3.6 Repeat Prob. 3.5 for this rectangular block of mass M and sides 2a, 2b, and 2¢:

)

Lo
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3.7 Assumc that the cube in Prob. 3.5 is being rotated through an asgle of & about the z
axis and then rolated through an angle of § abowl the w axis. Determine the inerlia tensor in
the (Xy, ¥o. Zy) coordinale system.

3.8 Repeat Prob. 3.7 for the rectangular block in Prob. 3.6

3.9 We learned that the Newton-Euler formulation of the dynamic model of a manipulator
is computationally more efficient than the Lagrange-Euler formulation, However, most
researchers still use the Lagrange-Euler formulation, Why is this so7 {Give two reasons,}
3.30 A robotics researcher argues that if a robot arm 1s always moving ai a very slow
speed, then its Coriolis and centrifugal forces/torgues can be omitted from the equations of
motien formuiated by the Eagrange-Euler approach. Will these “approximate™ equations of
motion he computationally more eflicient than the Newton-Euler eguations of motion?
Explain and justify your answer.

3.11 We discussed two formulations for robot arm dynamics in this chapter, namely. the
lagrange-Euler formulation and the Mewton-Fuler formulation. Since they describe the
same physical system, their equations of motion s?;mz%d be “‘equivalest.” Given a set point
an a preplapned trajectory at lzme n, (qfiny, § {1;) G2 )3, one should be able to find
the D(g’(n 1), the g1 ). § ‘(). and the cig?1,)) matrices from the L-FE equations
of motion. Instead of finding them from the L-E cquations of motion, can you statc a pro-
cedure indicating how you can obtain the above matrices from the N-E equations of motion
using the same set point from the trajectory?

3.12 The dynamic coefficients of the equations of motion of a manipulator can be obtained
from the N-E equutions of motion wsing the technique of probing as discussed in Prob.
.11, Assume that N muitiplcations and M additions are required 1o compute the torques
applied 1o the joink motors for a particular robot. What is the smaliest number of multiplica-
tions and additions in terms of N, M, and & needed 1o find all the elements ia the D(g)
matrix in the L-E equations of motion, where » is the number of degrees of freedon: of the
robot?

3.13 In the Lagrange-Buler derivation of equations of motion, the gravity vector g given in
Eq. (3.3-22) i a row vector of the form {0, 0, —lg|, 0}, where there i a negative sign
for a level system. In the Newton-Euler formulation, the gravity effect as given in Table 3.2
is (0, 0, |g|}' for a level system, and there is no negative sign. Explain the discrepancy.
3.14 In the recursive Newton-Euler eguations of motion referred to its own link coordinate
frame, the matrix {'Ry 1; "R} is the inertial tensor of link ¢ about the ith coordinate frame.
Derive the relationship between this matrix and the pseudo-inertia matrix J; of the
Lagrange-Euler equations of motion.

3115 Compare the differences between the representation of angular velocity and kinetic
energy of the Lagrange-Euler and Newton-Euler equations of motion in the following table
(Aill in the blanks}:

Lagrange-Euler | Newton-Euder

Angular velocity

Kinetic energy
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3.16 The two-link robor arm shown in the figure below is attached to the ceiling and under
the influence of the gravitational acccleration g = 9.8062 misec’; (Xy, Yo, #p) is the refer-
cnce frame; #,, 0; are the generalized coordinates; d,. 4, are the lengths of the links; and
my, m; are the respective masses. Under the assumption of lumped equivalent masses, the
mass of each link is Jumped at the end of the link. ()} Find the link transformation matrices
1A, 0= 1,2, (b) Find the pseudo-inertia matrix J; for each link. (¢) Detive the
Lagrange-Euler equations of motion by first finding the elements in the D(#3, h(#, 9}, and
{8 matrices,

Yy

3.17 Given the same (wo-link robot arm as in Prob. 3,16, do the following steps to derive
the Newton-Euler equations of motion and then compare them with the Lagrange-Euler
equations of motion. {4) What are the initial conditions for the recursive Newton-Euler
equations of motion? (&) Find the inertiz tensor ‘RyI, "R, for each link. (¢) Find the other
constants that will be needed for the recursive Newton-Euler equations of motion, such as
Res. and ‘Rep. (d) Derive the Newton-Euler eguations of motion for this robot arm,
assuming that £, and n,.,, have zero reaction force/torque.
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3.18 Use the Lagrange-Euler formulation to derive the eguations of motion for the two-link
0 —d robot arm shown below, where (X, ¥o, #p) is the reference frame, @ and d are the
generalized coordinates, and m1y, #y are the link musses. Mass my of link T 5 assumed to
be located at a constant distance r, from the axis of rotation of joint i, and mass m; of link
2 is assumed to be located at the end point of link 2.

Joint axis






