CHAPTER

FOUR
PLANNING OF MANIPULATOR TRAJECTORIES

A mighty maze! but not without a plan.
Alexander Pope

4.1 INTRODUCTION

With the discussion of kinematics and dynamics of a serial link maripuiator in the
previous chapters as background, we now turn to the problem of controlling the
manipulator so that it follows a preplanned path. Before moving a robot arm, it is
of considerable interest to know whether there are any obstacles present in its path
(obstacle constraint) and whether the manipulator hand must traverse a specified
path (path comstraing). These two constraints combined give rise to four possible
control modes, as tabulated in Table 4.1, From this table, it is noted that the con-
trol problem of a manipulator can be conveniently divided into two coherent
subproblerns—motion (or trajectory) plamming and motion coatrol. This chapter
focuses attention on various trajectory planning schemes for obstacle-free motion.
It also deals with the formalism of describing the desired manipulator motion as
sequences of points in space (position and orientation of the manipulater) through
which the manipulator must pass, as well as the space curve that it traverses. The
space curve that the manipulator hand moves along from the initial location (posi-
tion and oricatation) to the final location is called the path. We are interested in
developing suitable formalisms for defining and describing the desired motions of
the manipulator hand between the path endpoints.

Trajectory planping schemes generally “interpolate™ or “approximate™ the
desired path by a class of polynomial functions and generates & sequence of tme-
based “control set points” for the control of the manipulator from the initial loca-
tion to its destination. Path endpoints can be specified either in joint coordinates
or in cartesian coordinates. However, they are usually specified in cartesian coor-
dinates because it is easier to visualize the correct end-effector configurations in
cartesian coordinates than in joint coordinates. Furthermore, joint coordinates are
not suitable as a working coordinate system because the joint axes of most manipu-
lators are not orthogonal and they do not separate position from oriemtation. If
joint coordinates are desired at these locations, then the inverse kinematics solution
routine can be called upon to make the necessary conversion.

Quite frequently, there exists a number of possible trajectories between the
two given endpoints. For example, one may wanl fo move the manipulator along
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Table 4.1 Control modes of a manipuiator

Obstacle constraint
Yes No

Off-line Off-line
collision-free  path planning

Yes  path planning  plus on-line
plus on-line path tracking
path tracking

Path

constraing Positional Positional
control plus control
on-ling
obstacle
detection and
avoidance

No

a straight-line path that comnects the endpoints (straight-line trajectory); or to move
the manipulator along a smooth, polynomial trajectory that satisfies the position
amd orientation constraints at both endpoints (joint-interpolated trajectory). In this
chapter, we discuss the formalisms for planning both joint-interpolated and
straight-linc path trajectorics. We shall first discuss simple trajectory planning that
satisfies path constraints and then extend the concept to include manipulator
dynamics constraints. _

A systematic approach to the trajectory planning problem is to view the trajec-
tory planner as & black box, as shown in Fig. 4.1, The trajectory planner accepts
input variables which indicate the constrainis of the path and outputs a sequence of
time-based intermediate configurations of the manipulator hand (position and orien-
tation, velocity, and acceleration), expressed either in joint or cartesian coordi-
nates, from the initial location to the final location. Two common approaches are
used to plan manipulator trajectories. The first approach requires the user to expli-
citly specify a set of constraints (e.g., continuity and smoothness) on position,
velocity, and acceleration of the manipulator’s generalized coordinates at selected
locations {called knov points or interpelation pointsy along the trajectory. The tra-
jectory planner then selects a parameterized trajectory from a class of functions
{usually the class of polynomial functions of degree n or less, for some n, in the
time interval {fy, ;] that “interpolates” and satisfies the constraints at the inter-
polation points. In the second approach, the user explicitly specifies the path that
the manipulator must traverse by an analytical function, such as a straight-line path
in cartesian coordinates, and the trajectory planner determines a desired trajectory
either in joint coordinates or cartesian coordinates that approximates the desired
path. In the first approach, the constraint specification amnd the planning of the
manipulator trajectory are performed in joint coordinates. Since no constraints are
imposed on the manipulator hand, it is difficult for the user to trace the path that
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Figure 4.1 Trajeciory planner block diagram.

the manipulator hand traverses. Hence, the manipulator hand may hit obstacles
with no prior waraing. In the second approach, the path constraints are specified
in cartesian coordinates, and the joint actuators are servoed in joint ¢oordinates,
Hence, to find a trajectory that approximates the desired path closely, onc must
convert the cartesian path constraints to joint path constraints by some functional
approximations and then find & parameterized trajectory that satisfies the joint path
constraints.

The above two approaches for planning manipulator trajectories should result
in simple frajectories that are meant to he efficient, smooth, amnd accurate with a
fast computation time (near real time) for penerating the sequence of control set
points along the desired trajectory of the manipulator. However, the sequences of
the time-based joint-variable space vectors {q{1), §{1), 4{¢)} are generated
without taking the dynamics of the ranipulator into consideration. Thus, large
tracking errors may resalt in the servo control of the manipulator. We shall dis-
cuss this problem in Sec. 4.4.3. This chapter begins with a discussion of general
issues that arise in trajectory planning in Sec. 4.2; joint-interpolated trajectory in
Sec. 4.3; straight-line trajectory planning in Sec. 4.4; and a cubic polynomial tra-
jectory along a straight-line path in joint coordinates with manipulator dynamics
taken into consideration in Sec. 4.4.3. Section 4.5 summarizes the results,

4.2 GENERAL CONSIDERATIONS ON TRAJECTORY
PLANNING

Trajectory planning can be conducted either in the joint-variable space or in the
cartesian space. For joint-variable space planning, the time history of all joint
variables and their first two time derivatives are planned to describe the desired
motion of the manipulator. For cartesian space planning, the time history of the
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manipulator hand’s position, velocity, and acceleration are planned, and the
corresponding joint positions, velocities, and accelerations are derived from the
hand information. Planning in the joint-variable space has three advaniages: (1)
the trajectory is planned directly in terms of the controiled variables during
motion, (2) the trajectory planning can be done in near real time, and (3} the joint
trajectories are easier to plan. The associated disadvantage is the difficulty in
determining the locations of the various links and the hand during motion, a task
that is usually required to guarantee obstacle avoidance along the trajectory,

In general, the basic algorithm for generating joint trajectory set points is quite
simple:

=i
loop: Wait for next control interval;
t =t 4+ Af

h(z) = where the manipulator joimt position should be at time £,
If't = 1, then exit;
£0 10 loop;

where At is the control sampling period for the manipulator.

From the above algorithin, we see that the computation consists of 4 trajectory
function (or trajectory planner) h(r) which must be updated in every control inter-
val. Thaus, four constraints are imposed on the planned trajectory. First, the tra-
jectory set points must be readily caleulable in a noniterative manner. Second,
intermediate positions must be determined and specified deterministicatly. Third,
the continuity of the joint position and its first two time derivatives must be
puaranteed so that the planned joint trajectory is smooth. Finally, extrancous
motions, such as “wandering,” must be minimized,

The above four constraints on the planned trajectory will be satisfied if the
time histories of the joint variables can be specified by polynomial sequences. If
the joint trajectory for a given joint (say joint /) uses p polynomials, then
3(p + 1) coeflicients are required to specify initial and terminal conditions (joint
position, velocity, and acceleration) and guarantee continuity of these variables at
the polynomial boundaries. If an additional intermediate condition such as position
is specified, then an additional coefficient is required for each intermediate condi-
tion. In general, two intermediate positions may be specified: one near the initial
position for departure and the other near the final position for arrival which will
guarantee safe departure and approach directions, in addition to a better controlied
motion.  Thus, one seventh-degree polynomial for each joint variable connecting
the initial and final positions would suffice, as would two guartic and one cubic
(4-3-4} trajectory segments, two cubics and one quintic {3-3-3) trajectory segments,
or five cubic (3-3-3-3-3} trajectory segments. This will be discussed farther in the
next section.
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For cartesian path control, the above algorithm can be modified to:

= I,
loop: Wait for next control interval;
=+ Ar

H () = where the manipulator hand should be at time #;
QI{H{#)] = joint solution corresponding to H (1);

Ht = t;, then exit;

go to loop;

Here, in addition to the computation of the manipulator hand trajectory function
H(z) at every control interval, we need to convert the cartesian positions into their
corresponding joint solutions, Q[H(s)]. The matrix function H(7) indicates the
desired location of the manipulator hand at time ¢ and can be easily realized by a
4 % 4 transformation matrix, as discussed in Sec. 4.4,

Generally, cartesian path planning can be realized in two coherent steps:
{1) generating or selecting a set of knot points or interpolation points in cartesian
coordinates according to some rules along the cartesian path and then (2) specify-
ing a class of functions to link these knot points (or to approximate these path seg-
ments) according to some criteria.  For the latter step, the criteria chosen are quite
often dictated by the following control algorithms o ensure the desired path track-
ing. There are two major approaches for achieving it: (1) The cartesian space-
oriented method in whicH most of the computation and optimization is performed
in cartesian coordinates and the subseguent control is performed at the hand
level. ¥ The servo sample points on the desired straight-line path are selected at a
fixed servo interval and are converted into their corresponding joint soluticns in
real time while controliing the manipulator. The resultant trajectory is a plecewise
siraight line. Paul [1979], Taylor [1979], and Luh and Lin [1981} all reported
methods for using a straight line to link adjacent cartesian knot points, (2) The
joint space-oriented method in which a low-degree polynomial function in the
joint-variable space is used to approximate the path segment bounded by two adja-
cent knot points on the straight-line path and the resultant control is done at the
joint Jevel.§ The resultant cartesian path is a nonpiecewise straight line. Taylor's
bounded deviation joint path (Taylor [1979]) and Lin’s cubic polynomial trajectory
method (Lin et al. [1983]) all used low-degree polynomials in the joint-variable
space to approximate the straight-line path.

The cartesian space-oriented method has the advantage of being a straightfor-
ward concept, and a certain degree of accuracy is assured along the desired
straight-line path. However, since all the available control algorithms are invari-
ably based on joint coordinates because, at this time, there are no sensors capable

+ The error actuating signal to the joint actuators is computed based on the error between the target
cartesian position and the actual cartesian position of the manipulator kand.
+ The error actuating signai to the joint actuators is computed based on the error between the target
joini positior and the sctual joinl position of the manipulator hand.
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of measuring the manipulator hand in cartesian coordinates, cartesian space path
plapning requires fransformations between the cartesian and joint coordinates in
real time—a task that is computationally intensive and quite often feads o longer
control mfervals. Furthermore, the transformation from cartesian coordinates to
joint coordinates is ill-defined because it is not a one-to-one mapping. In addition,
if manipulator dynamics are included in the trajectory planning stage, then path
constraints are specified in cartesian coordinates while physical constraints, such as
torque and force, velocity, and acceleration limits of each joint motor, are bounded
in joint ceordinates. Thus, the resulting optimization problem will have mixed
constraints | two different coordinate systems.

Because of the various disadvantages mentioned above, the joint space-oriented
method, which converts the cartesian knot points into their correspeording joint
coordinates and uses low-degree polynomials to interpolate these joint knot points,
is widely used. This approach has the advantages of being computationally faster
and makes it easier te deal with the manipulator dynamics constraints, However,
it loses accuracy along the cartesian path when the sampling points fall on the
fitted, smooth polynomials. We shall examine several planning schemes in these
approaches in Sec. 4.4,

4.3 JOINT-INTERPOLATED TRAJECTORIES

To servo a manipulator, it is required that its robot arm’s configuration at both the
initial and final locations must be specified before the motion trajectory is planned.
In planning a joint-interpolated motion trajectory for a robet arm, Paul {1972}
showed that the following considerations are of infergst:

1. When picking up an object, the motion of the hand must be directed away from
an object; otherwise the hand may crash into the supporting surface of the
object,

2. If we specify a departure position (lifi-off peint) along the normal vector to the
surface out from the initial position and if we require the hand (i.e., the origin
of the hand coordinate frame) to pass through this position, we then have an
admissible departure motion. If we further specify the fime required to reach
this position, we could then control the speed at which the object is to be lifted.

3. The same sct of lift-off requirements for the arm motion is also true for the
set-down potnt of the final position motion {i.e., we must move 10 a normal
point out from the surface and then slow down to the final position) so that the
correct approach direction can be obtained and controlled.

4. From the above, we have four positions for each arm motion: initial, hft-off,
set-down, and final (see Fig. 4.2).

5. Position constraints
(a} Initial position; velocity and acceleration are given {normally zero).

(b} Lift-off position: continuous motion for intermediate points.
{c) Set-down position: same as lift-off position.
(d) Final position: velocity and acceleration are given {normally zero),
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Figure 4.2 Position conditions for & joint trajectory.

6. In additior to these constraints, the extrema of all the joint trajectories must be
within the physical and geometric limits of each joint,
7. Time considerations

{a} Initial and final trafectory segments: time is based on the rate of approach
of the hand to and from the surface and is some fixed constant based on the
characteristics of the joint motors.

{b} Intermediate points or midtrajectory segment: fime is based on maximum
velocity and acceleration of the joints, and the maximum of these times is
used (i.e., the maximum time of the slowest joint is used for normaliza-
tion).

The constraints of a typical joint trajectory are listed in Table 4.2. Based on
these constraints, we are concerned with selecting a class of polynomial functions
of degree 1 or less such that the required joint position, veloeity, and acceleration
at these knot points (initial, lifi-off, set-down, and final positions) are satisfied, and
the joint position, velocity, and acceleration are continuous on the entire time inter-
val {45, 1;}. One approach is to specify a seventh-degree polynomial for each
joint i,

q‘;{f') = a-,—t? + le,fb + a5!5 + a4!4 + 613!3 + QQIZ + a1t + ag {43-1}

where the unknown coeflicients «; can be determined from thc known positions
and continuity conditions. However, the use of such a high-dcgree polynomial to
interpolate the given knot points may not be satisfactory. It is difficult to find its
extrena and it tends to have extraneous motion. An alternative approach is to split
the entire jeint trajectory into several trzjectory segments so that different interpo-
lating polyromials of a lower degree can be used to interpolate in each trajectory
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Table 4.2 Constraints for planning joint-interpolated trajectory

Initial pesition:

1. Position (given)
2. Velocity (given, normally zero)
3. Acceleration (given, normally zero)

Intermediate positions:

4. Lift-off position (giveny

- L-off position {continuous with previous trajectory segment)
- Velocity (continuous with previous trajectory segment)

- Acceleration (continuous with previous trajectory segment)

. Set-down position (given)

- Set-down position (continuous with next trajectory segment}

- Velocity {contingous with next (rajectory segment)

. Acceleration {continuous with next trajectory segment)

— DD o0 -] ChLn

1
|
Final position:

12. Position {given)
13, Velocity (given, normally zero)
14. Acceleration (given, normally zero)

segment, There are different ways a joint trajectory can be split, and each method
possesses different properties. The most common methods are the following:

4-3-4 Trajectory. Each joint has the following three trajectory segments: the first
segment is a fourth-degree polynomial specifying the trajectory from the initial
position to the lift-off position. The second trajectory segment (or midtrajec-
tory segment) is a third-degree polynomial specifying the trajectory from the
lift-off position 10 the set-down position. The last wrajectory segment is a
fourth-degrge polynomial specifying the trajectory from the set-down position
to the final position.

3-5-3 Trajectory. Same as 4-3-4 trajectory, but uses polynomials of different
degrees for each segment: a third-degree polynomial for the first segment, a
fifth-degree polynomial for the second segment, and a third-degres polynomial
for the last segment.

5-Cubic Trajectory. Cubic spline functions of third-degree polynomials for five
trajectory segments are used.

Note that the foregoing discussion is valid for each joint trajectory; that is,
each joint trajectory is split into either a three-segment or a five-segment trajec-
tory. The number of polynomials for a 4-3-4 trajectory of an A-joint manipulator
will have N joint trajectories or N X 3 = 3N trajectory segments and 7N polyno-
mial coefficients to evaluate plus the extrema of the 3N trajectory segments. We
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shall discuss the planming of a 4-3-4 joint frajectory and a S-cubic joint trajectory
in the next section.

4.3.1 Caleuiation of a 4-3-4 Joint Trajectory

Since we are determining N joint trajectories in each trajectory segment, it is con-
vepient to introduce a normalized time variable, 1 € [0, 1], which allows us to
treat the equations of each trajectory segment for each joint angle in the same way,
with time varying from ¢ = O (initial time for all trajectory segments} to ¢ == ]
{final timee for all trajectory segments). Let us define the following variables:

t @ normalized time variable, € [0, 1]
¥ 1 real time in seconds
r; @ real time at the end of the /th trajectory segment

4 = 1, — 7, ¢ real time required to travel through the ith segment
o Ty 5

P e 7€ [, 7] 1€ [0, 1]
T T

The trajectory consists of the polynomial sequences, f;(2), which together form the
trajectory for joint j. The polynomial equations for each joint variable in each tra-
jectory segment expressed in normalized time are:

R () = ayutt + apf® + apl® + apt + ay {1st segment) {4.3-2)
ity = ant® + apt® + ant + ap (2nd segrent)  (4.3-3)
and A1) = aut’ + apt’ + @ + aat + ag (last segment)  (4.3-4)

The subscript of each polynomial equation indicates the segment number, and »
indicates the last trajectory segment. The unknown coefficient a;; indicates the ith
coefficient for the J trajectory segment of a joint trajectory. The boundary condi-
tions that this set of joint trajectory segment polyromials must satisfy are:

. Initial position = 03 = &)

. Magnitude of initial velocity = vy (normally zero)

. Magnitude of initial acceleration = gy {normally zero)

. Lift-off position = 6, = 8(¢)

. Continuity in position at #; [that is, #{z;7) = 0 ("]

. Continuity in velocity at ¢; [that is, v(#{7) = v{{]")]

. Comtinuity in acceleration at ¢, Jthat is, a(#;"} = a(+{")]
. Set-down position = 8, = §(5)

. Continuity in position at #, [that is, 8(z;7 ) = 8(57)]

10. Continuity in velocity at z; [that is, w(¢57) = v(#:")]

11. Continuity in acceleration at 7, fthat is, a(t;" ) = a7 )]
12. Final position = 0 = #(¢;)

MDD =] G A fa LI b —
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13, Magnitude of final velocity = v, (normally zero)
I4. Magnitude of final acceleration = ay (normally zero)

The boundary conditions for the 4-3-4 joint trajectory are showa in Fig. 4.3, The
first and second derivatives of these polynomial equations with respect to real time
7 can be written: asg;

) = dh(t)  dh(t) @ _ 1 dh;(1)
ST dr T d dr T 1 — 1., dr
1 dh(t) 1,
. tih,(r) i=5L2n { )
and
&h(n 1 d’hi(t)
H;‘(f) = 5 = Y >
dr (r; = 7.00° dr
1 a1
= e e, mf;i H j oo l, 2, (43”6
2 drt i S " )

For the first trajectory segment, the governing polynomial equation s of the
fourth degree:

hin = a;‘;tq + a,3!3 -+ C!zzf'z + oapt + ay 1€ [0, 1} 4.3-7)

fry) o= 8{72"}

Joint § 5(?2} - fi(-r;}
Bz3) = Be
A
Blrg) b e £ ) = 4
§ E é("n) =V
| | Blr,) = a
| H
Blry) = By ; 3
zg) = vy ' 3
bty = ag | !
By ) e | |
' LT ) = ) | |
W |- L e = b | I
I | Biry) = By | I
{ | i |
L ! .. L
T K 2 Ty Reai lime

Figure 4.3 Boundary conditions for 2 4-3-4 joint trajectory,
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From Eqgs. (4.3-5) and (4.3-6), its first two time derivatives with respect to real
time are

h;(f} 4&]4!3 + 3“1312 + 2&;2! + ap
By - 15}

vi{t) {4.3-8)

li

and

illl {n _ }2&14f2 4 6apzt + 24
A 2
H I

a; (1) (4.3-9)

I. For ¢t = O (at the initial position of this trajectory segment). Satisfying the
boundary conditions at this position leads to
g = }11(0} = 3(] (gl\’ﬁﬁ) (43“10)

By (0 dayut® + 3ap? + 2agr + a
vy = 0 1 i3 apl 1 ay = gaany
£ f 1m0 I

which gives
) = ph

angd

Uy =

it (0 12a,4 + 6ay3t + 2a 2
z(z )j - a4 ,,ﬂ 12 - iy (43-12)
31 141 =0 3]

which yields

B agtf

dpp =

With these unknowns determined, Eq, (4.3-7) can be rewritten as;

2
gt}

hi(f) = d|414 + a§3f3 + [ )

}:2 + (vt + 8 te 0,1} (43-13)

2. Fort = 1 (at the final position of this trajectory segment). At this position,
we relax the requirement that the interpolating polynomial must pass through the
position exactly. We only require that the velocity and acceleration at this position
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have to be continuous with the velocity and acceleration, respectively, at the begin-
ning of the next trajectory segment. The velocity and acceleration at this position
are:

_— &1(1) _ day + 3apn 4+ agt? + Vol (@3-14)
1= =
1 1

He

vi(l)

;it-(l) 12a), + 6a;3 + agrf
a(h) fa = =5 = == " (4.3-15)
H 1

For the second trajectory segment, the governing polynomial equation is of the
third degree:

hy(n) = ant® + apt® + apr + ay 1€ [0, 1] (4.3-16)

L. For ¢ = 0 (at the lift-off position). Using Fgs. (4.3-5}) and (4.3-6), the
velocity and acceleration at this position are, respectively,

h(0) = ay = 6,(0) @.3-17)
iy (0 3ay 1% + 2amt + a a
v = 2 (0) - 23 1 21 ) 43-18)
& L) =0 5]
which gives
Gy = Wiy

and

a; =

. = : (4.3-19)
2

71, (0) _ bazi + lap _ Zap
¥ =0 Iy

which yields

atj

dn =

Since the velocity and acceleration at this position must be continuous with the
velocity and acceleration at the end of the previous trajectory segment respectively,
we have

hy (0) _ and h(0y _ m(1) 4320
tz 5] [22 f?
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which, respectively, leads to

3(2231‘2 + 2(122{’ + g N 4&]4!3 4 3(1[3{2 + 26]21 + ay,
=0 =1

2 1
{4.3-21)
or
—a da 3a agtt vpt
LI LI 6oy ofi N ot _ 4.3.22)
5] 1y 131 h h
and
Basyt + 2ayy 12a,41% + 6a;31 + 2a
2% ! 21 - 14 ?1 12 4.3.23)
5 ras) 2l Jt=i
or
—2a 12a 6a 1}
2oy oy e Bl (4.3-24)

13 i tf tf

2. Fot r = 1 (at the set-down position). Again the velocity and acceleration at
this position must be continuous with the velocity and acceleration at the beginning
of the next rajectory segment, The velocity and acceleration at this position are
obtained, respectively, as:

hz(i} = {3 e 255 + (2591 + Qg (4.3'25)
By (1) " 3apntt + Zagnt + a
pa(1) = 2 - 23 72 23 (4.326)
X . h 4=l
_ 3(223 + 2&22 + £?2|
= -
and
(1) 6ayt + 2a 6ay; + 2a;
a(l) = —— = 2_ = =22 @32
2 4] po | 5]

For the lust trajectory segment, the governing polynomial equation is of the
fourth degree:

(1) = apt® + apt’ + apt® +oagt + a1 [0, 11 (4328
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If we substitute ¢ =+ — 1 into ¢ in the above equation, we have shifted the

normalized time 7 from 7 € [0, 1] tore [ —1, 0]. Then Eq. (4.3-28) becomes
Bo(ty = at® + ant® + apt® + ayt + ayy e l~1, 0] (4.3-29)

Using Egs. (4.3-5) and (4.3-6), its first and second derivatives with respect to real
time are

(e 4a,4t + 3astt + 2aol + a,
vo(r) = f) = 3{ i : (4.3-30)

and

(1) 12a,41° + 6a,31 + 2a
= Hl

1

a,(t) 4.3-3D)

5
I

L. For £ = O (at the final position of this segment). Satisfying the boundary
conditions at this fina] position of the trajectory, we have

hﬂ(o) = g = 51 (43‘32)
B (O a,
v = O G (4.3-33)
t, 1,
which gives
Gy = vf"rf
and
ha(0) 20,
ar = — = = (4.3-34)
n ]
which yields
ay In}
dyy = 2
2. Fort = —1 {at the starting position of this trajectory segment). Satisfying

the boundary conditions at this position, we have, at the set-down position,

a I,,2

hn(—l) = dps — dpn + el I-’fin + gf = 82(}) (4.3'35)
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and
h',g( -1) dayr? 4 3autt + 2apt + @y
1, h 1, Fe i
—da,, + 3@g - a4l + v
= a 3{ A I (4.3-36)
and
i{n(—l) E2aﬂ4f2 + 6&,13?'4' 2{1,,2
12 2 PR
12,8 ~ Getyy + a2
_ 4 : 3T S (4.3-37)

£

"

The velocity and acceleration continuity conditions at this set-down point are

m(l)  R(~1) (1) R(—1)
= and

- 4.3-38)
L5 Iy t%" {3 (
or
4an - 3an + a ti'% -¥ f" 3“ 261 @
4 3 + 4 Trnop 2B L T2 L 6 (4.3-39)
Iy f & 2
and
—12a,4 + ban — apl fa 2a
ol M B A B SR (4.3-40)

% 1 3

The difference of joint angles between successive trajectory segiments can be found
to be

2
apt
61 zel - 60 W}h(i) —hl(g} = 4 +a13 + % + Vol (43-41)

62=92 —61 2!!2{1) ”hg(e} = dz3 "+ day ¥ (43*42)
and

agt}
by =0 — B = 1y (0) = hy(—1) = —py + apa ~ fT + vy, (4.3-43)

All the unknown coefficients of the trajectory polynomial equations can be
determined by simultaneously solving Egs. (4.3-41), (4.3-22), (4.3-24), (4.342),
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(4.3-39), (4.3-40}, and (4.3-43). Rewriting them in matrix vector notation, we
have

y = Cx (4.3-44)
where
(Iof.lz
Yy = Bg - —2'“ = ¥aly, —aply - vy, — g , 52 s (43-45)
) T
aff,:;
- el + Vi Gy, 45" + —i“““ = Vyly
1 1 e o o o 0
3y Ay -1y O 0 0 0
6/ 12f 0 =213 0 0 0
C o it 0 1 1 1 0 a {4.3-46)
0 0 Vi, 2ty 30, -3, 44,
0 0 0 20 6/ 617 —12/}
0 0 0 a 0 i -1
and X = (dyz, du, o, G, Gy, Gy, Gpg) (4.347)

Then the planning of the joint trajectory (for each joint) reduces to solving the
matrix vector equation in Eq. (4.3-44):

7
¥ = EC,‘}Xj (43‘48)
j=1
or x = C"ly 4.3-4%

The structure of matrix C makes it easy to compuate the unknown coefficients and
the inverse of € always exists if the time intervals 4,/ = 1, 2, n are positive
values. Solving Eq. (4.3-49), we obtain all the coefficients for the polyaomial
cquations for the joint trajectory segments for joint j.

Since we made a change in normalized time to run from {0, I] to [—1, (}]
for the last trajectory segment, after obtaining the coefficients a,; from the above
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matrix equation, we need to reconvert the normalized time back to [0, 1]. This
can be accomplished by substituting + = ¢ + | into 7 in Eq. (4.3-29). Thus we
obtain

h’n(” = {‘!i't4f£i + {_4art4 + an3){3 + (6(1,74 - 3(1,33 + anZ}r2
A4 (da, b 3an - 2a, b odg))E

+ {(2"4 — Ty ) + :‘3,,()} re {0, }] {43“50)

The resulting polynomial equations for the 4-3-4 trajectory, obtained by solving the
above matrix equation, are listed in Table 43, Similarly, we can apply this tech-
nique to compute a4 3-5-3 joint trajectory. This is left as an exercise to the reader.
The polynomial equations for a 3-5-3 joint trajectory are listed in Table 4.4,

4.3.2 Cubic Spline Trajectory (Five Cubics)

The interpolation of a given function by a set of cubic polyromials, prescrving
continuity in the fiest and second derivatives at the interpolation points is known as
cubic spline functions. The degree of approximation and smoothness that can be
achieved is relatively good. In general, a spline curve is a polynomial of degree k
with continuity of derivative of order &£ — 1, at the interpolation poinmts. In the
case of cubic sphines, the first derivative represents continuity in the velocity and
the second derivative represents continuity in the acceleration. Cubie splines offer
several advantages. First, it is the lowest degree polynomial function that allows
continuity in velocity and acceleration. Second, low-degree polynomials reduce the
effort of computations and the possibility of numerical instabilities.

The general equation of five-cubic polynomials for each joint trajectory seg-
ment is:

Rty = apt’® + apt + apt +ap  j=1,2,3, 401 (4351

with 7,y < 7 € 7, and ¢ € [0, 1]. The unknown coefficient a;; indicates the ith
coefficient for joint j trajectory segment and » indicates the ast trajectory segment,

In using five-cubic polynomial interpolation, we need t0 have five trajectory
segments and six interpolation points. However, from our previous discussion, we
only have four pesitions for interpolation, namely, initial, lift-off, set-down, and
final positions. Thus, two extra interpolation points must be selected to provide
enough boundary conditions for solving the unknown coefficients in the polynomial
sequences. We can select these two extra knot points between the lift-off and set-
down positions. It is not necessary to know these two locations exactly;, we only
require that the time intervals be known and that continwity of velocity and
acceleration be satisfied at these two locations. Thus, the boundary conditions that
this set of joint trajectory segment polynomials must satisfy are (1) position con-
straints at the initial, lift-off, set-down, and final positions and (2) continnity of
velocity and acceleration at all the interpolation points. The boundary conditions
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Table 4.3 Polynomial equations for 4-3-4 joint trajectory

First trajectory segment:

. , . .o
apli i
bty = [5; - wt - ~02~i —o|f w0t | a{;| }2 + (vt Xt + 8
. B, L
h€ly 48, o
Yy T e mm o g — fy e e
1 f I i ol 4
A 125, 12v, 6o
@ = = S —
rf 5 1 t

Second trajectory segment:

aid |, atd ],
Ra(ty == 1 Gp = Vil — 5 o+ > £+ b+ 8

) 38 gy _ B2
Fa B — i —_
z I 23 ‘ z
(1} 65 6w
dy == = _— —_— - 2{11 )

I 1
Last trajectory segment:

f ast? aps’
ba(ty = l%,, — 4v,1, — ZT — S, + M%L &

P2

A

at ) { att b
+ —85, + Svg, - 5 + 3wl [P+ A (et 4+ By

where ¢ = fig and

' 2, 24, 3, Byt fn. 28,1
f:26;[4+m+m+—2. —i[3+ }-e—wimi

£ : ! :
2 i £ Jl 2

s r 5

: 61; 4¢, 3t 5 t 2t 5

mwph [ 68—+ — 2L e g, | o 5 aay,
. 1 41 iy 3 2
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Table 4.4 Polynomial equations for a 3-5-3 jeint trajectory

First trajectory segment:

’ agt? agt}
hi{t)y = {6, - vyl - mﬂzmi},i* + (m%i} £ (vt it + B
[«

Second trajectory segment:

3 I
hz(!) = (6§2 - 3]’]?2 - 3\?-2{2 — _a.lé_gw + 322_2] r5

' 3ay18
+ { — 158, + Bvity + Tty + ;2 - 021'22} I4

3a,13 axtd a3
4 [1952 - Bt — dvh — 2'2 + ﬂ}ﬂ + ( 2 p

2 L 2
+ (¥ + 8
o ) 3
& o
a = i.'e.zt(%l} = _::%«51 + 6:f — 24,

Last trajectory segment:

-~

1’1}{3 b
Bty = {é,, - v, + 3 J £ (=38, + 3y, — agin?

£ 2

: 12
+ 138, ~ 2o, + L2 1 4 0,
L 2
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Figure 4.4 Boundary conditions for a 5-cubic joint trajectory.

for a five-cubic joint trajectory are shown in Fig. 4.4, where the underlined vari-
ables represent the known values before calculating the five-cubic polynomials.

The first and second derivatives of the polynomials with respect to real time
are:

PRY. 3aupt? + 2a,t + a;
vj{t) - j() - a3 2 ji =123 4,0 (4-3_52)

i

and ai(t) = hJ(;) - Spt ¥ 2ap

i
where 7; is the real time required to travel through the jth trajectory segment.
Given the positions, velocities, and accelerations at the initial and final positions,
the polynomial equations for the initial and final trajectory sepments [k, (¢) and
ho(t3] are completely determined. Once these polynomial equations are calou-
lated, hz (1), hy{(2), and hy(¢) can be determined using the position constraints and
continuity conditions.

H

1,2,3 4, n (4.3-53)

z
&

For the first trajectory segment, the governing polynomial equation i
hi(t) = (213!3 + 31212 + apr + ap 4.3-54)
At = 0, satisfying the boundary conditions at this position, we have

h;(o) = g = 30 (glven) {4.3-55)

yp & —- = 1L (4.3-56)
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from which
ay = Wl
B(0Y  2a
and a & ph = 2 (4.3-57)
i t
which yields
dgl
4y = -

Attt = 1, satisfying the position constraint at this position, we have

ALy = g3 + f—?-;fi + vty + 8y = 8 {4.3-58)

from which a3 is found to be
ap = b — vl — f%{i (4.3-59)
where &, = f; — 6,_;. Thus, the first trajectory segment pelynomial is com-

pletely determined:

i} 1}
B (1) = {:ai -t - fﬂﬁi]:?’ + [a‘;‘ }2 + (vl )t + By (43-60)

With this polynomial equation, the velocity and acceleration at ¢+ = 1 are found to
be

Rl 38) — (aptf)2 — 2wty 3 dgt
1 {1 A = 1 — (@&tf) L St B vy — D5 (@436h
f f 5
Pl 68, — 2agti ~ Bvor 68; 6w
and ]<2 ) 2 ay = : ‘1021 e “"""a"i" el 2y (4.3-62)
t £ f; i

The velocity and acceleration must be continuous with the velocity and
acceleration at the beginning of the next trajectory segment.

For the last trajectory segment, the polynomial equation is

Bo(t) = apt® + apt? + agt + ag (4.3-63)
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At? = Qand ¢t = 1, satisfying the boundary conditions, we have

h(0) = ap =8 (given) (4.3-64)

hily = as + ap + a,; + 6, = Hf (4.3-65)

(1 3as + 2ap + a,
(D a yp = e 720 T (4.3-66)
th', !ﬂ

k(1 6,3 + 2a,

and ”fz L s, - _3“;5“““ (4.3-67)

H n

Solving the above three equations for the unknown coefficients a,3, a3, a,;, We
obtain

apt]
ho(1) = {5,1 — v, + "’2" J £+ (=38, + 3vpt, — apD)i’

2
dply
+ [38,, ~ 2vet, + wﬁm} A {4.3-68)

where 8, = 8 — 8.
For the second trajectory segment, the equation is
hz(f) = 32333 + azztz -+ (<230 + dag (43"69)

At r = (), satisfying the position constraint and the continuity of velocity and
acceleration with the previous trajectory segment, we have

hz((}} = dag 91 (gwen) {43-70)
iy (0 Bl
y o= 2O () 4371
ty 5] 4]
so that
iy = Vil
(0 2a k(1
and a, = 2 2am A1) (4.3-72)

13 13 tf

which gives
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With these unknowns determined, the polynomial equation becomes

3 aﬁ%- 2
he (£) = ast” + 5 FE (vib + 8 (4.3-73)
351 agf; 615; 63/0
where vlzT—Qvo— > aiﬁ_f_zm_m;m_ o
i

and gy, remains to be found. With this polynomial equation, at 1 = 1, we obtain
the velocity and acceleration which must be continuous with the velocity and
acceleration at the beginning of the next trajectory segment.

p)
a 15
By (1) e 92 = g3 + """""l"ﬁ"'":'“ + Vi + 9; (4.3-74)
(1 day; + a2 + vt 3a
mz( ) moyy = = e 2= v+ aty + 2 {4.3-75)
5 I z
iy (1 6ay + a13 6a .
and " 5 ) = iy M__zs_z_lz = ay 23 4.3-76)
15 1 i3
Note that #,, v;, and o, all depend on the value of ax .
For the third rrajectory segment, the eguation is
h3(3) = &33!3 + a32f2 + a3t 4+ ay {43-77)

At t = 0, satisfying the continuity of velocity and acceleration with the previous
trajectory segment, wg have

a t
By(0) = asp = 8 = ay + mémi + v + 6 (4.3-78)
(0 a By (1
w2 B0 e R (4.3-79)
2 5 b
s0 that
a3 = ¥al3
i (0 2a (1)
and 2 a 32} - 22 - 2(2. (4.3.80)
i3 13 12
which yields
aai%
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With these undeterniined unknowns, the polynomial equation can be written as

aﬂ%

hg(f} = a33!3 + [ }12 4+ vt + 82 {4.3-81)

At 1 = 1, we obtain the velocity and acceleration which are continuous with the
velocity and acceleration at the beginning of the next trajectory segment.

ot;
(1) = 63 = & Yoty + ”"‘“i"""“ + dqy (4.3-82)
By (1) 3ay; + axtd + wyt
LCORNNIE - Nl Nl ic NN (4.3-83)
I I3 3
FS| 6ay; + a3 6a
and 3(2> =gy = et gy ¢ D (4.3-84)
1 1 5]
Note that 6, v3, and a; all depend on 4y and implicitly depend on as4.
For the fourth trajectory segment, the equation is
h4(t) - a43t3 + {14212 + a41t + dan (43“85)

At r = 0, satisfying the position constraint and the continuity of velocity and
acceleration with the previous trajectory segment, we have

a3
h4(0) gy 83 = 82 + el + a3z (4.3-86)
k(0 a s (1
vy = 4 (0) _ G _ 5(1) 4387)
which gives
dg) = V3l
hg (0 2a hs(1
and a = D o e B (4.3-88)
f4 f4 t3
which yiclds
03!‘%

B2 =
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With these unknowns determined, the polynomial equation becomes

2
304

3 [
a3t + —_—

where 3, v, and ¢y are given in Egs. (4.3-82), (4.3-83), and (4.3-84), respec-
tively, and a3, a3, @43 remain to be found. In order to completely determine the
polynomial equations for the three middle trajectory segments, we need to deter-
mine the coefficients a3, a3, and @y, This can be dore by matching the condi-
tion at the endpoint of trajectory hy (1) with the initial point of hs (1):

halD) ] RN CIAE (4.3-89)

a:;fg’
h4(1) = dyy + _2— + vily 33 = 94 (4‘3*90}
ha(l 3a 38, art,
L) - e + oazly A vy ooy e - 2vj~ + £n (43“91)
H Iy n 2
ha(l 6a -65,  6v
and “(2} = i @y =y = — + —L — 2, (4.3-92)
t; I [ Iy

These three equations can be solved to determine the unknown coefficients
dyz, daz, and Gg3. Solving for ay, agz, and ay;, the five-cubic polynomial equa-
tions are completely determined and they are listed below.

agt? apti
Bty = {é._ — Vol = }3 + [&L] 24 (wph) + 6 (4393)
351 Gyt 65; 69{;
Vlm—r—lm—vo—T a;mf—%--—?—ﬁzg (4.3-94)
ps
3 i
b (1) = anr® + [ ]f + (v + 8 4.3-95)
a3
Gy = ap + T + v + 8 {4.3-96)
3a ba
v o= o+ oain + 2 a = a + :3 4.3-97)
L3 2
2
3 aa 3 2
h3(f) = a33f” + [ ) Jf + vafz3t + 8; (4.3-98)
ayt}
03 = 32 + Vz[:; + T + 33 (4.3-99)
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V3

By ()

R, (1)

V4

with
Xy
X2

X3

kl

ky

ky

e

d

i

3ay N 6as;
= vy + &y + S ay = {4, + "“"*“"“"rz
3

3 af |,
= aat’ -5 4 (g M+ B

2
"

agt,
= {@ - v, + ’; } £+ (=38, + v, — agi)t

]
sty
+ [mn - vty + mﬁmJ 4 B

35,, aply - 6&,; 6‘{{
= — 2ve + ay = —— + - 2a
Iy f 2 * Inz " !
A *2 A3
2 2 2
o p2 o P AU Y S Qun == L
2 D 33 3 D 43 4 D

ki(u — ) + k(i — d) — k(e — 6)d + 130t — 1)}
~k(u 4+ 13) + k(e = ) + k(e ~ )e + e - p)}
By =0} + k(d = o) + K[ — ple —dlu - p)]
w{u — Lu — 4}
b oo L
8y — 8, — viu —ag%z
Vg o vy o ai o (@ o a2
3
ay - a
6

3 — 3ury, + 2

3E o+ 35 + #

(4.3-100)

(4.3-101)

(4.3-102)

{4.3-103)

{4.3-104)

(4.3-105)
(4.3-106)
(4.3-107)
(4.3-108)

(4.3-109)

{4.3-110

(4.3-111)

(4.3-112)

(4.3-113)

(4.3-114)

So, it has been demonstrated that given the imitial, the Lifi-off, the set-down,
and the final positions, as well as the time to travel each trajectory (1), five-cubic
polynomial equations can be uniquely determined to satisfy all the position con-
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straints and continuity conditions. What we have just discussed is using a five-
cubic polyromial to spline a joint trajectory with six interpolation points. A more
general appreach 1o finding the cubic polynomial for n interpolation points will be
discussed in Sec. 4.4.3,

4.4 PLANNING OF CARTESIAN PATH TRAJECTORIES

In the last section, we described low-degree polynomial functions for generating
joint-interpolated trajectory set points for the control of a manipulator. Although
the manipulator joint coordinates fully specify the position and orientation of the
manipulator hand, they are not suitable for specifying a goal task because most of
the manipulator joint coordinates are not orthogonal and they do net separate posi-
tion from orientation. For a2 more sophisticated robot system, programming
languages are developed for controlling a manipulator to accomplish a task. In
such systems, 2 task is usually specified as sequences of cartesian knot poimts
through which the manipulator hand or ead effector must pass. Thus, in describ-
ing the motions of the manipulator in a task, we are more concerned with the for-
malism of describing the target positions to which the manipulator hand has
move, as well as the space curve (or path) that it traverses.

Paul [1979] describes the design of manipulator cartesian paths made up of
straight-line segments for the hand motion. The velocity and acceleration of the
hand between these segments are controlled by converting them into the joint coor-
dinates and smoothed by a quadratic interpolation routine. Taylor [1979] extended
and refined Pauls method by wsing the dual-number guaternion representation to
describe the location of the hand. Because of the properties of guaternions,
transitions between the hand locations due fo rotational operations require less
computation, while the translational operations yvield no advantage, We shall
examine their approaches in designing straight-line cartesian paths in the next two
sections.

4.4.1 Homogeneous Transformation Matrix Approach

In a programmable robotic system, the desired motion can be specified as
sequences of cartesian knot points, each of which can be described in terms of
horaogeneous transformations relating the manipulator hand coordinate system to
the workspace coordinate system. The corresponding joint coordinates at these
cartesian knot points can be computed from the inverse kinematics solution routine
and a quadratic polynominal can be used fo smooth the two consecutive joint knot
points in joint coordipates for control purposes. Thus, the manipulator hand is
controlled to move along a straight line connected by these knot points. This tech-
nigue has the advantage of enabling us to control the manipulator hand to track
moving objects. Although the target positions are described by transforms, they
do not specify how the manipulator hand is to be moved from one tramsform to
another. Paul [1979] used a straight-line translation and two rotations to achieve
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the motior between two consecutive cartesian knot points. The first rotation is
about a unit vector k and serves to align the tool or end-effector along the desired
approach angle and the second rotation aligns the orientation of the tool about the
fool axis.

in general, the manipulator target positions can be expressed in the following
fundamental matrix equation:

UTG 6?1091 - chase({} mtwPa»bj (4.4-1)

where
%, = 4 x 4 homogeneous transformation matrix describing the manipula-
tor hand position and orientation with respect to the base coordinate
frame.

T = 4 % 4 homogeneous transformation matrix describing the tool posi-
tion ard orientation with respect to the hand coordinate frame. It
describes the tool endpoint whose mation is to be controlied.

BC (7} = 4 %4 homogeneous transformation matrix function of time describing
the working coordinate frame of the object with respect to the base
coordinate frame.

MP g = 4 x4 homogeneous transformation matrix describing the desired
gripping position and orientation of the object Tor the end-effector
with respect to the working coordinate frame.

If the 5T, is combined with °T, to form the arm matrix, then ool 15 & 4 X 4
identity matrix and can be omitted. If the working coordinate system is the same
as the base coordinate system of the manipulator, then *Ch.(7) is a 4 % 4 identity
matrix at all times.

Looking at Eq. (4.4-1), one can see that the left-hand-side matrices describe
the gripping position and orientation of the manipulator, while the right-hand-side
matrices describe the position and orientation of the feature of the object where we
would like the manipulator’s tool to grasp. Thus, we can solve for “T, which
describes the configuration of the manipulator for grasping the object in a correct
and. desired manner:

Ty = OCu0e (1) Py [T} 4.4-2)

If *T, were evaluated at a sufficiently high rate and converted into corresponding
joint angles, the marnipulator could be servoed to foliow the trajectory.
Utilizing Bq. (4.4-1), a sequence of N target positions defining a task can be
expressed as
T (“Ta)s = [*Crusel )] (™ Py

[gchase(t}]Z (basepehjh (44‘3)

U (*Tooor )2

T Oty = ["Crasel 1) 1y (P 3y
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Simplifying the notation of superscript and subscript in the above eguation, we
have

T, T, = Ci(n) P,

T, = CUD B {4.4-4)

Te'"' Ty = Cn(t) Py

From the positions defined by €;(¢} P, we can oblain the distance between con-
secutive points, and if we are further given linear and angular velocities, we can
obtain the time requested 7; to move from position ¢ to position { + 1. Since tools
and moving coordinate systems arc specified at positions with respect {0 the base
coordinate system, moving from one pesition to the next is best done by specifying
both positions and tools with respect to the destination position. This has the
advantage that the toal appears to be at rest from the moving coordinate sysiem.
In order to do this, we need to redefine the present position and tools with respect
to the subsequent coordinate system. This can casily be done by redefiring the P,
transform using a two subscript notation as Py which indicates the position P;
expressed with respect to the jth coordipate system. Thus, if the manipulator
needs to be controlled from position 1 to position 2, then at position 1, expressing
it with respect to its own coordinate system, we have

T, = Ci() Py, (4.4-5)
and expressing it with respect 10 the position 2 coordinate system, we have
Ts' T, = Cy(1) Py, (4.4-6}
We can now obtain Py; from these equations:
Py = G N0 Ci(0) Py (9T 79T, @47

The purpose of the above equation is to find Py; givea Py;. Thus, the motion
between any two consecutive positions 7 and 7 + I can be stated as 2 motion from

Ts = Cip (P (T ) (4.4-8)
o To = Cisi (1) Prsy jury (') ™! 4.4-9)

where P, ;. and P, ;. represent transforms, as discussed above. Paul {1979]
used a simple way to control the manipulator hand moving from one transform to
the other. The scheme involves a translation and a rotation about a fixed axis in
space coupled with a second rotation about the tool axis to produce controlled
linear and angular velocity motion of the manipulator hand. The first rotation
serves fo align the too! in the required approach direction and the second rotation
serves 1o align the orientation vector of the tool about the ool axis.
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The motion from position i to position i+1 can be cxpressed in terms of a
“drive” transform, DEA), which is a function of a normalized time A, as

Fo(My = Co i M P DOV (O, ) {4.4-10)

where

il

A —;:.)xe{(},i]

¢t = real time since the beginning of the motion
T = total time for the traversal of this segment
At position 1, the real time is zero, M is zero, D(0}) is a 4 X 4 idenfity matrix, and

Py = P B(D) 4.4-1D)
which gives
D) = (Pie) ' Proiins 4.4-12)

Expressing the positions / and i + 1 in their respective homogensous transform
matrices, we have

W st
n 5 £ A A A A
Py £ A= 4 B4 B Pa| _ |y Sy ay P 4.4-13)
0 0 0 1 nt st af pf
i 0 0 0 1
W kb |
B B B B
and P, 2B (U80S W Pryo_am S & Byl ga
o 0 0 | nf sf af pf
00 0 1

Using Eq. (2.2-27) to invert P, ;,; and multiply with P;,, ;4. we obtain

P}A‘“B By« Sp n,-ag ny c(Pg — Pa) E

D1y = | 84 * Mg Sq *Sp 54t 3g S4+(Pg — Pa) | (4.4-15)
Laa’ﬂg &4 "8y Ay g ay - (Pg — Pa)
0 \; 0 ]

where the dot indicates the scalar product of two vectors,

If the drive function consists of a translational motion and two rotational
motions, then both the translation and the rotations will be directly propertional to
A. If A varies linearly with the time, then the resultant motion represented by
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D(x) will correspond to a constant linear velocity and two angular velocities. The
translationzl motion can be represented by a homogeneous transformation matrix
L{A) and the motion will be along the straight line joining P; and P, ;. The first
rotational motion can be represeated by a homogeneous transformation matrix
R, (A} and it serves to rotate the approach vector from P; to the approach vector
at P;, ;. The second rotational motion represented by Ry{h) serves to rotate the
orientation vector from P; into the orientation vecior at Py, | about the tool axis.
Thus. the drive function can be represented as

DAY = LAY R 0N Ry(h) (4.4-16)
where
P00 Ax
0 1 0 Ay ‘
L{A) = 4.4-17
M) g 0 1 A ( )
6 0 0 1
SWVIN) + €MD) - SYCLVING) CYSErgy 0
R,(\) = —SYCYV(NG) CHVM) + CIA)Y  SYS(A) O
— CYS(AG) — S¢S Cixgy 0O
0 0 0 1
(4.4-18)
Ciag) —S(ha) 0 0
Ry(h) = | S(A¢)  C(A¢) 0 L 4.4-19)
0 it 1 0
0 0 0 1]
where
VIr)y = Versine{A) = 1 — cos{Ad) {4.4-20)
Cingy = cos{AB) S(AG)Y = sin{Ad)
Cihd) = cos{hg) S(heg) = sin(Ad)

and A € [0, 1]. The rotation matrix R,(A) indicates a rotation of an angle ¢
about the orientation vector of P; which is rolated an angle of  about the
approach vector. Rg(A) represents a rotation of ¢ about the approach vector of
the tool at P, ).
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Multipiying the matrices in Egs, (4.4-17) 1o (4.4-19) together, we have

1
DOy = |40 do da dp (4.4-21)
0 0 o 1|

where

do = | —S(AG —SYCYVIN)] + COMI[CHYF (M) + CAD ]

~SONGSYV(N) + CA)] + C{Mﬁ){—SvﬁC&V(?\@)JI
—SONI = CYSOM] + COMI ~SYSOAFY]

CYS(ng) | (}w]
da = = Sys(n8) | dp = | Ay |
C(M) L MJ

and dn = do x da

Using the inverse trapsform technique un Eq. (4.4-16), we may solve for x, vy, z
by postmultiplying Eq. (4.4-16) by R7 (VR (M) and equaling the efements of
the position vector,

X o=y {pp — Pyl

i

¥y = 8;+(Pp — Pg} (4.4-22)

T = 4, (Pg — Pa)

By poctmaltlp!ymg both sides of Eq. (4.4-16) by Ry (1) and then premuitiplying
by L7'(M), we can sobve for § and ¥ by equating the elements of the third
column with the elements of the third column from Eq. (4.4-16),

54 +a
¢ = tan"! [—”’ 3} e € Y < T (4.4.23)
ﬁg'ag
ny s ag¥ £ (s, +ag)lh
emmn“‘{“* Bl + (5 B”} 0<h<n (4.4-24)
2y - ag

To find ¢, we premultiply both sides of Eq. {4.4-16) by L™ '(\) and then R H(A)
and equate the elements to obtain

8¢ = —SYCYV(NG)(n, +ng) + [CHV(NG) + COAM (s, » ny)
—S¢S(A6)(a, +ng) {4.4-25)
and Co = —SPCLVINGI(my - 5p) + [CHVING) + C(M) (54 = 55)

— SYS(A8)(m, +sp) {(4.4-26)
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then

¢ = tan”! [2—2} -T < ¢ <K 4.4-27)

Transition Between Two Path Segments. Quite often, a manipulator has to move
on connected straight-line segments to satisfy a task motion specification or to
avoid obstacles. In order to avoid discontinuity of velocity at the endpoint of each
segment, we must accelerate or decelerate the motion from one segment to another
segment. This can be done by initiating a change in velocity r unit of time before
the manipulator reaches an endpoint and maintaining the acceleration constant until
7 wnit of time into the new motion segment {see Fig. 4.3). If the acceleration for
each variable is maintained at a constant value from time —r to v, then the
acceleration necessary to change both the position and velocity is

o 1 7
£y = — | AC— + AB 4.4-28
=2z [ T ] @.4-28)
where —r < ¢t < T and
% [ xpe | v
y Yac Via
@ = | 7 AC = | zac AB = | zp,
8 B 04
L ¢ | #sc | | 9ma

where AC and AB are vectors whose elements are cartesian distances and angles
from points B to € and from points B to 4, respectively.

Path

Time

Figare 4.5 Straight lae transition between two segments.



182 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

From Eq. (4.4-28), the velocity and position for —7 < r < 7 are given by

b
§(r) = - [Ac,i + AB |A — 2B (4.4-29)
T T J T
q(r) = [ [AC% + aBJ A — 2AB }9\ + AB (4.4-30)
where
X i X ]
¥ ¥
an = |z qn = |z N ’;T (4.4-31)
4 é
¢ é
For + <t < 7T, the motion is described by
qg=4aCN q=0 {4.4-32
where
A AL
T

It is noted that, as before, A represents normalized time in the range [0. 1]. The
reader should bear in mind, however, that the normalization factors are usually
different for different time intervals.

For the meotion from 4 to B and to C, we define a ¢ as a linear interpolation
between the motions for —7 < 1 < 7 as

¥ = (ae ~ Yap) N + Y {4.4-33)

where ¥,z and ¥z are defined for the motion from 4 to £ and from B 10 C,
respectively, as in Eq. (4.4-23). Thus, ¢ will change from .z to e

In summary, to move from a position P; to a position P, |, the drive function
D(A) is computed using Egs. (4.4-16) to (4.4-27); then Tg{A) can be evaluated by
Eq. (4.4-10) and the corresponding joint values can be calculated from the inverse
kinematics routine. If necessary, quadratic polynominal functions can be used 1o
interpolate between the points obtained from the inverse kinematics routine.

Example: A robot is commanded to move in sirzight line motion to place a
bolt into one the holes in the bracket shown in Fig, 4.6. Write down all the
necessary matrix equations relationships as discussed above so that the robot
can move along the dotted lines and complete the task. You may use symbols
to indicate intermediate positions along the straight linc paths.
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Figure 4.6 Figure for the example.

Sorumion: Let P; be the cartesian knot points that the manipulator hand must
traverse (i = 0, 1, 2, 3, 4, 5). Then the governing matrix equations are:

At P, [BASE] [T6] [E] = [INIT] [P,) (4.4-34)
AtP. [BASE] [Te] [E] = [BO] [P)] (4.4-35)
AtP,,  [BASE] [T6] [E] = [BO] [P;] (4.4-36)
At P, [BASE] [T6] [E] = [BO] [P;] (4.4-37)
At P, [BASE] |T6| [E] = [BR] [P,] (4.4-38)
At Ps,  [BASE] [T6] [E] = [BR] [Ps] (4.4-39)

where [WORLD], [BASE], IINIT], [BG], [BR], [T6]. [E], [Py], [P,],
[P:]. [P4], {P4], and [P;) are 4 % 4 coordinate matrices. {BASE], [INIT],
[BO], and {BR] are expressed with respect to [WORLD]; {T6] is expressed
with respect to [BASE]; [E] is expressed with respect to [T6]; [Py} is
expressed with respect to [INFT}; [P;), [P;]. and [Py} are expressed with
respect 10 [BC]; and [P;] and [ Ps] are expressed with respect to [BR}].

To move from location Py to location P, we use the double subscript to
describe Eq. (4.4-34) with respect to Py coordinate frame. From Eq. (4.4-34),
we have

[T6] = [BASE] ™! [INIT] [Pyl [E} " (4 .4-40)
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and expressing it with respect to Py, we have
[T6] = [RASE| "' [BO} [Py} [E] ™’ (4.4-41}

Eguating Egs. (4.4-40) and (4.4-41), we have
[Pg,] = [BO]™' [INIT] [Pg] (#.4-42)

Thus, moving from location Py 1o location P, in a straight-line motion means
that the manipulator hand must change configuration from

[T6]

1

{BASE]~' {BO] [Py] [E]™! (4.4-43a)

10 [T6] = [BASE]™' [BO} [P} [E;~! (4.4-435)

il

Moving from locations P, o P, , { = 1, 2, 3, 4, can be solved in the same
manner. (W

4.4.2 Planning Straight-Line Trajectories Using Quaternions

Paul’s straight-line motion trajectory scheme uses the homogeneous fransformation
matrix approach to represent target position. This representation is easy to under-
stand and use. However, the matrices are moderately expensive to store and com-
putations on them require more operations than for some other representations.
Furthermore, matrix representation for rotations is highly redundant, and this may
lead to numerical inconsistencies. Taylor [1979] noted that using a quaternion to
represent rotation will make the motion more uniform and efficient. He proposed
two approaches to the problem of planning straight-line motion between knot
points. The first approach, called cartesian path control, is a refinement of Paul’s
technique but using a quaternion representation for rotations. This method is sim-
ple and provides more uniform rotational motion. However, it requires consider-
able real time computation and is vulnerable io degenerate manipulator
configurations. The second approach, called bounded deviation joint path, requires
a motion planning phase which selects enough knot points so that the manipulator
can be controlled by linear interpolation of joint values without allowing the mani-
pulator hand to deviate more than a prespecified amount from the straight-line
path. This approach greatly reduces the amount of computation that must be done
at every sample interval,

Quaternion Representation. The quaternion concept has been successfully applied
to the analysis of spatial mechanisms for the last several decades. We shall use
quaternions to facilitate the representation of the orientation of a manipulator hand
for planning a straight-line trajectory. A quaternion is a quadruple of ordered real
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numbers, s, a, b, ¢, assogiated, respectively, with four units: the real number + 1,
and three other units i, J, k, having cyclical permutation:

P o K 1
ij=k jk =1 Ki=j
ji= -k Kj = —i ik = —}

The units i, j, k of a quaternion may be interpreted as the three basis vectors of a
cartesian set of axes. Thus, a quaternion (J may be written as a scalar part 5 and a
vector part v:

g=ls+v¥] =5+ ai4+bj+ck=1(s54ab ) 4 .4-44)

The following properties of quaternion algebra are basic:

Scalar part of O 5

Vector part of Q: ai + bj + ck

Conjugate of ¢ s = {(ai + b} + ck)

Norm of b a® b+ R

s —~ (ai + Bj + ck)

s+ at + B2

Unit quaternion: s+ ai+ bj+ck,where 5P +a? + b2+t = |

Reciprocal of ©

It is important to note that quaternions include the real numbers (s, 0, 0, 0) with
a singie unit 1, the complex numbers (s, a, 0, 0) with two units 1 and i, and the
vectors (0, a, b, ¢) in a three-dimensional space. The addition (subtraction) of two
guaternions equals adding (subtracting) corresponding elements in the guadruples.
The multiplication of two quaternions can be written as

O = (s +ayi + bj + ¢ K)Msy + a1 + byj + eyk)

= (518 = Vg b SV b S b v X 1) (4.4-45)
and is obtained by distributing the terms on the right as in ordinary algebra, except
that the order of the units must be preserved. In general, the product of two vec-
tors in three-dimensional space, expressed as quaternioms, is not a vector but a
quaternion. That is, ¢ = [0 + v;] = (0, &, by, oy} and @7 = [(} + v;] =
(0, &z, b2, ;) and from Eq. (4.4-45),

Qs = —Vy=¥ + ¥ X W

With the aid of quaternion algebra, finite rotations in space may be dealt with
in a simple and efficient manner. If we use the notation

|8 —eos 0
§ = sin [—i—} and C = cos {2]
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then we can represent a rotation Rot (n, #) of angle ¢ about an axis n by a

guaternion,
| o G . .
Rot{ma, 4) = | cos Y <+ sin Y nJ {4.4-46)
Example: A rotation of 90° about k followed by a rotation of 907 about j is

represented by the quaternion produet

(cosd5° + jsind5°)(cos45° + Kaind5®) = (V2 + j¥2 + k% + i)

(%+1+J«§~ku\f’_3mJ

L V3 2

= (COSESQO + sinéO“W
L

H

V3
= Rot [W 120°J

The resultant rotation is a rotation of 120° about an axis egually inclined to
the i, J, k axes. Note that we could represent the rotations about the j and k
axes using the rotation matrices discussed in Chap. 2. However, the quaternion
gives a much simpler representation. Thus, one can change the representation
for rotations from quaternion o matrix or vice versa. [

For the remainder of this section, finite rotations will be represented in quaternion
as Rot (n,#) = [cos (6/2) + sin(#/2n] for a rotation of angle # about an axis
n. Table 4.5 lists the computational requirements of some common rotation opera-
tions, using guaternion and matrix representations.

Table 4.5 Computational requirements using guaternions
and matrices

Quaternion Matrix
Qperation representation representation
R:R; 9 adds, 16 maitiplies 15 adds, 24 multipiics
Rv 12 adds, 22 multiplies 6 adds, 9 muftiplies
R — Rot(n, ) 4 mukiphes, 8 adds, 18 multiplies,
1 square roet. 2 square Foots,

1 arclangent | arctangent
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Cartesian Path Control Scheme. It is required to move the manipulator’s hand
coordinate frame aloag a straight-line path between two knot points specified by F,
and F, in time T, where each coordinate frame is represented by a homogeneous

transformation matrix,
F, = R, p
g 1

The motion along the path consists of translation of the tool frame's origin from py
1o p; coupled with rotation of the tool frame orientation part from Ry to R,. Let
A(r) be the remaining fraction of the motion still to be traversed at time 1. Then
for uniform motion, we have

A(E) = T; ! (4.447)

where T is the total time needed fo traverse the segment and 7 is time starting from
the beginning of the segment traversal. The tool frame’s position and orientation
at time 7 are given, respectively, by

p() = pi — APy — po) (4.4-48)
R(:} = RiRot in, —8h (1)) (4.4-49)

where Rot{n, 4} is a rotation by # about an axis n o reorient R, into R,
Rot (m, 8) = Ry'R, (4.4-50)

wiere Rot (n, #) represents the resultant rotation of Ry 'R, in quaternion form,
It is worth noting that p; ~ po in Eq. (4.4-48) and n and & in Eg. (4.4-49) need
to be evaluated only once per segment if the frame F, is fixed. On the other hand,
if the destination point is changing, then F, will be changing too. In this case,
P — Po. 1, and @ should be evaluated per step. This can be accomplished by the
pursuit formulation as described by Taylor [1979].

If the manipulator hand is required to move from one segment to another
while maintaining constant acceleration, then it must accelerate or decelerate from
one Segment o the next. In order to accomplish this, the transition must start 7
time before the manipulator reaches the intersection of the two segments and com-
plete the transition 1o the new segment at time 7 after the intersection with the new
segment has been reached. From this requirement, the boundary conditions for the
segment fransifion are

TApl
T

plly, — 7y = p; — 4.4-51)
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TAp:

o+ 7 =p + (4.4.52)

T

d Ap
Ep(f)imn-f = (4.4-53)

d Apy
e . b 4 4.54
e p(”;:m’ﬂ%w‘ Tz ( )

where Apy = p; — pu, APz = Py — Py, and 7| and 7, are the traversal times
for the two segments. If we apply a constant acceleration 10 the transition,
2

d
;};}wp(i} = A, (4.4-55)

then imtegrating the above equation twice and applying the boundary conditions
gives the position equation of the tool frame,
pii'y = p; — MAP + (T"‘"—rr)zdpz (4.4-56)
! 4T, ! 45T,
where ¢ = T) — ¢ is the time from the intersection of two segments,  Similarly,
the orientation equation of the tool frame is obtained as

) Y] "2
R(r) = R,Rot ! n;, _EZ;’I":_)Q* J Rot {nz, —%25—}“62 J (4.4-57)
L

where
Rot (m;, #;) = B; 'R, and  Rot(m,, &) = R['R,

The last two terms represent the respective rotation matrix in guaternior form,
The above equations for the position and orientation of the tool frame afong the
straight-line path produce a smooth transition between the two segments. It is
worth pointing out that the angular acceleration will not be constant unless the axes
n; and ny are parailel or unless one of the spin rates

_ & 8,
¢ = ““;,2;“ or gy = T

is zero.

Bounded Deviation Joint Path. The cartesian path control scheme described
above requires a considerable amount of computation timme, and it is difficult to
deal with the constraints on the joint-variable space behavior of the manipulator in
real time. Several possible ways are available to deal with this problem. One
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could precompute and store the joint solution by simulating the real time algorithm
hefore the execution of the motion. Then motion execution would be trivial as the
servo set points could be read readily from memory. Another possible way is to
precompute the joint solution for every nth sample interval and then perform joint
interpolation using low-degree polynominals to fit through these intermediate points
to generate the servo set poiats. The difficulty of this method is that the number
of intermediate points required to keep the manipulator hand acceptably close to
the cartesian straight-Hine path depends on the particular motion being made. Any
predetermined interval small enough to guarantee small deviations will require a
wasteful amount of precomputation time and memory storage. In view of this,
Taylor {1979} proposed a joint variable space metion strategy called bounded devi-
ation joint path, which selects enough intermediate points during the preplanning
phase to guarantee that the manipulator hand’s deviation from the cartesian
straight-line path on each motion segment stays within prespecified error bounds.

The scheme starts with a precomputation of all the joint solution vectors q;
corresponding to the knot points F; on the desired cartesian straight-line path. The
joint-space vectors q; are then used as knot points for a joint-variable space inter-
polation strategy analogous to that used for the pesition equation of the cartesian
control path. That is, for motion from the knot point g to q;, we have

n —1
901 = 4 — —x— Ay {4.4-58)
i

and, for transition between qq to q and g to gy, we have

(r — 1) (r + 1)

4.4.59
4T, Agq) + Aq ( }

glr) = q —

where Aq, = ¢ — @y, Agy = ¢ — ¢, and Ty, 5, 7, and " have the same
meaning as discussed before. The above equations achieve uniform velocity
between the joint knot points and make smooth transitions with constant accelera-
tion between segments. However, the tool frame may deviaie substantially from
the desired straight-line path. The deviation error can be seen from the difference
between the F;(/), which corresponds to the manipulator hand frame at the joint
knot point q;(t), and F,(r), which corresponds to the the manipulator hand frame
at the cartesian knot point F,(¢). Defining the displacement and rotation deviations
respectively as

o
|

= |pdn) — palt}] (4.4-60)

»

= |angle part of Rot (n, ¢) = R, (2} R;{(1}] (4.4-61)

=7
[

= |¢|
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and specifying the maximum deviations, ;' and 8§**, for the displacement and
orientation parts, respectively, we would like to bound the deviation errors as

8, € 8" and 8p < & {4.4-62}
With this deviation error bounds, we need to select enocugh intermediate points
between two consecutive joint knot points such that Eq. (4.4-62) is satisfied. Tay-
lor [1979] presented a bounded deviation joint path which is basically a recursive
bisector method for finding the intermediate points such that Eq. (4.4-62) is
satisfled. The algorithm converges quite rapidly to produce a good set of inter-
mediate points, though they are not a2 minimal set. His algorithm is as follows.

Algorithm BDJP: Given the maximum deviation error bounds 67°* and 575"
for the position and orientation of the tool frame, respectively, and the carte-
sian knot points ¥, along the desired straight-line path, this algorithm selects
enough joint krot points such that the manipulator hand frame will not deviate
more than the prespecificd error bounds along the desired straight-line path.

S1. Compute joint solwtion. Compute the joint solution vectors g, and g
corresponding to Fy and F,, respectively,
82. Find joimt space midpeint. Compute the joint-variable space midpoing

Q. = ¢ ~ %A

where Aqy = @; — gy, and use q,, o compute the hand frame F,,
cotresponding to the joint values q,,.
83. Find cartesian space midpoint. Compute the corresponding cartesian path
midpeint F,:
N .
B = BTh and R, = R Rot | n,, ——ﬁmw
2 2 )
where Rot (n, §) = R;'R,.
S4. Find the deviation errors. Compute the deviation error between F,, and
F.

8, = P — pel 8g = Jangle partof Rot (m, ¢) = R7'R,, |

il

[¢l

85, Check ervor bounds. If §, < 8% and b < 8F™, then stwop. Otherwise,
compute the joint solution vector q. corresponding to the cartesian space
midpoint F,, and apply steps 52 to 85 recursively for the two subseg-
ments by replacing F, with F. and F, with F,.

Convergence of the above algorithm is quite rapid. The maximum deviation
error is usually reduced by approximately a factor of 4 for each recursive iteration.
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Taylor |1979] investigated the rate of convergence of the above algorithm for a
cylindrical robot {two prismatic joints coupled with a rotary joint) and found that it
ranges from a factor of 2 to a factor of 4 depending on the positions of the mani-
pulator hand.

In summary, the bounded deviation joint path scheme relics on a preplanning
phase to interpolate enough intermediate poiais in the joint-variable space so that
the manipularor may be driven in the joint-variable space without deviating more
than a prespecified error from the desired straight-line path,

4.4.3 Cubic Polynomial Joint Trajectories
with Torgue Constraint

Taylor’s straight-line trajectory planning schemes generate the joint-space vectors
fq(r), §(r), G{r)} along the desired cartesian path without taking the dynamics of
the manipulator into consideration. However, the actuator of each joint is subject
to saturation and cannot furnish an unlimited amount of torque and force. Thus,
torque and force constraints must be considered in the planning of straight-line tra-
jectory. This suggests that the control of the manipulator should be considered in
two coherent phases of execution: off-line optimum trajectory planning, followed
by on-line path tracking control.

In planning a cartesian straight-line trajectory, the path is constrainted in carte-
sian coordinates while the actuator torgues and forces at each joint is bounded in
joint coordinates. Hence, it becomes an optimization problern with mixed con-
straints (path and torque constraints) in two different coordinate systems. One
must cither convert the cartesian path into joint paths by some low-degree polyno-
mia! function approximation and optimize the joint paths and control the robot at
the joint level (Lee and Chung [1984]); or convert the joint torgue and force
bounds into their corresponding cartesian bounds and optimize the cartesian path
and control the robot at the hand level (Lee and Lee [1984]).

Although it involves aumerous nonlinear transformations between the cartesian
and joint ¢oordinates, it is ecasier to approach the tralectory planning problem in
the joint-variable space. Lin et al. [1983] proposed a set of joint spline functions
to fit the segments among the selected knot points along the given cartesian path.
This approach involves the conversion of the desired cartesian path into its func-
tional representation of A joint trajectories, one for each joint. Since mo transfor-
mation is known to map the straight-line path into its equivalent representation in
the joint-variable space, the curve fitting methods must be used to approximate the
cartesian path. Thus, to approximate a desired cartesian path in the joint-variable
space, one can select enough knot points along the path, and each path segment
specified by two adjacent knot points can then be inferpolated by N joint pelyno-
mial fanctions. one function for each joint trajectory. These functions must pass
through the seleclted knot points. Since cubic polynomial trajectories are smooth
and have smail overshoot of amgular displacement between two adiacent knot
points, Lin et al. [1983] adopted the idea of using cubic spline polynomials to fit
the segment between two adjacent knots. Joint displacements for the n — 2
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selected knot points are interpolated by piecewise cubic polynomials. In order o
satisfy the continuity conditions for the joint displacement, velocity, and accelera-
tion on the entire trajectory for the cartesian path, two extra knot points with
unspecified joint displacements must be added to provide enough degrees of free-
dom for solving the cubic polynomials under continuity conditions. Thus, the total
number of knot points becomes n and each joint trajectory consists of n — I
piecewise cubic polynomials. Using the continuity conditions, the two extra knot
points are then expressed as a combination of unknown variabies and known con-
stanis. Then, only n — 2 equations need to be solved. The resultant matrix equa-
tion has a banded structure which facilitates computation. After solving the matrix
equation, the resulting spline functions are expressed in terms of time intervals
between adjacent knots. To minimize the total traversal time along the path, these
time intervals must be adjusted subject 1o joint comstraints within each of the
n — 1 cubic polynomials. Thus, the problem reduces to an optimization of
minimizing the total traveling time by adjusting the time intervals.

Let H(¢) be the hand coordinate system expressed by 4 4 X 4 homogeneous
transformation matrix. The hand is required to pass through a sequence of n
cartesian knot points, {H{(z; ), H(z;), . . . ,H(r,}}. The corresponding joint posi-
tion vectors, (qis, 21, .+ - - qm)s (Qu2s Goze - oGm)s - (G G215 e - s
qnn), 8t these m cartesian knot points can be solved using the inverse kinematics
routine, where g, is the angular displacement of joint j at the jfth knot poim
corresponding to H;(r). Thus, the objective is to find a cubic polynomial trajec-
tory for cach joint j which fits the joint positions (gl ). gpin). .. ., gult)],
where f; < #; < --- <, is an ordered time sequence indicating when the
hand should pass through these joint knot points. At the initial ime ¢ = 1, and
the final time ¢ = 4,, the joint displacement, velocity, and acceleration are
specitied, respectively, as g1, v;, a; and jns Yin» 4. In addition, joint displace-
ments gy at £ = & for k = 3, 4,. .. ,n—2 are also specified for the joint tra-
jectory to pass through. However, g, and g,., are not specified; these are the two
extra knot points required to provide the freedom for solving the cubic polynomi-
als.

Let Q) be the piecewise cubic polynomial function for joint j between the
knot points H; and H; |, defined on the time interval {7, £, ,]. Then the problem
is o spline Q;(1), for i = 1,2, ... ,n—1, together such that the required dis-
placement, velocity, and acceleration are satisfied and are continuous on the entire
time interval [#,, #,]. Since the polynomial {,;(¢) is cubic, its second-time deriva-
tive J;;(7) must be a linear function of time ¢,

i=1,...,n-1
(
Qi) = Qﬂ(f) + Q,,( fis1) (4.4-63)
Jj=1,... N
where u;, = .y — 1 is the time spent in traveling segment /. Integrating Q;(7)

twice and satisfying the boundary conditions of :t) = q; and
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Qillie:} = g4 leads to the following interpolating functions:

Thus, for i = 1,2, ..

Q1) Q"f(?f 1)
Q;i(f) = “““‘é“;f({;“ """"1)3 + —!6—?«“«{1 -

] G i élséﬁ(f;n)

+ o= {1—1)
Lo 6
Y w @y

+ “;i;”m““““%"m}({fﬂ_f)
i=1id,....n—1
j=1,... N

3
3

{4.4-64)

cone L, Qu(r) s determined if 0y(r,) and Q{14 ) are

known. This leads to a system of » — 2 linear equations with snknowns (%)

fori = 2,...
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The banded structurs of the matrix A makes it easy to solve for Q which is substi-
tuted into Egq. (#.4-63) 1o obtain the resulting solution Q;:¢4). The resulting solu-
tion ;{r) is given in terms of time intervals w; and the given values of joint dis-
placements, velocities, and accelerations. The above bended matrix A of Eq.
{4.4-64) is always nonsingular if the time intervals w; are positive. Thus, the cubic
polyromial joint trajectory always has a unique solution.

Since the actuator of each joint motor is subject to saturation and cannot fuc-
nish an unlimited amount of torque and force, the total time spent on traveling the
specified path approximated by the cubic polyromials is constrainted by the max-
imumm values of each joint velocity, acceleration, and jerk which is the rate of
change of acceleration. In order o maximize the speed of traversing the path, the
total traveling time for the manipulator must be minimized. This can be achicved
by adjusting the time intervals u; between two adjacent knot points subject to the
velocity, acceleration, jerk. and torque constraints. The problem can then be
stated as:

Minimize the objective function

T=7Y u (4.4-66)

subject to the following constraints;

Velocity constraint: §Q‘J,—,-(t}§ <V f =1,....N
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Jj=1,._., N
Acceleration constraint: ééﬁ(t}i < 4 i=1 a1
. d* j=1,....N
Jerk constraint: Qi < 7,
dt i=1, =1
Torque constraint: [r40] < Ty Jj=1....N

where T is the total traveling time, V;, A4;, J;, and T; are, respectively, the velo-
city, acceleration, jerk, and torque limits of joint j.
The above constraints can be expressed in explicit forms as follows.

Velocity Constraints. Differentiating Eq. (4.4-64), and replacing Qj,-(t,) and
Qaltiery by wy; and w; 4, respectively, leads to the following expressions for

Q1) and @(1):

. A @; g Q',‘ ll‘b)"‘
Gilt) = Sty = 07 4 S50 - ) [ e ’_”"‘}
i

2u 2u, 1; 6
[@ . m] (4.4-67)
#; G
s Wiie @i
and Qj;(f) = e (e [} “;;““{f “ Ly} (4.4-68)
i f

where w;; 15 the acceleration at H; and equal to Qﬁ(z,-) if the time instant at which
@;(¢) passes through H; s,

The maximum absolute value of velocity exists at f, ., or 1, where
reln, tio] and satisfies Qﬁ(f;) = (. The velocity constraints then become

max |st§ = max ['|Qﬁf!;)Ey EQ;:‘(%‘H)!; EQ;‘;(;;)EE sV

rE i, hoed
i=1,2,..., n—1 {4.4-69)
i=12,. N
where
: Wi - Giiel ™ G (wy — @y iet;
. = A e
EQ_}}.([I)E I Z,uf u, 6
EQ o] = E w,;‘,f+su + I ES B + {wj — w1410 |
il ) =

2 i i 4] ‘
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and

Wk 1y + (e — wjiis ) N Giivl — 4y
. | 2wy~ wyiag) 6 u;
1) =

foy # w, . and s €[4, 1]

L 0 wy =wyort €[4, 1,

Acceleration Constraints, The acceleration is a linear function of time between
iwo adjacent knot points. Thus, the maximum absolute value of acocleration
oceurs at either 4; or 1,1 and equals the maximum of flwsl, jw,ies]}. Thus, the
acceleration constraints become

max {{w;|, fwpl, . .., fwpl} € A, J=L2 .. N 4470

Jerk Constraints. The jerk is the rate of change of acceleration. Thus the con-
straints are represented by

P= 12, .., ,0—1 4.4-71)

Torque Constraints. The torque (r) can be computed from the dynamic equa-
tions of motion [Eq. (3.2-25)]

N - N N . R
r{r) = X:]Djk(Q[(!}}ij‘{I) + AE X;'?ﬁcm(fo!}}Qiu'(f}sz{!) + e Q1))
ks k=1 s
{(4.4-72)

where
j=12 ... N
Qi) = (il Qo). ..., Qu))T

i=1,2,...,8 — |

If the torque constraints are not satisfied, then dynamic time scaling of the trajec-
tory must be performed to ensure the satisfaction of the torque constraints {Lin and
Chang [1985]. Hollerbach [1984)).

With this formulation, the objective is 1o find an appropriate optimization algo-
rithi that will minimize the total traveling time subject to the velocity, accelera-
tion, jerk, and torque constraints. There are several optimization algorithms avail-
able, and Lin et al. [1983) wtilized Nelder and Mead’s Aexible polyhedron search
to obtain an iterative algorithm which minimizes the total traveling time subject to
the comstraints on joint velocities, accelerations, jerks, and torgues. Results asing
this optimization technique can be found in Lin et al. [1683].
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4.5 CONCLUDING REMARKS

Two major approaches for frajectory planning have beea discussed: the joint-
interpolated approach and the carfesian space approach. The joint-interpolated
approach plans polynomial sequences that yicld smooth joint rajectory. In order
to yield faster computation and less extranecus motion, lower-degree polynomial
sequences are preferred. The joint trajectory is split into several trajectory seg-
ments and each trajectory segment is splined by a low-degree polynomial. In par-
ticular, 4-3-4 and five-cubic polynomial sequences have been discussed.

Several methods have been discussed in the cartesian space planning. Beeause
servoing is done in the joint-variable space while a path is specified in cartesian
coordinates, the most comumon approach is to plan the straight-line path in the
joint-variable space using low-degree polynomials to approximate the path. Paul
{1979] used a transiation and two rotations to accomplish the straight-line motion
of the manipuiator hand. Tavlor [1979] improved the technique by using a
quaternion approach fo represent the rotational operation. He also developed a
bounded deviation joint control scheme which involved selecting more intermediate
interpolation points when the joint polynomial approximation deviated too much
from the desired straight-line path. Lin et al. [1983] used cubic joint polynomials
to spline n interpolation points sclected by the user on the desired straight-line
path. Then, the total traveling time along the knot peints was minimized subject to
joint welocity, acceleration, jerk, and torque constraints. These techniques
represent a shift away from the real-time planning objective to an off-line planning
phase. In essence, this decomposes the control of robot manipulators into off-line
motion planning followed by on-line tracking contrel, a topic that is discussed in
detaii in Chap. 5.
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Further reading on joint-interpolated trajectories can be found in Paul [1972],
Lewis [1973, 1974], Brady et al. [1982], and Lee et al. [1986]. Most of these
joint-interpolated trajectories seldom include the physical manipulator dynamics
and actuator torque limit into the planning schemes. They focused on the require-
ment that the joint trajectories must be smooth and continuous by specifying velo-
city and acceleration bounds along the trajectory. 1In addition to the continuity
constraints, Hollerbach [1984] developed a time-scaling scheme to determine
whether a planned trajectory is realizable within the dynamics aad torque limits
which depend on instantaneous joint position and velocity.

The design of a manipulator path made up of straight line segments in the
cartesian space is discussed by Paul [1979], using the homogeneous transformation
matrix 1o represent target positions for the manipulator hand to traverse. Move-
ment between (wo consecutive target positions is accomplished by two sequential
operations: a transiation and a rotation to align the approach vector of the manipu-
iator hand and a final rotation about the tool axis to align the gripper orientation.
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A quadratic polynomial interpolation routine in the joint-variable space is then used
to guarantee smooth transifion between two connected path segments.  Taylor
[1979], using the quaternion representation, extended Paul’s method for a better
and uniform motion, In order to achieve real-time trajectory planning objective,
both approaches neglect the physical manipulator torque constraint,

Other cxisting cartesian planning schemcs are designed to satisfy the continuity
and the torque comstraints simultaneously. To include the torque consteaint in the
trajectory planming stage, one usuaily assumes that the maximum allowabic torque
is constant at every position and velocity. For example, instead of using varying
torque constraing, Lin et al. [1983] and Luh and Lin [1984] used the velocity,
acceleration, and jerk bounds which are assumed constant for each joint. They
selected several knot points on the desired cartesian path, solved the inverse
kinematics, and found appropriate smooth, lower-degree polynomial functions
which guaranteed the continuity conditions to it through these knot points in the
joint-variable space. Then, by relaxing the normalized time to the servo time, the
dynamic constraint with the constant torque bound assumption was included along
the trajectory. Due to the joint-interpolated functions, the location of the manipu-
fator hand at each servo instant may not be exactly on the desired path, but rather
on the joint-interpolated polynomial functions.

Lee [1983] developed a discrete time trajectory planning scheme to determine
the trajectory set poinis exactly on a given straighi-line path which satisfies both
the smoothness and torque constraints. The trajectery planning problem is formu-
lated as a maximization of the distance between two consccutive cariesian set
points on 2 given straight-line path subject o the smoothness and forque con-
straints.  Pue to the discrele time approximations of joint velocity, acceleration,
and jerk, the optimization solution involves intensive computatiors which prevent
useful applications. Thus, to reduce the compatational cost, the optimization is
realized by jterative search algorithms.

PROBLEMS

4.1 A single-link rotary robot is required to move from 6(0} = 30° to §(2) = i00° in
2 5. The joint velocity and acceleration are both zero at the initial and final positions,
{a) What is the highest degree polynomial that can be used to accomplish the motion?
{b) What is the lowest degree polynomial that can be used to accomplish the motion?

4.2 With reference to Prob. 4.1, () determine the coefficients of a cubic polynomial that
accomplishes the motion: (b) determine the coefficients of a quartic polynomial that accom-
plishes the motion; and (¢} determine the coeflicients of a quintic polynomial that accom-
plishes the motion. You may split the joint trajectory into several trajectory segments.

4.3 Consider the two-link robot arm discussed in Sec. 3.2.6, and assume that each link is }
m long. The robot arm is required 0 move from an initial position {xy, 3 ) = (1.96, 0.50)
to a final position (x;. v:) = (1.00, 0.75). The initial and final velocity and acceleration are
zero. Determine the coefficients of & cubic polynomial for each joint to accomplish the
motion. You may split the joint trajectory into several trajectory segments.
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4.4 In pianning a 4-3-4 trajectory one needs to solve a matrix eguation, as in Eq. {4.3-46).
Does the matrix inversion of Eg. (4.3-46) always exist? Justify your answer.

4.5 Given a PUMA 360 series robot arm whose joint coordinate frames have been esta-
blished as in Fig. 2.11, you are asked to design a 4-3-4 (rajectory for the following condi-
tions; The initial position of the robot arm is expressed by the homogeneous transformation
matrix Ty

—0.660 —0436 ~0512 - 184.009
~0.750 0433 0.500 892250 |
0.047  0.789 ~0.612 34599 |
L0 0 0 T

Ti‘zailiai =

The final position of the robot arm is expressed by the homogeneous transformation matrix
Thn&E
. .
~0.933 0064 0.355 412.876
—-0.122 0.982 -—0.145 596051
-(0.330 0179 —-0924 —3545.860
& & {} 1 j

p
Ehmil -

The lifi-off and set-down positions of the robot arm are obtained from a rule of thumb by
taking 25 percent of dy (the value of dg s 56.25 mm). What are the homogeneous transfor-
mation matrices at the {ift-off and set-down positions {that is, Tuson 200 Teergonn 7

4.6 Given a PUMA 3560 series robot arm whose joint coordinate lrames have been esta-
blished as in Fig. 2.11, you are asked o design a 4-3-4 trajectory for the following condi-
tions: The initiai position of the robot arm is expressed by the homogeneous transformation
matrix T

w | 0 0 0 i

Tiﬁinui = 0 ! o 600.0
0 & -1 =000

I 1 J

The set-down position of the robot arm is expressed by the homogeneous transformation
matrix T down:

T
10 ; 0 %0&@]
T&et-d@wﬂ = ! o 0 400.0
0 -1 =500
o6 0 0 1

(ay The lift-off and set-down positions of the robot arm are cobtained from a rute of thumb
by taking 25 percent of ¢, ( the value of d; is 56.25 mm) plus any required rotations.
What is the homogeneous transformation matrix at the lift-off (that is, Fyq..e} if the hand is
rotated 60° about the s axis at the initial point to arrive at the lift-off poim? (b} What is
the homogeneous transformation matrix at the final position {that is, Tga) if the hand is
rotated ~ 607 about the s axis ai the set-down point 10 arnive at the final position?
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4.7 A manipuiator is required to move along a straight line from point A 1o point B, where
A and B are respectively described by

~1 00 5 0 -1 0 20
A= | 01010 wd B= | O 0130
001 15 -1 00 5
000 1] 0 00 1

The motion from A to B consists of a translation znd two rotations, as deseribed in Sec.
4.4.1. Determine 6, v, ¢ and x, v, z for the drive transform. Aslo find three imtermediate
transforms between A and B.

4.8 A manipulator is required to move along a straight lne from point A to point B rotat-

ing at constant angular velocity about a vector k and at an angle #. The points A and B are
given by a 4 % 4 homogeneous transformation matrices as

-1 00 10 6 -1 0 10
A=1 01010, p_ 1 @ 01 30
00 1 10 -1 0 0 10}
000 1 0 00 1

Find the vector k and the angle #. Also find three intermediate transforms between A and
B.

4.9 Express the rotation resuits of Prob. 4.8 in quaternion form.

4.1¢ Give 3 quaternion represenfation for the following rotations: a rotation of 60° about |
followed by a rotation of 120* about §. Find the resultant rotation in guaternion representa-
tion.

4,71 Show that the inverse of the banded structure matrix A in Eq. (4.4-64) always exists,





