CHAPTER

FIVE
CONTROL OF ROBOT MANIPULATORS

Eet us realize that what happens around us
is largely outside our conirol, but that

the way we choose to reaet to it

is inside our control.

Quotred by J. Petty in “Appies of Gold"™”

5.1 INTRODUCTION

Given the dypamic equations of motion of a manipulator, the purpose of robot arm
control is to maintain the dynamic response of the manipulator in accordance with
some prespecified performance eriterion. Although the control  problem can be
stated in such a simple manner, its solution is complicated by inertial forces, cou-
pling reaction forces, and gravity joading on the links. In general, the control
problem consists of (1) obtaining dynaric models of the manipulator, and (2)
using these models to determine control laws or strategies o achieve the desired
system response and performance. The first part of the control prc)bggm has been
discussed extensively in Chap. 3. This chapter concentrates on the latter part of
the control problem.

From the control analysis point of view, the movement of a robot arm is usu-
ally accomplished in two distinct controf phases. The first is the gross motion con-
trol in which the arm moves from an initial pesition/orientation to the vicinity of
the desired target position/orientation along a planned trajectory. The second is
the fine motion control in which the end-effector of the arm dynamically interacts
with the object using sensory feedback information to complete the task.

Current industrial approaches to roboet arm control system design treat ecach
joint of the robot arm as a simple joint servomechanism. The servomechanism
approach models the varying dynamics ol a manipulator inadequately because it
neglects the motion and configuration of the whole arm mechanism. These
changes in the parameters of the controlled system are significant enough to render
conventional feedback control strategies ineffective. The result is reduced servo
response speed and damping, limiting the precision and speed of the end-effector
and making it appropriate only for limited-precision tasks. As a result, manipula-
tors controlied this way move at slow speeds with unnecessary vibrations. Any
significant performance gain in this and other areas of robot arm control require
the consideration of more efficient dynamic models, sophisticated contrel tech-
niques, and the use of computer architectures. This chapter focuses on deriving
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202 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

strategies which utilize the dynamic models discussed in Chap. 3 to ¢fficiently con-
trol a manipulator.

Considering the robot arm corfrol as a path-trajectory tracking problem (see
Fig. 5.1), motion control can be classified into three major categories for the pur-
pose of discussion:

1. Joint motion controls

Joint servomechanism (PUMA robot arm control scheme)
Computed torque technigue

Minimum-time control

Variable structure contro}

Nonlinear decoupled controi

2. Resolved motion controls {cartesian space control}

Resolved motion rate control
Resolved motion acceleration control
Resolved mation force control

3. Adaptive controls

Model-referenced adaptive control

Self-tuning adaptive contrel

Adaptive perturbation control with feedforward compensation
Resolved motion adaptive control

For these control methods, we assume that the desired motion is specified by a
time-based path/trajectory of the manipulator either in joint or cartesian coordi-
nates. Each of the above control methods will be described in the following sec-
tions.

Disterbances

Trajectory
planning

Controlier

Manipuiator

Sensers
and
welimalurs

!
[atesface

Figure 5.1 Basic conirol block diagram for robot manipulators.
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5.2 CONTROL OF THE PUMA ROBOT ARM

Current industrial practice treats each joint of the robot arm as a simple ser-
vomechanism. For the PUMA 360 serics robot arm, the controller consists of a
DEC LSE11/02 computer and six Rockwell 6503 microprocessors, each with a
joint epcoder, a digital-to-analog converter {DAC), and a current amplifier. The
control structure is hierarchically arranged. At the top of the sysiem hierarchy is
the LSI-11/02 microcomputer which serves as a supcrvisory computer. At the
Tower level are the six 6503 microprocessors—one for each degree of freedom (see
Fig. 5.2). The LSI-11/02 computer performs two major functions: {1} on-line user
interaction and subtask scheduling from the user’s VALY commands, and (2) sub-
task coordingtion with the six 6503 microprocessors o carry out the command,
The on-line interaction with the user includes parsing, interpreting, and decoding
the VAL commands, in addition to reporting appropriate error messages o the
user. Once a VAL command has been decoded, various intermal routines are
called to perform scheduling and coordinstion functions. These functions, which
reside in the EPROM memory of the LSI-11/02 computer, include:

1. Coordinate systems transformations (e.g., from world to joint coordinates or
vice versa).

2. Joint-interpolated trajectory planning; this involves sending incremental location
updates corresponding to each set point to cach joint every 28 ms,

3. Acknowledging from the 6303 microprocessors that each axis of motion has
completed its required incremental motion.

4. Looking ahead two instructions to perform continuous path interpolation if the
robot is in a continuous path mode.

At the lower level in the system hierarchy are the joint controllers, each of
which consists of a digital servo board, an analog servo board, and a power
amplifier for each joint. The 6303 microprocessor is an integral part of the joint
controller which directly controls each axis of motion. Each microprocessor
resides on a digital servo board with its EPROM and DAC. T communicates with
the LSI-11/02 computer through an interface board which functions as a demulti-
plexer that routes trajectory set points information to each joint controller, The
interface board is in turn comnected to a 16-bit DEC paralle! interface board
(DRV-11) which transmits the data to and from the Q-bus of the LSI-11/02 (see
Fig. 5.2}, The microprocessor computes the joint error signal and sends it to the
analog servo board which has a current feedback designed for each joint motor.

There are two servo loops for each joint control {see Fig. 5.2). The outer
loop provides position error information and is updated by the 6503 microproces-
sor about every 0.875 ms. The inner ioop consists of analog devices and a com-

t VAL is a software package from Urimation Inc. for control of the PUMA robut anmn.
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Figure 5.2 PUMA robot arm servo control architecture.

pensator with derivative feedback to dampen the velocity variable. Both servo
loop gains are constant and funed to perform as a “eritically damped joint system”™
at a speed determined by the VAL program. The main functions of the micropro-
cessors include:

1. Every 28 ms, receive and acknowledge trajectory set points from the LSE-11/02
computer and perform interpolation between the current joint value and the
desired joint value. ‘

2. Bvery 0.875 ms, read the register value which stores the incremental values
from the encoder mounted at each axis of rotation.

3. Update the error actuating signals derived from the joint-interpotated set points
and the values from the axis encoders.

4. Convert the error actuating signal to current using the DACs, and send the
current to the analog servo board which moves the joint.

It can be seen that the PUMA robot control scheme is basically a proportional
plus integral plus derivative control method (PID controller), One of the main
disadvantages of this control scheme is that the feedback gains are constant and
prespecified. It does not have the capability of updating the feedback gains under
varying payloads. Since an industrial robot is a highly nonlinear system, the iner-
tial loading, the coupling between joints and the gravity effects are all either
position-dependent or position- and velocity-dependent terms. Furthermore, at
high speeds the inertial loading term can change drastically. Thus, the above con-
trol scheme using constant feedback gains to control a nonlinear system does not
perform well under varying speeds and payloads. In fact, the PUMA arm moves
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with noticeable vibration at reduced speeds. One solution 0 the problem is the
use of digital control in which the applied torques to the robot arm are obtained by
a computer based on an appropriate dynamic model of the arm. A version of this
method is discussed in Sec. 5.3.

5.3 COMPUTED TORQUE TECHNIQUE

Given the Lagrange-Euler or Newton-Euler eguations of motion of a manipulator,
the control problem is to find appropriate torques/forces to servo all the joints of
the manipulator in real time in order to track a desired time-based trajectory as
closely as possible. The drive motor torque required to servo the manipulator is
based on a dynamic model of the manipulator (L-E or N-E formulations). The
motor-voltage (or motor-current) characteristics are also modeled in the computa-
tion scheme and the computed torque is converted to the applied motor voltage (or
current). This applied voltage is computed at such a high rate that sampling
effects generally can be ignored in the analysis.

Because of modeling errors and parameter variations in the medel, position
and derivative feedback signals will be used to compute the correction torques
which, when added to the torqgues computed based on the manipulator medel, pro-
vide the corrective drive signal for the joint motors.

5.3.1 Transfer Function of a Single Joint

This section deals with the derivation of the transfer function of a single joint
robot from which a proportional plus derivative controller (PD controller} will be
obtained. This will be followed by a discussion of controller design for multijoint
manipulators based on the Lagrange-Euler and/or Newton-Euler eguations of
motion. 'The analysis here treats the “single-joint” robot arm as a continuocus time
system, and the Laplace transform technique is used to simplify the analysis.

Most industrial robots are gither electrically, hydraulically, or pneamatically
actuated. Electrically driven manipulators are constructed with a de permanent
magnet torgue motor for each joint, Basically, the de torque motor is a permanent
magnet, armatare excited, continuous rotation motor incorporating such features as
high torque-power ratios, smooth, low-speed operation, linear torque-speed charac-
teristics, and short time constants. Use of a permanent magnet field and dc power
provide maximum torque with minimum input power and minimum weight. These
features also reduce the motor inductance and hence the electrical time constant.
In Fig. 5.3, an equivalent circuit of an armature-controlled dc permanent magnet
torqee motor for a joint is shown based on the following variables:

V., Armature voltage, volts

V;  Field voltage, volts
Armature inductance, Henry
Ly Field inductance, Henry

R, Armature resistance, chms
R; Field resistance, ohms
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Figure 5.3 Hquivalent circuit of an armature-controlled de motor.

i, Armature current, amperes

Iy Field current, amperes

¢,  Back clectromotive force (emf), volis

7  Torgue delivered by the motor, oz-in

8, Angular displacement of the motor shaft, radians

6,  Angular displacement of the load shaft, radians

J, Moment of inertia of the motor referred to the motor shaft, oz - in - s%/ rad

fm  Viscous-friction coefficient of the motor referred to the motor shaft,
oz -in - s/rad

J;  Moment of inertia of the load referred to the load shaft, oz - in - 5*/rad

fi Viscous-friction coefficient of the load referred to the load shaft,
oz - in - s/rad

N, Number of teeth of the input gear {motor gear)

Ny Number of teeth of the output gear (load gear)

The motor shaft is coupled to a gear train 1o the load of the link. With refer-
ence to the gear train shown in Fig. 5.4, the total linear distance traveled on each
gear is the same. That is,

dn = di and Pl = r 0, (5.3-1)

where r, and r; are, respectively, the radii of the input gear and the ouput gear.
Since the radius of the gear is proportional to the number of teeth it has, then

Nmﬂm = Nzﬂf_ {53-2}

b
or == < 1 (533
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74

Figure 5.4 Analysis of a gear train,

where » is the gear ratio and it relates 8, to 8, by

Br(t) = (1} (3.3-9)
Taking the first two time derivatives, we have

8,00 = nf, (1) (5.3-5)

and 6,(1)

il

b (1) (5.3-6)

if a load is attached to the output gear, then the torque developed at the motor
shaft is egual to the sum of the torques dissipated by the motor and its foad, That
is,

“Torque from torgue torgue on load
motor = ot + referred to (5.3-7)
shaft motor the metor shaft

or, in equation form,

(1) = 7,{1) + 7,.7(1) (5.3-8)
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The load torque referred to the load shaft is

(1) = J8,(0) + fif(n) (5.3-9)
and the motor torque referred to the motor shaft is

Tlt) = Sl 4 [ (5.3-10)

Recalling that congervation of work requires that the work done by the load
referred to the load shaft, 7,8;, be equal to the work done by the load referred to
the motor shaft, 74, leads 10

i

30
1) = W — (5.3-11)

Using Eqgs. (5.3-9}, (5.3-3), and (5.3-6), we have
TF() = w0 + f18,(0)] (5.3-12)

Using Egs. (5.3-10) and (5.3-12), the wrque developed at the motor shaft [Fq.
(5.3-8)] is

(1) 7.(0) + T;,F([) = (Jm + RZJL}#};H(I) + (fm + nzfgﬁ)ém“)

= Jog O (8) & fog Opl0) (5.3-13)

where Jo = J,, + #%; is the effective momemt of inertia of the combined motor
and loud referred to the motor shaft and f.q = f,, + #°f, is the effective viscous
friction coefficient of the combined motor and load referred to the motor shaft,

Based on the above resulits, we can now derive the transfer function of this
single joint manipulator system. Since the torque developed at the motor shaft
increases linearly with the armature current, independent of speed and angular
position, we have

(1) = K,i (1) (5.3-14)

where K, is known as the motor-torque proportional constant in oz - in/A. Apply-
ing Kirchhofl’s voltage law to the armature circuit, we have

di (1)
dt

Vo(t)y = Ry (1} + L, + e,(1) (3.3-15)

where e, i3 the back electromotive force {emf) which is proportional to the angular
velocity of the motor,

(1) = Kpb,(0) (5.3-16)
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and K, is a proportionalify constant in V - s/rad. Taking the Laplace transform of
the above equations and solving for [,(s), we have
Vo(s) =~ sK0,(s)

1(s) = 3
als) R ¥ 5L, 3:3-17)

Taking the Laplace transform of Eq. (5.3-13), we have
T(s) = $0er®n(s) + 3 fugO@puls) (5.3-18)

Taking the Laplace transform of Eq. (5.3-14), and substituting [,(s) from Eq.
(5.3-17), we have
Va(s) - SKb@:n(j) )

T(s) = K,(s) = K, P (5.3-19)
17e i 1

Equating Egs. (5.3-18) and (5.3-19) and rearranging the terms, we obtain the
transfer function from the armatere voltage to the angular displacement of the
motor shaft,

G, (s) K,
o 5 (5.320)
VU { 5 Sl ¥ Jefi' La + ’Lafeﬁ" + Rﬁ']eﬂ' )S + Rafeﬁ' + KﬂKb ;

Since the electrical time constant of the motor is much smaller than the mechanical
time constant, we can neglect the armature inductance effect, L,. This allows us to
simplify the above equation to

@rﬁ(s) I{u K
LA p - {5.3-21)
V,(5) s(sR s + R,fur + KK (T8 + D)
where
K 2 K tor gain constant
= R+ KK, mOter galn constan
A Ra‘}eﬂ‘ .
and T, = moter time constant

Rafeﬁ’ + KaKb

Since the output of the control system is the angular displacement of the joint
[@.{5)], using Eq. {5.3-4) and its Laplace transformed equivalence, we can relate
the angular position of the joint @, (s) to the armature voltage V,(s),

G, (5) nK,

Vos) . SR + Rofer + KKy (5.3-22)
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Figure 5.5 Open-loop transfer function of a singlejoint robot arm.

Eg. (5.3-22) is the transfer function of the “single-joint” manipulator relating the
apptied voltage to the angular displacement of the joint. The block diagram of the
system is shown in Fig. 5.5.

5.3.2 Positional Controller for a Single Joint

The purpose of a positional controller is to servo the motor so that the actual angu-
lar displacement of the joint will track a desired angular displacement specified by
a preplanned trajectory, as discussed in Chap. 4. The technique is based on using
the error signal between the desired and actual angular positions of the joint to
actyate an appropriate voltage. In other words, the applied voltage to the motor is
lingarly proportional to the error between the desired and actual angular displace-
ment of the joint,

V(1) = (5.3-23)

Kee(ty  K,[8{(5) — 6,(0)]
i

n

where K, is the position feedback gain in volts per radian, e(?) = By — 8,00
is the system error, and the gear ratio n is included to compute the applied voltage
referred to the motor shaft. Equation (5.3-23) indicates that the actual angular dis-
placement of the joint is fed back to obtain the error which is amplified by the
position feedback gain K, to obtain the applied voltage. In reality, we have
changed the single-joint robot system from an open-loop control system [Eq. (5.3
2231 to a closed-loop control system with unity negative feedback. This closed-
loop contre! system is shown in Fig. 5.6. The actual angular position of the joint
can be measured either by an optical encoder or by a potentiometer.
Taking the Laplace transform of Eq. (3.3-23),

KI®Hs) = O] KE®)

Vilsy =
n n

(8.3-24)

and substifuting V,(s) into Eq. (5.3-22), yields the open-loop transfer function
relating the error actuating signal [E(s)] to the actual displacement of the joint:

@L(S} A K‘JK{,

E(s} = 0o = s(sRJeg + Ruferr + K.Kp)

(5.3-25)
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Figure 5.6 Feedback control of a single-joint manipulator.

After some simple algebraic manipulation, we can obtain the closed-loop transfer
function relating the actual angular displacement ©;(s) to the desired angular dis-
placement Gisy:

(s} Gls) KK,

Oi(s) 1+ Gls)  SRJy + s(Rufuy + KKy + KK,

KK /Ry J o _
= — : - {5.3-26)
5T+ [(R-afeff + KaKﬁ)jRaJeE} § o+ KaKp/R‘achf

Equation (5.3-26) shows that the proportional controlier for the single-joint robot is
a second-order sysiem which is always stable if all the system parameters are posi-
tive. In order to increase the system response time and reduce the steady-state
efror, one can increase the positional feedback gain K, and incorporate some
damping into the systermn by adding a derivative of the positional error. The angu-
lar velocity of the joint can be measured by a lachometer or approximated from
the position data between two consecutive sampling periods. With this added feed-
back term, the applied voltage 1o the joint motor is linearly proportional to the
position error and its derivative; that is,

K188 — 6,.(0)) + K8 — 6,(0)]
]

Vuin) =

_ Kpelr) + Kié(n)

{5.3-27)
n

where K, is the error derivative feedback gain, and the gear ratio n is included to
compute the applied voltage referred to the motor shaft, Equation (5.3-27) indi-
cates that, in addition o the positicnal error feedback, the velocity of the motor is
measured or computed and fed back to obtain the velocity error which is multi-
plied by the velocity feedback gain K. Since, as discussed in Chap. 4, the desired
Joint trajectory can be described by smooth polynomial functions whose first two
time derivatives exist within {1, #7], the desired velocity can be computed from
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the polyromsial function and utilized fo obtain the velocity error for feedback pur-
poses. The summation of these voltages is then applied to the joint motor. This
closed-loop control system is shown in Fig, 5.6.

Taking the Laplace transform of Eq. (5.3-27) and substituting ¥,(s) into Eq.
{5.3-22) yields the transfer function relating the error acwuating sigeal |E(5)] to
the actaal displacement of the joint:

O (s) i K(J(K;) + sK,)
Gpp(s) =
E(S) S(SR{:J@?E' + Rﬂ of t+ KaKf)}

lig>

KMK\-S + K{;Kf_x
s(sRJog + Ry for + K,Ky)

(5.3-28)

Some simple algebraic manipulation yields the closed-loop transfer function relat-
ing the actual angular displacement [€,(s)] to the desired angular displacement
(et

O(s)  Gppls)

Of(s) 1+ Gpp(s)

K.Ks + KK,
T R + SR Sur + KKy + KK + KK,

(5.3-29)

Note that if K, is equal to zero, Eq. (5.3-29) reduces to Eqg. (5.3-26).

Equation (5.3-29) is a second-order system with a finite zero located at —K,/
K, in the ieft half plane of the s plane. Depending en the location of this zero, the
system could have a large overshoot and a long settling time. From Fig, 5.7, we
natice that the manipulator system is alse under the influcnce of disturbances
[D(s)} which are due to gravity loading and centrifugal effects of the link.
Because of this disturbance, the torque generated at the motor shaft has to compen-
sate for the torques dissipated by the motor, the load, and zlso the disterbances.
Thus, from Eq. (5.3-18),

T(s) = [s%y + 5£219,.(5) + Dis) (5.3-30)
L
i?:‘l‘{"(x} V. isi " B,
: J/\ 1—i|-— " ———
g 3 i

Figure 5.7 Feedback control block diagram of a manipulasor with disturbances.
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where D(s) is the Laplace transform equivalent of the disturbances. The wransfer
function relating the disturbance inputs to the actual joint displacement is given by

Oy (s) =— Ry (5.3-31)
D) lotyeo S Relet +5Rafer+ KKy + KK+ KK,

From Egs. (5.3-29) and (5.3-31) and using the superposition principle, we can
obtain the actual displacement of the joint from these two inputs, as follows:

K (K, + sK)Of(s) — nR,D(s)
SzRaJeﬂ' + S(Ra.fcff + KaKF} + KQKPV) + KaKp

Ouls) = (5.3-32)

We are interested in looking at the performance of the above closed-loop system,
with pariicufar emphasis on the steady state error of the system due to step and
ramp inputs and the bounds of the position and velocity feedback gains. This is
covered in the following section.

5.3.3 Performance and Stability Criteria

The performance of a closed-loop second-order control system is based on several
criteria, such as fast rise time, small or zero steady-stalte error, and fast setthing
time. We shall first investigate the boands for the position and velocity feedback
gains. Assuming for a moment that the disturbances are zero, we see that from
Eqs. (3.3-29) and {5.3-31) that the system is basically a second-order system with
a finite zero, as indicated in the previous section. The effect of this finite zero
usuaily causes a second-order system to peak early and to have a larger overshoot
(than the second-order system without a finite zero). We shall temporarily ignore
the effect of this finite zero and try to determine the values of K, and K, to have a
critically damped or overdamped system.

The reader will recall that the characteristic equation of a second-order system
can be expressed in the following standard form:

b 2w + wl =0 (5.3-33)

where { and w, are, respectively, the damping ratic and the undamped natural fre-
quency of the system. Relating the closed-loop peles of Eq. (5.3-29) to Fq. (5.3-
33), we see that

KK

2 2
W = 5.3-34)
Jeﬁ"Ra (

Rafeﬁ' + KaKf; + KaKV

and 2 =
an {oy, TR,

(5.3-35

The performance of the second-order system is dictated by its natural undamped
frequency w, and the damping ratio {. For reasons of safety, the manipulator sys-
tem cannot have an underdamped response for a step input. In order to have good
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performance (as outlined above), we would like 10 have a critically damped or an
overdamped system, which requires that the system damping ratio be greater than
or equal to unity. From Eq. (5.3-34), the position feedback gain is found from the
natural frequency of the system:

wr%ffsé’r‘Ra

= —MK(, > 0 {5.3-36)

Substituding «, from Eq. (5.3-34) inte Eq. (5.3-35), we find that
_ Ra.feﬂ' + KaKb + KHKV

=1
WEK, J4R,

where the equality of the above equation gives a critically damped system response
and the inequality gives an overdamped system response. From Eq. (5.3-37), the
velocity feedback gain X, can be found to be

= szaKchﬁRal m Rafeff - KnKb
v & K,

e (5.3-37)

(5.3-38)

In order not to excite the structural oscillation and resonance of the joint, Paul
[1981] suggested that the undamped natural frequency w, may be set to no more
than one-half of the structural resonant frequency of the joint, that is,

w, % 0.5, (5.3-39)

where w, is the structural resonant frequency in radians per second.

The structural resonant frequency is a property of the material used in con-
structing the manipulator. If the effective stiffness of the joint is &y, then the res-
toring torque kgpf, (1) opposes the inertial torque of the motor,

Juﬁ'i};ﬁ([) + ks:‘;tfgm{f) = g {5.3-40}
Taking the Laplace transform, the characteristic equation of Eq. ¢(5.3-40} is
Jors® + kyg = © (5.341)

and solving the above characteristic equation gives the structural resonant fre-

quency of the system
PR
W, = [ S“ﬂ (5.3-42)
chf

Although the stifiness of the joint is fixed, if a load is added to the manipulator’s
end-effector, the effective moment of inertia will increase which, in effect, reduces
the structural resonant frequency. If a structural resonant frequency wy is meas-
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ured at a known moment of inertia Jy, then the structural resonant frequency at the
other moment of incrtia J.q is given by

12
Jo
W, = wy { ] {5.343)
"Icff
Using the condition of Eq. (5.3-39), K,, from Eq. (5.3-36) is bounded by
0 < k, ke (5.3-44
< g — 3-
!) 4Kﬂ )
which, using Eq. (5.3-43), reduces to
)
wiloR,
< 3.45
0 <K, 1K, & }

After finding K, the velocity feedback gain K, can be found from Eq. (3.3-38):

~ Rawéwljofcﬂ: = Rufer — K K
oA K

a

{5.3-46)

Next we investigate the sieady-state errors of the above system for step and
ramp inputs. The system error is defined as e(z) = 84(t) = #.(r). Using Eq.
(5.3-32), the error in the Laplace transform domain can be expressed as

Eis) = &(s) — O,(8)

_ [sYaR, + SRS + KKp)IOf(s) + nR.D(s) (5.347)
B SzRanﬂ‘ + S(Ra o KaKb + K‘«‘K") + K"Kp ‘

For a step input of magnitude A, that is, 9;{(:} = A, and if the disturbance input is
unknown, then the steady-state error of the system due to a step input can be
found from the final value theorem, provided the limits exist; that is,

e, {step) S g = lim e{f) = iimo sE(s)

poe o0 5

i [(s%egRy + S(Rufer + KuKp)]Als + nR,D{s)
= 1M 5

78 SzRafegf + s(R.fon + KKy + KK + KaKp

_ nR,D(s)
= lim § 5
§=-0 ) s RJe + s(Ryfeg + KK + KK + KQK,D
(5.3-48)

which is a function of the disturbances. Fortunately, we do know some of the dis-
turbances, such as gravity loading and centrifugal torque due to the velocity of the
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joint. Other disturbances that we generally do not know are the frictional torque
due to the gears and the system noise. Thus, we can ideniify each of these torques
separately as

7p(f) = () + 70{1} + 7, {5.3-49)

where 75(1) and 70(f) are, respectively, torques due to gravity and centrifugal
effects of the link, and r, are disturbances other than the gravity and centrifugal
torques and can be assumed to be a very small constant value, The corresponding
Laplace transform of Eq. (5.349) is

s

D(s) = T5(s) + Tels) + TP (5.3-50)

To compensate for gravity loading and centrifugal effects, we can precompute these
torque vatues and feed the computed torques forward inte the controller to minim-
ize their effects as shown in Fig. 5.8, This is called feedforward compensation.

Let us denote the computed torques as 7,,,(¢) whose Laplace transform is
Teomp (8}, With this computed torque and using Eq. (5.3-50), the error equation of
Eq. (5.3-47} is modified to

[szjeﬂ’Ra + S(Rafczf + KaKi})§®§f(5) +
AR Tg(s) + Tels) + Tis — Toonp(s)]

E(s) = —
( SRl + s(Rofor + KK + KK, + KK,

(5.3-51)
For a step input, ®f(s) = A/s, the steady-state position error of the system is
given by

eyp = lim 5

[ MR ITG(5) + Tels) + Tfs — Loy (5)]
g

T {5.3-52)
SRy + 5(Ryfer + KKy + K,K) + KK,

For the steady-state position error, the contribution from the disturbances due to
the centrifugal effect is zero as time appruaches infinity. The reason for this is
that the centrifugal effect is a function of 0; (z) and, as time approaches infinity,
6‘L(oo) approaches zero. Hence, its contribution to the steady-state position error
is zero. If the computed torque 7.,q,(1) is equivalent to the gravity loading of the
link, then the steady-state position error reduces to

nR, T,

€syp = —KaKp {5.3-53)

Since K, is bounded by Eq. (5.3-45), the above steady-state position error reduces
o]
4nT,

- = — 5.3-54
P (:Jé]g ( }
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Figure 5.8 Compensation of disturbances.

which is small because 7, is assumed to be small. The computation of v4(r) will
be discussed later using the dynamic model of the manipulator.

If the input to the system is a ramp function, then Of(s) = A/s%, and if we
apain assume that the disturbances are known as in Egq. (5.3-50), then the steady-
state error of the system due to a ramp input is

A . [$2gR, + $(R for + KK}, ) |A/s?
e (ramp) = ey, =lims—;
6 5Rolg + s(R fur + KKy + KK + KK,

+ lims AR [Ta(s) + To(s) + Tols — Lo (s3]
=0 'Ry + s(R.for + KKy + KK + KK,

_ (Rnfcﬁ“ + KuKir)A
- K.K,

1 lims nRa{TG(S) + TC(S) + Te'{S - Twmp(‘f)]
=0 5'R.Jug + s(Rofor + KKy + KK,) + KK,

(5.3-55)
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Again, in order to reduce the steady-state velocily error, the computed torgue
[7eompé?}} needs to be equivalent fo the gravity and centrifugal reffects, Thus, the
steady-state velocity error reduces (o

(Rafeéf + KaKb )A
oy = €y
38V Kagp ssp

(5.3-56)

which has a finite steady-state error. The computation of Teompt?) depends on the
dynamic model of the manipulator. In general, as discussed in Chap. 3, the
Lagrange-Evier equations of motion of a six-jeint manipulator, excluding the
dynamics of the electronic control device, gear friction, and backlash, can be writ-
ten as {Eq. (3.2-24)]

9

3 3oF 't V7
() = 3 YL TIr {%ﬁja ["“5;1’_&} JI 4,013

ki f }

Coogo [ F (60)
+ Tr 1 (12
rgugugg {aqjaqk ( dq; J qi(tra ()

& fai}T
~y m}.gL Ly fori=1,2,...,6 (5357)
4

Jw=i
where 7,(r) is the generalized applied torque for joint i to drive the ith link, §;(r)
and (v} are the angular velocity and angular acceleration of joint 7, respectively,
and g; is the generalized coordinate of the manipulator and indicates its angular
position. °T; is a 4 % 4 homogencous Link transformation matrix which relates the
spatial relationship between two coordinate frames (the #th and the base coordinate
frames), T; is the position of the center of mass of link i with respect to the ith
coordinate  system, g = (g, g, £, 0) is the gravity row vector and
|g| = 9.8062 m/s?, and J; is the pseudo-inertia matrix of link i about the ith
coordinate frame and can be written as in Eq. (3.2-18).

Equation (5.3-57) can be expressed in matrix form explicitly as

6 & é
LDty + L X Aunde(DG(t) + ¢ = 7(1) i =1,2,....6 (5358
=1}

k=lm=1
where
Dy = fé Tr {awp".}j [&]T Bk=1,2,...,6 (5359
J=max(i, k) 94 d¢g; 7
hige = 2% Tr { o, }j(aOTfJi} ikm=12,...,6
j=maxti, &, m) dqudgm | Bg;

(5.3-60)
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s [ a'T, ] ) :
G o= Y 1 —mg ) e | T i=1,2,....6 (5.3-61)
=i g,
Eq. {5.3-57) can be rewritten in a matrix notation as
gy (1)
1)
g3 {1)
7ty = Dy, Do, Dy, Dy Dis, Dyl |
44 {1)
qsir)
4s(1)
+ 141(0), @2 (0). g3 (2}, 4u(n), Gs€D). go(0)] (3.3-62)
41{1
o My By s has has G, (1)
Rt e M Bga hps R G3(1)
X h[ h; k,‘ ;Ij h,‘ h,"; . e f
3 32 33 34 35 16 ! Geit) ¢
. . . v . < )
hior Mgz Hies Tuer hies Miee | qs
gs (1)

Using the Lagrange-Euler equations of motion as formulated above, the com-
puted torque for the gravity loading and centrifugal and Coriotis effects for joint i
can be found, respectively, as

To{) = ¢ P=1,2,...,6 £5.3-63)
and

reit) = [gi{0), §2(1), g3(1), Gate), gs(2), de(t}]

g, (1)
Ry haa R s Ras Pae {1
Fizt hiz Rox Boa has s G3(1)
Xk kg R hay Ras B (D) P=1,2,....6
) i (1)
L hrﬁ,‘l Mir R Hios Ags Fuss s

9o (0) , (5.3-64)
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This compensation leads lo what is usually known as the “inverse dynamics prob-
fern™ or “‘computed torque” technique. This is covered in the aekt section.

5.3.4 Controller for Muitijoint Robots

For a manipulator with multiple joints, onc of the basic control schemes is the
computed torque technique based on the L-E or the N-E equations of motion.
Basically the computed torque technique is a feedforward control and has feedfor-
ward and feedback components. The control components compensate for the
interaction forces among all the various joints and the feedback component com-
putes the necessary correctior torques to compensale for any deviations from the
desired trajectory. It assumes that one can accurately compute the counterparts of
D(4q), h{q, §), and ¢(q) in the L-E equations of motion [Eq. (3.2-26)] to minim-
ize their nonlinear effects, and use a proportional plus derivative control o servo
the joint motors. Thus, the structure of the control law has the form of

(=D {F O+ K0 - a1+ K, [ ¢4 — g1} + h(g, @)+ ¢,(q)
(5.3-65)

where K, and K, are 6 x 6 detivative and position feedback gain matrices,
respectively, and the manipulator has 6 degrees of freedom.
Substituting 7(r) from Eq. (5.3-65) into Eq. (3.2-26), we have

DQ)§() +hiq, &) +e(@) =D (O + K [§0) - a1+ K [q%0) g0 ]}

+ h{q @) +e.q) (5.3-66)

If D,(q), h,(q, §), c,(q) are equal to D(q), h(g, §). and c(g), respectively,
then Eq. (5.3-66) reduces to

D{g)[E(r) + K. &(2) + K e(n)] =0 (5.3-6T)

where e(r) 2 gf(r) — q(n) and &) £ G40 — §(1).

Since DM q) is always nonsingular, K, and K, can be chosen appropriately so
the characteristic roots of Eq. (5.3-67) have negative real parts, then the position
error vector e(1) approaches zero asymptotically.

The computation of the joint torques based on the complete L-E equations of
motion [Eg. (5.3-65)] is very ineflicient. As a result, Paul [1972] concluded that
real-time closed-loop digital control is impossible or very difficult. Because of this
reason, it is customary to simplify Eq. (5.3-65) by neglecting the velocity-related
coupling term h,(q, () and the off-diagonal elements of the acceleration-related
matrix I, {q). In this case, the structure of the control law has the form

(1) = diag [DAQHE() + K& — 4] + K, [¢() - q(n]}
+ e, (q) {5.3-68)
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A computer simulation study had been conducted to which showed that these terms
cannot be neglected when the robot arm is moving at high speeds (Paol [1972]).

An analogous control faw in the joinl-variable space can be derived from the
N-E eguations of motion to servo a robot arm. The cortrol law is computed
recursively using the N-E equations of motion. The recursive centrol law can be
obtained by subsfituling &,(¢) into the N-E equations of motion to obtain the neces-
sary joint torgue for each actuator:

G0 =g + L KIl4giry = (0] + v Kl () = ¢;(D]1 (5.3-69)

i=t =t

where K and K” are the derivative and position feedback gains for joint i respec-
tively and e,{t} = qj(t) — g;(t} is the position error for joint j. The physical
interpretation of putting Eq. (5.3-69) into the N-E recursive cquations can be
viewed as follows:

i. The first term will generate the desired torgue for cach joint if there is no
modeling error and the physical system parameters are known. However, there
are errors due 10 backlash, gear friction, uncertainty about the inertia parame-
ters, and time delay in the servo 10();3 so that deviation from the desired joint
trajectory will be inevitable.

2. The remaiping terms ju the N-E equations of motion will generate the correc-
tion torque to compensate for small deviations from the desired joint trajectory.

The above recursive control law is a proportional plus derivative control and
has the effect of compensating for inertial loading, coupling effects, and gravity
loading of the links. In order to achieve a critically danwped system for each joint
subsystem (which in turn loosely implies that the whole system behaves as a criti-
cally damped system), the feedback gain matrices K, and K, {diagonal matrices)
can be chosen as discussed in Sec. 5.3.3, or as in Paul [1981] or Luh [1983b].

In summary, the computed torgue technique is a feedforward compensation
control. Based on complete L-E equations of motion, the joint torques can be
computed in O(rn*) time. The analogous control law derived from the N-E equa-
tions of motion can be computed in O(n) time. One of the main drawbacks of
this control technique is that the convergence of the position error vectoer depends
on the dynamic coefficients of D{g), h{q, q), and ¢(q) in the equations of
motion.

£.3.5 Compensation of Digitally Contrelled Systems

In a sampled-data control system, time is normalized to the sampling period Ar;
i.e., velocity is expressed as radians per Az rather than radians per second. This
has the effect of scaling the link equivalent inertia up by £2, where f, is the sam-
pling frequency {f, = l/A1).



222 ROBOTICS: CONTROL, SENSING, VISHON, AND INTELLIGENCE

It is typical to use 60-Hz sampling frequency (16-msec sampling period)
because of its general availability and because the mechanical resonant frequency
of most manipulators is around 5 to 10 Hz. Although the Nyguist sampling
theorem indicates that, if the sampling rate is at least twice the cutoff frequency of
the system, one should be able to recover the signal, the sampling rate for a con-
tinuous time systemn is more stringent than that. To minimize any deterioration of
the controller duc to sampling, the rate of sampling must be much greater than the
natural frequency of the arm (inversely, the sampling period must be much less
than the smailest time constant of the arm).  Thus, to minimize the effect of sam-
pling, usually 20 times the cutoff frequency is chosen. That is,

1 1

A = P 5.3-70
L Bairr 201 (5.3-70)

5.3.6 Voltage-Torgue Cenversion

Torque in an armature-controlied de motor is theoretically a linear function of the
armature voltage. However, due to bearing friction at low torques and saturation
characteristics at high torques, the actual voltage-torque curves are not linear. For
these reasons, a computer conversion of computed torque to reguired input voltage
is usually accomplished via lookup tables or calculation from piecewise linear
approximation formulas. The output voltage is usually a constant value and the
voltage pulse width varies. A typical voltage-torque curve is shown in Fig. 5.9,
where V, is the motor drive at which the joint will move al constant velocity
exerting zero force in the direction of motion, and F, is the force/torque that the
joint will exert at drive level ¥, with a negative velocity. The slopes and slope
differences are obtained from the experimental curves.

Pulse widh 7
Velocity « torgue > @

Velogity » torque < @

Quatpal sorgue

Figure 5.9 Voltage-torque conversion curve,
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5.4 NEAR-MINIMUM-TIME CONTROL

For most manufacturing tasks, it is desirable to move a manipulator at its highest
speed to minimize the task cycle time. This prompted Kahn and Roth [1971] to
investigate the time-optimal control problem for mechanical manipulators. The
objective of minimum-time control is o transfer the end-effector of a manipulator
from an initial position to a specified desired position in minimam time.

Let us briefly discuss the basics of time-optimal control for a six-link manipu-
lator. The state space representation of the equations of motion of a six-link robot
can be formulated from the L-E equations of motion. Let us define a 2n-
dimensional state vector of 2 manipulator as

X1y = 1q7(0, §' 1 = [g,(0), . .. g0, 6: (1. . . L da(t)]

[x[te), x§(0] 2 60, u). . .. x(0] (5.4-1)

and an n-dimensional input vector as

Hl

i~

u'(t) = [1i0), (D), 7 (D)]) (5.4-2)
The L-E equations of motion can be expressed in state space representation as
x(n) = fIx(r), u(r)] (5.4-3)

where £{-) is a 2r % 1 continuously differentiable vector-valued function. Sipce
D{4q} is always nonsingular, the above equation can be expressed as

X (1) = %(8)

and (1) Eix(#)] + blxy(8)]ua(t) {5.4-4)

where £(x) is an 7 X | vector-valued function,
f,(x) = =D Ux)[h(X;, %) + e(x1)] {5.4-5)

and it can be shown that B(x,) is equivalent to the matrix D™ (x,).

At the initial time r = 1;, the system is assumed to be in the initial state
x(zy} = Xy, and at the final minimum time ¢ = #; the system is required 1o be in
the desired final state x(#;} = x;. Furthermore, the admissible controls of the
system are assumed to be bounded and satisfy the constraints,

;| € (Hi)max  foraliz (5.4-6)

Then the time-optimal control problem is to find an admissible controf which
transfers the system from the initial state x, to the final state x, while minimizing
the performance index in Eq. (5.4-7) and subject to the constraints of Eq. (5.4-3),

t
J= _L’;dt =1t — 1 (5.4-7)
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Using the Pontryagin minimum principle (Kirk [1970]), an optimal control
which minimizes the above functional J must minimize the hamiltonian. In terms
of the optimal state vector x*{#), the optimal control vector v*(¢), the optimal
adjoint variables p*(7), and the hamiltonian function,

H(x, p, v) = p'f(x, v) + 1 (5.4-8)
the necessary conditions for v*(r) 1o be an optimal control arc

GH{X*, p*, u*)

X*t) = op for all t € {15, #f] {5.4-9)
£ #*
P = WW for all r € (4, 1,] (5.4-10)
and  H(x* p* u*) £ H(x* p* u) forall 1 € [r, | {54-11)

and for all admissible controls. Obtaining v*(¢) from Eqgs. {5.4-8) to (5.4-11), the
optimization problem reduces to a two point boundary value problem with boun-
dary conditions on the state x(z)} at the initial and final times. Due to the non-
linearity of the equations of motion, a numerical solution is usually the only
approach to this problem. However, the numerical solution only computes the
control function {open-loop control) and does not accommodate any system distur-
bances. In addition, the solution is optimal for the special initial and final condi-
tions. Hence, the computations of the optimal control have to be performed for
each manipulator motion. Furthermore, in practice, the numerical procedures do
not provide an acceptable solution for the control of mechanical manipulators.
Therefore, as an alternative to the numerical solution, Kahn and Roth [1971} pro-
posed an approximation to the optimal control which resulis in a near-minimum-
time control,

The suboptimal feedback control is obtained by approximating the monlinear
system [Eq. (5.4-4)} by & linear systern and analytically finding an optimal control
for the linear system. The lingar system is obtained by a change of variables fol-
lowed by linearization of the equations of motion. A transformation is used to
decouple the controls in the linearized system. Defining a new set of dependemt
variables, £z}, i = 1, 2, ... ,2n, the equations of motion can be transformed,
using the new state variables, to

1,2,....,n

(1) = x(6) ~ x(1p) i
and 4 = x(2) P=n+1,...,2n (5.4-12)

The first n&;(s) is the error of the angular position, and the second nf, (1) is the
error of the rate of the angular position. Because of this change of varizbles, the
control problem becomes one of moving the system from an initial state §(1;) to
the origin of the £ space.

In order 1o obtain the linearized system, Fq. (5.4-12) is substituted into Eq.
{5.4-4) and a Taylor series expansion is used to linearize the system abeut the ori-
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gin of the £ space. In addition, all sine and cosine functions of &; are replaced by
their series representations. As a result, the linearized equations ol motion are

£(1) = AL() + Bv(r) {5.4-13)

where (1) = (£, &5, L8 and  w(r) is  related to  w(sy by
¥(r} = w(z) + ¢, where the vector ¢ comtains the steady-state torques due to
gravity at the final state, Although Eq. (5.4-13) is linear, the control functions v(r)
are coupled. By properly selecting a set of basis vectors from the linearly
independent columns of the controilability matrices of A and B to decouple the
control function, a new set of equations with no coupling in control variables can
ke obtaimed:

Hn o= B + By (5.4-14)

Using a three-link manipulator as an example and applving the above eguations to
it, we can obtain a three double-integrator systems with unsymmetric bounds on
controls:

Ol = v, (54-15)

i) = by P=1,2.3

vt = (s T {5.4-16)

H

Vi m(u:')snﬂx + ¢

where ¢; is the fth element of vector ¢.

From this peint on, a selution te the time-optimal control and switching sur-
facest probiem can be obtained by the uwswal procedures. The lingarized and
decoupled suboptimal control [Egs. {5.4-15) and (5.4-16)] generally results in
response times and trajectories which are reasonably close to the time-optimal
solutions. However, this control method is usually too complex te be used for
manipulators with 4 or more degrees of freedom and it neglects the effect of un-
knowe external ioads.

1 Recall that time-optimal conirols are piecewise comstant functions of time, and thus we are
interested in regions of the state space over which the control is constant. These regions arc separated
by curves in two-dimensional space, by susfaces i sheee-dimensional space, and by hypersurfaces in
n-dimensional space. These separating surfaces are cailed swiiching curves, switching surfaces, and
switching hypersurfaces, respectively.
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5.5 VARIABLE STRUCTURE CONTROL

In 1978, Young [1978] proposed to use the theory of variable structure systems for
the control of manipulators. Variable structure systems (VSS) are a class of sys-
tems with discontinuous feedback control. For the last 20 years, the theory of
varigble structure systems has found numerous applications in control of various
processes in the steel, chemical, and aevospace industries. The main feature of
VSS is that it has the so-called sliding maode on the switching surface. Within the
sliding mode, the system remains insensitive to parameter variations and distur-
bances and its trajectories lie in the switching surface. It is this insensitivity
property of V8S that enables us to eliminate the interactions among the joints of a
manipulator. The sliding phenomena de not depend on the system parameters and
have a stable property. Hence, the theory of VSS can be used o design a variable
structure controller (VSC) which induces the shiding mode and in which lic the
robot arm’s trajectories.  Such design of the variable structure controller does not
require accurate dynamic modeling of the manipuiator; the bourds of the model
parameters are sufficient to construct the controller. Variable structure conirol
differs from time-optimal control in the sense that the variable structure controller
induces the sliding mode in which the trajectories of the system lie. Furthermore,
the system is insensitive (o system parameter variations in the stiding mode.

Let us consider the variable structure control for a six-link manipulator. From
Eq. (5.4-1), defining the state vector X'(1) as

7

X =G, e 1 e s
m{pl;---,ﬂ(wi’;,...,Vﬁ)
= (p', ¥)) (5.5-1)

and introducing the position error vector €{1) = p{s) — p¥ and the velocity
error vector €,(¢) = (¢} (with ¥¥ = 0), we have changed the tracking problem
to a regulator problem. The error equations of the system become

&0 = v(n)

and Vi) = Ble, + p% vy + ble, + pHuln) (5.5-2)

where £,(.) and b{.) are defined in Eq. (5.4-5). Fer the regalator system prob-
lem in Eq. (5.5-2), a variable siructure control w{p, v) can be constructed as

ut (p, V) if 5;(e, vi3 > 0
wip, vy = i=1,....,6 (5.5-3)
#, (p, v) if5ie, v) <0
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where s;(e;, v;) are the switching surfaces found to be
S,j((’,‘, Vi} = e+ v C; > )] i=1,... ) {5.5"4)

and the synthesis of the control reduces to cheosing the feedback controls as in Eq.
{5.5-3} so that the sliding mode occurs on the intersection of the switching planes.
By solving the algebraic equations of the swilching planes,

'-‘:1(311 V,') = 0 {=f,....,6 (:‘5545)

& unique control exists and is found 1o be

u, = —D(p)(f(p. v) + Cv) {5.5-6)
where C = diag [¢;, ¢, . . . ,€5]. Then, the stiding mode is obtained from Eq.
(5.5-4) as

b= ~qe;  i=1,...,6 (557

The above equation represents six uncoupled first-order lincar systems, each
representing 1 degree of freedom of the manipulator when the systemn is in the
sliding mode. As we can see, the controller [Eq. (5.5-3)] forces the manipulator
into the sliding mode and the interactions among the joints are completely elim-
inated. When in the shiding mode, the controller [Eg. (5.5-6)] is used to control
the manipulator. The dynamics of the manipulator in the shiding mode depend
only on the design parameters ¢;. With the choice of ¢; > 0, we can obtain the
asymptotic stability of the system in the sliding mode and make a speed adjustment
of the motion in sliding mode by varying the parameters c;.

In summary, the variable structure control eliminates the nonlinear interactions
among the joints by forcing the system into the sliding mode. However, the con-
troller produces & discontinuous feedback control signal that change signs rapidly.
The effects of such control signals on the physical control device of the manipula-
tor {i.e., chattering) should be taken into consideration for amy applications to
robot arm control. A more detailed discussion of designing a multi-input con-
troller for 2 VSS can be found in Young [1978).

5.6 NONLINEAR DECOUPLED FEEDBACK CONTROL

There is a substantial body of nonlinear control theory which allows one to design
a near-optimal control strategy for mechanical manipulators. Most of the existing
robot control algorithms emphasize nonlinear compensations of the interactions
among the links, e.g., the computed torgue techmique. Hemami and Camana
[1976| applied the nonlinear feedback control technique to a simple locomotion
systern which has a particular class of nonlinearity (sime, cosine, and polynomial)
and obtained decoupled subsystems, postural stability, and desired periodic trajec-
tories. Their approach is differemt from the method of linear system decoupling
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where the system to be decoupled must be lirear. Saridis and Lee [1979] pro-
posed an Herative algorithm for sequential improvement of a nonlinear suboptimal
controf law. It provides an approximate optimal control for a manipulator. To
achieve such a high quality of control, this method also requires a considerable
amount of computational time. In this section, we shall briefly describe the gen-
eral nonlinear decoupling theory (Falb and Wolovich [1967], Freund [1982}) which
will be wtilized together with the Newton-Euler equations of motion 1o compute a
nonlincar decoupled controller for robot manipulators.
Given a general nonlinear system as in

() = A(X) + B(x)u(r)
and
¥y = C(x) (5.6-1)

where x(7} is an a-dimensional vector, w(r) and y(¢} are m-dimensional vectors,
and A(x}). B(x}, and C(x) are matrices of compatible order. Let us define a
nonlinear eperator N§ as

oo NG | A (5.62)
x | o
i=12 ..., m

. 3 " K=12 ....n
NeCiix) = E

where Ci(x) is the ith component of C(x) and NJC:{x} = C{x}. Also. et us
define the differential order &; of the nonlinear system as

P
d; = min 1 i [%Nﬂ'a{x}J Bix) 0 j=1,2,... ,n} (5.6-3)

Then, the contro! objective is t find 2 feedback decoupled controlicr u(r):
ait; = F(x) + G(x) win {5.6-4)

where w(z) is an m-dimensional reference input vector, F(x) s an m x 1 feed-
back vector for decoupling and pole assignment, and G(x} is an m »x m input
gain matrix so that the overall system has a decoupied input-output refatienship.

Substituting u(z) from Eq. (5.6-4) into the system equation of Eg. (5.6-1)
results in the following expressions:

) = A(x) + BOF() + BOGx)wir)
and ¥(t) = C(x) (5.6-5)

In order to obtain the decoupled input-output relationships in the above system,
F(x) and G(x) are chosen, respectively, as follows:

F(x) = F{(x) + F#(x) (5.6-6}
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where
FH(x) = —D*7'(x)C*x)
F(x) = —D*~'(x)M*(x)
and G(x) = D*7I(x) A

F¥(x) represents the state feedback that vields decoupling, while F(x) performs
the control part with arbitrary pole assignment. The input gain of the decoupled
part can be chosen by G(x), and D*{x) is an m X m matrix whose ith row Is
given hy

D(x) = { -

m;Nj""c;{x}] B(x) ford £ 0 (5.6-7)

C*(x) is an m-dimensional vector whose ith component is given by

CHX) = NiG(x) (5.6-8)

M#*(x) is an m-dimensional vector whose ith component is given by
41
MXx) = ¥ ag NECAx)  ford; # 0 (5.6-9)
K=0

and A is a diagonal matrix whose clements are constant values h; for
i= 1,2,...,m Then, the system in Eq. (3.6-1) can be represented in terms of

yE(1} = C¥(x) + D¥x)a(r} (5.6-10)

. . R .
where ¥*(¢) is an outpul vector whose ith component is yi“‘} (¢}, That is,

{d)

y )y = CHx)y + Bru(t) (3.6-11)

Utilizing Eq. (5.6-4) and Eqgs. (5.6-6) to {5.6-11}, we obtain

Ad}

W g O+ e = Neyln) (5.6-12)

where ay ; and A; arc arbitrary scalars,
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To show that the ith component of y*(¢) has the form of Eq. (5.6-11), let us
assume that d; = 1. Then, y,(r) = C;(x) and, by differentiating it successively,
we have

ac,
i) =y = ) x(1)
ax
#C(x)
= . [A{x) + B{x)F(x} + B(x)G{x)w(n]

-
i

X

Ny prG(x) + } [B(x)G{x)w(1}]

il

Using the identity, Ny, srCi(x) = NiGOX) + [9xN," 7 G (%) IBOOF(x),
¥"(¢) can be wrilten as
r

) Lo 36:‘(")
vy = NIC(x)y + ELEQC'(X)J B(x)F(x) +

ax

[BOX)G(x)win]

Using Egs. {5.6-4) and (5.6-7), it becomes
v = GHx) + DFEx)u)

Similar comments hold for =2, 3, . . . to yield Bq. (5.6-11). Thus, the resul-
tant system has decoupled input-output relations and becomes a time-invariant
second-order syster which can be used to model each joint of the robot arm.

As discussed in Chap. 3, the Lagrange-Euler equations of metion of a six-link
robot can be wrilten as

Dy - D | [6.0 A (8, 6) P,{e} wy (1) |
. + + = :
Dig -+ Dy | é;éz) h{,({;, 6) {%éﬂ) Ha'(f)
' (5.6-13)

which can be rewritien in vector-matrix notation as
DI + hif, 6) + () = u(r) (5.6-14)

where w(z) is a 6 x 1 applied torque vector for joint actuators, §(7) is the angular
positions, #{t) is the angular velocities, 6(r) is a 6 x I acceleration vector, ¢(8)
is a 6 X 1 gravitational force vector, h(8, @) is a 6 x L Coriclis and centrifugal
force vector, and IN@) is a 6 X 6 acceleration-related matrix. Since IH8) is
always nonsingular, the above equation car be rewritten as

81 = —D '(#)[h(8, §) + c(0)] + D~ (Buir (5.6-15)
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or, explicitly,
Dy - Dy |t [miee 6 + clwﬂi
#y = — | : : AT

Dig «+r Dy _hﬁ(ﬂ, é) + cﬁ(B)J

Dy, Dig | =1 [ u (D)

Dy Dgs ug (1)

The above dynamic model consists of second-erder differential equations for each
joint variable; hence, d; = 2. Treating each joint variable #;(¢) as an output vari-
able, the above eguation can be related o Eq. (5.6-11) as

YD) = ) = ~[DNOLIE, ) + «(8)] + (DO a0

= CHx) + DAx)u) (5.6-17)
where
CHx) = —[D7'(0)1[h(8, ) + (8] (5.6-18)
X'ty = [87(0), 67(D)]
and DX(x) = [P~H®)]; (5.6-19)

and {D7H(@)], is the ith row of the D7 '(6) matrix. Thus, the controller u(s) for
the decoupled systern [Eq. (5.6-3)] must be

w(i) = —D*F (O [CHx) + M*x) — Aw(n)]
= — D(8) {—=D (Oh@, §) + c(®)] + M*(x) — Aw(1)}

hg, §) + c(8) — DO M*(x) — Aw(r)] (5.6-20)

Explicitly, for joint i,
anby (1) + agbi(n) = Awy (1)

w1y =m0, 8) + () — [Da - Dy) :
Caifelt) + ety — Ngws (D)

(5.6-21)
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From the above equation, we note that the controller u;(1) for joint i depends
only on the current dynamic variables and the input w(s), Substituting u(#) from
Eq. (5.6-20) into Eq. (5.6-14), we have

D)) + h(8, 6) + c(8)
a,iéi(z) + ot (2) — howy ()
= W8, §) + c(f) — D8 : (5.6-22)
ayefls(t) + agﬁéﬁ(;) — Aewelt)

which leads to

Bi(e) + afe(r) + ag () — Aw (D)

D¢8) 0 {5.6-23)

il

Be1) + cngle(r) + oot ~ haws (1)
Since D(#) is always nonsingular, the above equation becomes
0:t) + (1) + ab(t) = Nwi(t)  i=1.2,....6 (5.624)

which indicates the final decoupled input-output relationships of the system. [t is
interesting 1o note that the parameters oy, wy, and A; can be selected arbitrarily,
provided that the stability criterion is maintained. Hence, the manipulator can be
considered as six independent, decoupled, second-order, time-invariant systems and
the controbler ués) {Eg. (5.6-20)] can be computed efficiently based on the manipu-
lator dynamics. An efficient way of computing the controller u{r) is through the
use of the Newton-Euler equations of motion, Hence, to compute the controller
w (1) for joint i, 6,(r) is substituted with Aw (1) — aydi(t) ~ aufds) in the
Newton-Euler equations of motion.

5.7 RESOLVED MOTION CONTROL

In the last section, several methods were discussed for controlling a mechanical
manipulator in the joint-variable space to follow a joini-interpolated trajectory. In
many applications, resolved motion control, which commands the manipulator hand
to move in a desired cartesian directiont in a coordinated position and rate control,
is more appropriate. Resolved motion means that the motions of the various joint
motors are combined and resolved into separately controllable hand motions along
the world coordinate axes. This implies that several joint motors must run simul-
taneously at different time-varying rates in order to achieve desired coordinated
hand motion along any world coordinate axis. This enables the user to specify the
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direction and speed along any arbitrarily oriented path for the manipulator to fol-
low. This motion control greatly simplifies the specification of the seguence of
motions for completing a task because users are usually more adapted to the carte-
sian coordinate system than the manipulator’s joint angle coordinates.

In general, the desired motion of a manipulator is specified in terms of a
fime-based hand trajectory in cartesian coordinates, while the servo control system
reqaires that the reference inputs be specified in jeint coordinates. The mathemati-
cal refationship between these two coordinate systems is important in designing
efficient control in the cartesian space. We shall briefly describe the basic kinemat-
ics theory relating these two coordinate systems for a six-link robot arm that will
lead us to understand various fmportant resolved motion control methods.

The location of the manipulator hand with respect to a fixed reference coordi-
nate systemn cza be realized by establishing an orthonormal coordinate frame at the
hand (the hand coordinate frame), as shown in Fig. 5.10. The problem of finding
the location of the hand is reduced to finding the position and orientation of the
hand coordinate frame with respect to the inertial frame of the manipulator. This
cart be conveniently achieved by a 4 X 4 homogeneous transformation matrix:

[ndD s aln pio)

D s a0 p | Ty sy an po
n(ty s adln) pty| [ o 0 0 J
0 0 0 1

bas o
ageTimnd ( ! ) -

(5.7-1)

N, Maunspulutor

/-E/ \\ hundd

S Tl
Sweep

Figure 5.16¢ The hand coordinate system.



234 ROBOTICS: CONTROL, SENSING, VISKIN, AND INTELLIGENCE

where p is the position vector of the hand, and n, s, a arc the unit vectors along
the principal axes of the coordinate frame describing the orientation of the hand.
Instead of wusing the rotation submatrix [n, s, a] to describe the orientation, we
can use three Euler angles, vaw «(¢), pitch 3(#), and roll v(#), which are defined
as rotations of the hand coordinate frame about the xy, ¥y, and z, of the reference
frame, respectively. One can obtain the elements of [n, s, a] from the Euler
rotation mairix resulting from a rotation of the o angle about the x; axis, then a
rotation of the 3 angle about the y, axis, and a rotation of the v angle about the z;
axis of the reference frame [Eq. (2.2-19)]. Thus:

mﬂx(f} 50 a(n
tmsul{iﬂind(f)m fty(f) S),(I) ay“)

n 1) 5,01 adr)

Yy -Sy O ¢ o sgl 1 o e

= S Gy 0 o 1 0 0 Ca ~Su
.0 0 1,0L-88 0 (8 0 Sa¢ Cu
CyCB = SyCa+CySBSa SySa+CySBCa
=1 SyCj8 CyCo + SvS535« we Oy 8oy + SvSECR 3.7y
—-53 ChSe CBCu

where sina = Sa, cosa = Co, sinf = 58, cos = C8, siny = Sy, and
cosy = Cy.

Let us define the position p{r), Euler angles €(r), linear velocity v(z), and
angular velocity ((z) vectors of the manipulator hand with respect to the reference
frame, respectively:

lig~

Lped), po(0), pADY &) £ [alr), B(D), v(13]”

p(!)

il

V() 2 [0, v, (01 A 2 [edn, o0, o 0] (5.73)

The linear velocity of the hand with respect to the reference frame is equal to the
time derivative of the position of the hand:

V() = %i:—)— = P(r) (5.7-4)

Since the inverse of a direction cosine mafrix is equivalent to its transpose, the
instantaneous angular velocities of the hand coordinate frame about the principal
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axes of the reference frame can be obtained from Eq. (5.7-2):

dR” dR _; R
e — S RT -
dr dr @ 0 “x
— Wy Wy O
] 0 —S§Ra + 4 —SyCBa — CyB
= SBa — 5 0 CyCha — Sy (5.7-5)
SyCBa + CyB  —CyCBa + S8 0

From the above equation, the relation between the [w, (1), @, (1), w, (1)} and
fa(r), 80y, (117 can be found by equating the nonzero ‘clements in the
matrices:

o | o -sy o] | a
w | = | SyCB Gy 0 6163 (5.7-6)
w, {1} - S8 0 1 ()

1ts inverse relation can be found easily:

(o) o s 0] Jedn |
B(t) | =secB | —SyCB CyCE8 0 w, (£} 5.7-7)
(1) CyS8 Sv88 (8 w ()

or expressed in matrix-vector form,
b(r) £ [S(e)]0() (5.7-8)

Based on the moving coordinate frame concept, the linear and angular veloci-
ties of the hand can be obtained from the velocities of the lower joints;

{;{(:)}} = IN(q)]a(5) = [Ni(q), Nalq). . . . Ne{q) ] 4¢r) (5.7-9)
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where G{1) = (§,.....45) is the joint velocity vector of the maripuiator, and
N{q} is a 6 x 6 jacobian matrix whose ith column vector N;(g) can be found to
be (Whitney [1972]):

"z X (p — Pi-
[zrm; r-p 1}J if joint { is rotational
2

Ni(g) = (5.7-10)

{ i 1J if joint i is translational
“

where X indicates the vector cross product, p;.; is the position of the origin of
the (i — 1)th coordinate frame with respect to the reference frame, z,_, is the unit
vector along the axis of motion of juint 7, and p is the position of the hand with
respect 1o the reference coordinate frame.

If the inverse jacoblan matrix exists at (1), then the joint velocities ¢{r) of
the manipulator can be computed from the hand velocitics using Eq. (5.7-9):

. )

Qi = N g [Q{t) (5.7-113

Given the desired lincar and angular velocities of the hand, this equation computes
the joint velocities and indicates the rates at which the joint motors must be main-
tained in order to achieve a steady hand motion along the desired cartesian direc-
tion.

The accelerations of the hand can be obtained by taking the time derivative of
the velocity vector in Eq. (5.7-9):

{.( = N{g, 4)4() + N{gXi(n {5.7-12)
RUty
where (1) = [4;(1), . .., G (N} is the joint acceleration vector of the manipu-

lator. Substituting G{r) from Eq. (5.7-11) into Eq. (3.7-12) gives

r

["W} = N(q, ON"'(q) L‘“"“ + Ny (5713

Q0 ()

and the joint accelerations §(f) can be computed from the hand velocities and
accelerations as
.

i =N | )

Qo

V(1)

. 5.7-14
) ( )

} ~ N~'(@)N(g, N "'(q) (

The above kinematic relations between the joint coordinates and the cartesian
coordinates wili be used in Sec. 5.7.1 for various resolved motion control methods
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and in deriving the resolved motion equations of motion of the manipulator hand in
cartesian coordinates.

5.7.1 Resolved Meotion Rate Contrel

Resolved motion rate control (RMRC) means that the motions of the various joint
motors are combined and run simultaneously at different time-varying rates in
order to achiéve steady hand motion along any world coordinate axis. The
mathematics that relate the world coordinates, such as lift p,, sweep py, reach p,
yaw o, pitch 3, and roll v to the joint angle coordinate of a six-link manipulator is
inherently nonlinear and can be expressed by a nonlinear vector-valued function as

x(1) = flq(#)] (5.7-15)
where f(q) is a 6 % 1 vector-valued function, and
x(12) = world coordinates = (p,, py, p;. a. £, oM
and q{t) = generalized coordinates = {g;, g1, . . . ,4,)

The refationship between the linear and angular velocities and the joint velocities
of a six-link manipulator is given by Eq. (5.7-9}.

For a more general discussion, if we assume that the manipulator has m
degrees of freedom while the world coordinates of interest are of dimension n,
then the joint angles and the world coordinates are related by & nonlinear function,
as in Eq. (5.7-15).

if we differentiate Eq. (5.7-15) with respect to time, we have

dx{1)

= x(r) = N{g)q(r) {3.7-16)

where N{q) is the jacobian matrix with respect to g{¢), that is,

N, = E:ffw lgign1€jg<m (5.7-17)
ag;

We see that if we work with rate control, the relationship is linear, as indicated by

Eq. (5.7-16). When x(#) and g(r) are of the same dimension, that is, m = n, then

the manipufator is nonredundant and the jacobian matrix can be inverted at a par-

ticular nonsingular position q(¢):

a(n) = N~l(q@)x(n) (5.7-18)

From Egq. (3.7-18), given the desired rate along the world coordinates, one can
casily find the combination of joint motor rates to achieve the desired hand motion.
Various methods of computing the inverse jacobian matrix can be used. A
resolved motion rate control block diagram is shown in Fig. 5.11.
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x4 H N lixy Joint s Arm 8¢
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8 Joiat.
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Figure 5.11 The resolved motion rate congrol block diagram.

H m > n, then the manipulator is redundant and the inverse jacobian matrix
does not exist. This reduces the problem to finding the generalized inverse of the
jacobian matrix. In this case, if the rank of N{(q) is », then (7} can be found by
minimizing an error eriterion formed by adjoining Eg. (5.7-16) with a Lagrange
multiplier to a cost criterion, that is,

€ = S4'Aq + NT% ~ N(@)d] (5.7-19)
where A is a Lagrange multiplier vector, and A is an m X m symmetric, positive
definite matrix.

Minimizing the cost criterion C with respect to §(7) and X, we have

q(2) = ATINT(q)h (5.7-20)

il

and (1) = N{q)q(?) {5.7-21)
Substituting §{r) from Eq. (5.7-20) into Eq. {5.7-21}, and solving for A, yields
A= [IN(A™ N1 '%(n) (5.7-22)
Substituting X into Eq. (5.7-20), we obtain
a(1) = A"'N(@IN(QA'N ()17 '%(») (5.7-23)

H the matrix A is an identity matrix, then Eg. (5.7-23) reduces to Eg. (5.7-18).

Quite often, it is of interest to command the hand motion along the hand coor-
dinate system rather than the world coordimate system (sec Fig. 5.i0). In this
case, the desired hand rate motion h{s) along the hand coordinate system is related
to the world coordinate motion by

i) = "R,b(n) (5.7-24)

where "R, is an # X 6 matrix that relates the orientation of the hand coordinate
system to the world coordinate system. Given the desired hand rate motion h(r)
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with respect to the hand coordinate system, and using Egs. (5.7-23) to (5.7-24), the
joint rate q(s) can be computed by

(1) = ATINT(QN(@QAT'N(g)] ™' "Ry h(1) (5.7-25)

In Eqgs. (5.7-23) and (5.7-25}, the angular position g(7) depends on time ¢, 50 we
need to ovaluate N™7(q) at each sampling time ¢ for the calculation of §(r). The
added computation in obtaining the inverse facobian matrix at each sampling time
and the singularity problem associated with the matrix inversion are impertant
issues in using this control method.

5.7.2 Resolved Motion Acceleration Ceontrol

The resolved motion acceleration control (RMAC) (Luh et al. [19805]) extends the
concept of resolved motion rate control to include acceleration controf. It presents
an alternative position control which deals directly with the position and orfentation
of the hand of a manipulator. All the Feedback control is done at the hand level,
and it assumes that the desired accelerations of a preplanned hand motion are
specified by the user.

The actual and desired position and orientation of the hand of a manipulator
can be represented by 4 X 4 homogeneous transformation matrices, respectively, as

i = { Nty s(t) a(n) p(z;}
0 0 0 1

Wy s e pin
0 ] 4] )]

and HYt) = (5.7-26)

where n, s, a are the unit vectors along the principal axes x, y, 7z of the hand
coordinate system, respectively, and p{r) is the position vector of the hand with
respect to the base coordinate system. The orientation submatrix [n, s, a] can be
defined in terms of Euler angles of rotation (¢, 8, v) with respect to the base
coordinate system as in Eq. (5.7-2).

The position error of the hand is defined as the difference between the desired
and the actual position of the hand and can be expressed as

piny = pAn)
e, (0 = pin ~ p() = | plr) — p0) (5.7-27)
Pl - pin)

Simiiarly, the orientation crror is defined by the discrepancies between the desired
and actual orientation axes of the hand and can be represented by

e{?) = AIn) x nf + s(r) x & + a(n) x 2] (5.7-28)
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Thus, contrel of the manipulator is achieved by reducing these errors of the hand
to zero.

Considering a six-link manipulator, we can combine the Hnear velocities v(r)
and the angular velocities w(¢} of the hand into a six-dimensional vector as X(1),

k) = [V(‘}] = N(Q)4() (5.7:29)
w(r)

where N{q) is a 6 X 6 matrix as given in Eq. (5.7-10). Equation (5.7-29) is the

basis for resolved motion rate control where joint velocities are solved from the

hand velocities. If this idea is extended further to solve for the joint accelerations

from the hand acceleration X(z), then the time derivative of X{r) is the hand

acceleration

£() = N(@)i(n + N(q, §)a(2) (5.7-30)

The closed-loop resolved motion acceleration control is based on the idea of
reducing the position and orientation errors of the hand to zero. H the cartesian
path for a manipulator is preplanned, then the desired position p¥(s}, the desired
velocity vi(r), and the desired acceleration "rd(:) of the hand are known with
respect to the base coordinate system. In order to reduce the position error, one
may apply joint torques and forces to each joint actuator of the manipulator. This
essentially makes the acwual linear acceleration of the hand, ¥(7), satisfy the equa-
tion

V() = V) + VD - D] + kIpY) — po] (5.7-31)
where &; and k; are scalar constants, Equation (5.7-31) can be rewritien as
€00 + k€00 + key(n) =0 {(5.7-32)

where €,(z) = pd(r) — pir). The input torques and forces must be chosen so as
to gustantee the asymptotic convergence of the position error of the hand. This
requires that &, and k; be chosen such that the characteristic roots of Eq. (5.7-32)
have negalive real parts.

Similarly, t reduce the orientation error of the hand, one has to choose the
input torques and forces to the manipulator so that the angular acceleration of the
hand satisfies the expression

W(t) = &N + k[l — w()] + ke (5.7-33)

Let us group v/ and o into a six-dimensional vector and the position and orienta-
HOR errors Into an error vector:

. Vi) } e,(1)
XN = I and efl) = eo() (5.7-34)

d
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Combining Egs. (5.7-31) and (5.7-33), we have
K = ¥+ AR~ OV + el (5.7-35)
Substituting Eqs. (5.7-29) and (5.7-30) into Eq. (5.7-35) and solving for {(r) gives
G0 = NTU@IRAD) + k() — %(0) + kel — N(g, @)8(0]

= ki @(t) + NTHQIRUD + 290 + kelr) ~ N(g, )]
(5.7-36)

Equation {5.7-36) is the basis for the closed-loop resolved acceleration control for
mardpulators. In order to compute the applied joint torques and forces to each
joint actuator of the manipulator, the recursive Newton-Euler equations of motion
are used. The joint position §(z), and joint velocity q(¢) are measured from the
potentiometers, or optical encoders, of the manipulator. The quantities
v, w, N, N"L, N, and Hi¢) can be computed from the above equations. These
values together with the desired position ptr), desired velocity v¥(1), and the
desired acceleration ¥¥{1) of the hand obtained from a pianned trajectory can be
used to compute the joint acceleration using Eq. (5.7-36). Finally the applied joint
torques and forces can be computed recursively from the Newton-Euler equations
of motion. As in the case of RMRC, this control method is characterized by
extensive computational requirements, singularities associated with the jacobian
matrix, and the need to plan a manipulator hand trajectory with aceceleration infor-
mation,

5.7.3 Resolved Motion Force Control

The basic concept of resolved motion force coatrol (RMFC) is to determine the
applied torques to the joint actuators n order to perform the cartesian position
control of the robot arm.  An advantage of RMFC is that the control is not based
on the complicated dynamic equations of motion of the manipulator and still has
the ability o compensate for changing arm configurations, gravity loading forces
on the links, and internai friction. Similar 0 RMAC, all the control of RMFC is
done at the hand level,

The RMFC is bascd on the relationship berween the resolved force vector F
obtained from a wrist force sensor and the joint torques at the joint actuators. The
control technigue consists of the cartesian position control and the force coavergent
control. The position control calculates the desired forces and moments to be
applied 10 the end-effector in order to track a desired cartesian trajectory. The
force convergent control determines the necessary joint torgues to cach actuator so
that the end-effector can maintain the desired forces and moments obtained from
the position control. A control block diagram of the RMFC is shown in Fig. 5.12.

We shall briefly discuss the mathematics that goverss this control technigue.
A more detailed discussion can be found in Wu and Paul [1982]. The basic con-
trol concept of the RMFC is based on the relationship between the resolved
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Figure 5.12 Resolved motion force control.

force vector, F = (F,, F,, F., M,, M,, M_)', and the joint torques, 7 =
(ry, T2, ... ,7,)7, which are applied to each joint actuator in order to counterbal-
ance the forces felt at the hand, where (F,, F,, F,)" and (M,, M,, M7 are the
cartesian forces and moments in the hand coordinate system, respectively. The
underlying relationship between these quantities is

7t} = N(q)F(2) (5.7-37)

where N is the jacobian matrix, as in Eq. (3.7-10).

Since the objective of RMFC is to track the cariesian position of the end-
effector, an appropriate time-based position trajectory has to be specified as func-
tions of the arm transformation matrix YAg(ry, the velocity (v,, v, v,)!, and the
angular velocity (w,, w,. wz)T about the hand coordinate systc:ﬁ. That is, the
desired time-varying arm transformation matrix, SAq(r + An), can be represented
as

I —edn w0 w® }
OALr + ar) = Agn | boomedn wl 0 (5738
—wy(t) w,((f) 1 Vz(f)
0 0 0 1

then, the desired cartesian velocity o= (v, Vy, Vo, Wy, Wy, w3 can be
obtained from the element of the following equation

1 —w (1) w,(n) V(1)
e S e (U WA OL W OEYY
—w, () w0 { v, (1) Af
0 0 0 | (5.7-39)

The cartesian velocity error x’ — % can be obtained using the above cquation.
The velocity error % — X used in Eq. (5.7-31) is different from the above velo-
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city error because the above error equation uses the homogeneous transformation
mairix method. In Eq. (5.7-31), the velocily error is obtained simply by
differentiating pi(t) — p(o).

Similarly, the desired cartesian acceleration ¥(t) can be obtained as:

U+ an — 2o

) "
X = At

(5.7-40)

Based on the proportional plus derivative control approach, if there is no error in
position and velocity of the hand, then we want the actual cartesian acceleration
X(1) to track the desired cartesian acceleration as closely as possible, This can be
done by setting the actual cartesian acceleration as

¥(1) = ¥4 + K[ — 4(0D] + K,[x%0) - x(n] (3741
or 00 + KR + Kx,(0) =0 (5.7-42)

By choosing the values of X, and K, so that the characteristic roots of Eq. (5.7-
42) have negative real parts, x(¢) will converge to Xd(.t) asymptotically.
Based on the above control technique, the desired cartesian forces and

moments (o correct the position errers can be obtained using Newton's second law:
(1) = MX(1) (5.7-43}

where M is the mass matrix with diagonal elements of total mass of the load m
and the moments of inertia [, I,,. 7, at the principal axes of the load. Then,
using the Eq. (5.7-37), the desired cartesian forces F¢ can be tesolved into the
joint torques:

(1) = N(q)F? = N'(q) MX(1) (5.7-44)

In general, the above RMFC works well when the mass and the load are
negligible, as compared with the mass of the manipulator. But, if the mass and the
load approaches the massg of the manipulator, the position of the hand usually does
nat converge o the desired position. This is due to the fact that some of the joint
torques are spent to accelerate the links. In order to compensate for these loading
and acceleration effects, a force convergence control is incorporated as a second
part of the RMFC.

The force convergent control method is based on the Robbins-Monro stochas-
tic approximation method to determine the actual cartesian force F, so that the
observed cartesian force Fy (measured by a wrist force sensor) at the hand will
converge to the desired cartesian force F¥ obtained from the above position control
technique. If the error between the measured force vector Fy and the desired
cartesian force is greater than a uscr-designed threshold AF(k) = Féky — Fy(k),
then the actual cartesian force is updated by

F.(k + 1) = F (k) + v, AF(k) (5.7-45)
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where v, = ik + 1) for k = 0, 1,... N. Theorctically, the value of N
must be large. However, in practice, the value of N can be chosen based on the
force convergence. Bused or a computer simulation study (Wu and Paut [1982]), a
value of N = 1 or 2 gives a fairly good convergence of the force vector,

In sammary, the RMEC with force convergent control has the advamage that
the control method can be extended to various loading corditions and 10 a manipu-
Jator with any number of degrees of freedom without increasing the computational
complexity.

5.8 ADAPTIVE CONTROL

Most of the schemes discussed in the previous sections control the arm at the hand
or joint level and emphasize nonlinear compensations of the interaction forces
between the various joints. These control algorithms sometimes are inadequate
because they require accurate modeling of the arm dymarmics and neglect the
changes of the load in a task cycle. These changes in the payload of the controlled
system often are significant enough to render the above feedback control strategies
ineffective.  The result is reduced servo response speed and damping, which limits
the precision and speed of the end-effector.  Any significant gain in performance
for tracking the desired time-based trajectory as closely as possible over a wide
range of manipulator motion and pavloads reguire the consideration of adaptive
control techaiques.

5.8.1 Model-Referenced Adaptive Control

Among various adaptive contro] methods, the medel-referenced adaptive control
{(MRAC) is the most widely used and it is also relatively easy to implemnent, The
concept of model-referenced adaptive control is based on selecting ap appropriate
reference mode! and adaptation algorithm which modifies the feedback gaing to the
actuators of the actual systern. The adaptation algorithm is driven by the errors
between the reference model outputs and the actual system outputs. A gencral
control block diagram of the model-referenced adaptive control system is shown in
Fig. 5.13.

Dubowsky and DesForges [1979] proposed a simple model-referenced adaptive
control for the control of mechanical manipulators. In their analysis, the payload
is taken into consideration by combining it to the final link, and the end-effector
dimension is assumed to be small compared with the length of other links. Then,
the selected reference model provides an effective and flexible means of specifying
desired closed-loop performanee of the controlled system. A linear second-order
time invariant differential equation is selected as the reference model for each
degree of freedom of the robot arm. The manipulator is controlled by adjusting
the position and velocity feedback gains to follow the model so that its closed-loop
performance characteristics closcly match the set of desired performance charac-
teristics in the reference model. As a result, this adaptive control scheme only
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Figure 5.13 A general control block diagram for medel-referenced adaptive control.

requires moderate computations which can be implemented with a low-cost
microprocessor.  Such a model-referenced, adaptive control algorithm does not
require complex mathematical models of the system dynamics nor the a priori
knowledge of the environment (loads, etc). The resulting model-referenced adap-
tive system is capable of maintaining uniformly good performance over a wide
range of motions and payloads.

Defining the vector y(r} to represent the reference model response and the
vector x(f) to represent the manipulator response, the joint i of the reference
model can be described by

a¥ () + by + y(6) = n() (5.8-1)

In terms of matural frequency w, and damping ratio {; of a second-order linear
system, ¢; and b; correspond to

_ 2

Wi

(5.8-2)

1
& = — and b
W

If we assume that the manipulator is controlied by position and velocity feedback
gains, and that the coupling terms are negligible, then the manipulator dynamic
equation for joint { can be written as

o; (O3 (1) + B(0x%(1) + x(1) = ri{) (3.8-3)

where the system parameters o(7) and §;(r) are assumed to vary slowly with
time.
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Several techniques are available to adjust the feedback gains of the controlled
system. Due to its simplicity, a steepest descent method is used to minimize a
quadratic function of the system error, which is the difference between the
response of the actual system [Eq. (5.8-3)] and the response of the reference model

[Eq. (5.8-1)}:

J(ey = Wikie + Ké + khe,)?  i=1,2,...,n (5.8-4)

where ¢; = ¥ — x;, and the values of the weighting factors, k}, are sciected from
stability considerations to obtain stable system behavior.

Using a steepest descent method, the system parameters adjustroent mechanism

which will minimize the system error is governad by

(KR + ki) + Kbe() 1Tk (1) + k() + k(1)) (5.8-3)

(1)
Bi(t) = (K&t + Kiény + khe D[k (0) + kiwdn) + Kywi(D] (5.8-6)

where 1, {1) and w,{#) and their derivatives are obtained from the sohations of the
following differential equations:

@i (1) + bai(ty + w1y = —§{(1) (5.8
aw, (1) + bw (1) + wi{ty = ~ (1) {5.8-8)

and y; (¢} and ¥.(¢) are the first two time derivatives of response of the reference
model. The closed-loop adaptive system involves solving the reference model
equations for a given desired input; then the differential equations in Egs. {(5.8-7)
and (5.8-8) are solved to yield #;(¢) and w;{r) and their derivatives for Eqgs. (5.8-
5) and (5.8-6). Finally, solving the differential equations in Eqgs. {(5.8-5) and (5.8
6}, yvields o, {¢) and 3;(r).

The fact that this control approach is rot depeadent on a complex mathemati-
cal model is one of its major advantages, but stability considerations of the
closed-loop adaptive system are critical. A stability analysis is difficult, and
Dubowsky and DesForges [1979] carried out an investigation of this adaptive sys-
tem using a linearized model. However, the adaptability of the controller can
become questionable if the interaction forces among the various joints are severe,

5.8.2 Adaptive Control Using an Autoregressive Model

Koivo and Guo {1983] proposed an adaptive, self-tuning controlier using an autore-
gressive model to fit the input-output data from the manipuiator. The control algo-
rithm assumes that the interaction forces among the joints are negligible. A block
diagram of the control system is shown in Fig. 5.14. Let the input torque to joint
i be u;, and the output angular position of the manipulator be y,. The input-output
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Figure 5.14 Adaptive control with autoregressive model.

pairs (4, );) may be described by an awtoregressive medel which match these
pairs as closely as possible:

yi(ky = ﬁ [al"y;(k — m) + bluk — m)] + a’ + e(k) (589

=k

where a” is a constant foreing term, ¢;(4) is the modeling error which is assumed

to be white gaussian noise with zero mean and independent of u; and v,(k — m),
m z 1. The parameters a" and b" are determined so as to obtain the best least-
squares fit of the measured input-outpul data pairs. These parameters can be
obtained by minimizing the following criterion:

N

N+ licz;:0

Eploy) = ek) (5.8-10)

where N is the number of measurements. Let o be the ith parameter vector:
o = (al a! .. al BB, B (5.8-11)
and let ¥;(k — 1) be the vector of the input-output pairs:
Vilk=D=[L yi(k=1), . .., ylk—n), u(k~1), .. w(k—n)]"  (58-12)
Then, a recursive least-squares estimation of a; can be found as

&;(N)y = &(N = 1} + P(NIW(N — DIy(N) — &/(N — DN - 1]
(3.8-13)
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with

PN — 13N — TN — BN — 1)
PI{N):W;{ N = DN = DYV — 1P( )J 55.14)

# wot (N = PN ~ DN = 1)
where 0 < g, < 1 s a “forgetting”™ factor which provides an exponential weight-
ing of past data in the estimation algorithm and by which the algorithm aHows a
slow drift of the parameters; Py isa (2n + 1) X {20 + 1) symmetric matrix, and
the hat notation is used to indicate an estimate of the parameters.

Using the above cquations to compute the estimates of the autoregressive
model, the model can be represented by

vk = @¢/Yk — 1) + etk (5.8-15)

In order to track the trajectory set points, a performance criterion for joint f is
defined as

JHu) = E{{ytk + 2) — vtk + )1 + vk + DIg(b)} (5.8-16)

where £] «] represents an expectation operation conditionsd on (k) and v; is a
user-defined nonnegative weighting factor.

The optimal control that minimizes the above performance criterien is found
to be:

w(k + 1)

= _M:ﬂfﬁww alky + albald) + ﬁ ANy k 4+ 2~ m)
[b*‘l(k}]z + ’Yi I i 1 i mﬂz 2 gt

+ ¥ Ef”{k)u,-(k + 2 - m) — Wk + 2)1 (5.8-17)
mad j

o m

where 4", b7, and 4" are the estimates of the parameters from Egs. (5.8-13) and
(5.8-14).

In summary, this adaptive control uses an autoregressive model [Eg. (5.8-9)]
to ft the input-output data from the manipulator. The recursive least-squares
identification scheme [Egs. (5.8-13) and {5.8-14)] is used to estimate the parame-
ters which are used in the optimal control [Eq. (5.8-17)] 10 servo the manipulator.

5.8.3 Adaptive Perturbation Conirel

Based on perturbation theory, Lee and Chung [1984, 1985] proposed an adaptive
control strategy which tracks a desired time-based manipulator trajectory as closely
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as possible for all times over a wide range of manipulator motion and payloads.
Adaptive perturbation control differs from the sbove adaptive schemes in the sense
that it takes all the interactions among the various joints into consideration. The
adaptive control discussed in this section is based on linearized perturbation equa-
tions in the vicinity of a nominal trajectory, The nominal trajectory is specified by
an interpolated joint trajectory whose angular position, angular velocity, and angu-
lar acceleration are known at every sampling instant. The highly coupled non-
lingar dynamic eguations of a manipulator are then linearized about the planned
manipulator trajectory to obtain the linearized perturbation system. The controlled
system is characterized by feedforward and feedback componments which can be
computed separately and simubtancously. Using the Newton-Euler equations of
motion as inverse dynamics of the manipulator, the feedforward component com-
putes the nominal torques which compensate all the interaction forces between the
various joints along the nominal trajectory. The feedback component computes the
perturbation torques which reduce the position and velocity errors of the manipula-
tor to zero along the nominal trajectory. An efficient, recursive, real-time, least-
squares identification scheme is used to identify the system parameters in the per-
turbation eguations. A one-step optimal control law is designed to control the
linearized perturbation system about the nominal trajectory. The parameters and
the feedback gains of the linearized system are updated and adjusted in each sam-
pling period to obtain the necessary control effort. The total torques applied to the
jont actuators then consist of the nominal torques compated from the Newton-
Euler equations of motion and the perturbation torques computed from the one-step
optimal comtrol law of the lincarized systemn. This adaptive control strategy
reduces the mandipulator control problem from nonlincar control to controlling a
linear system about a nominal trajectory.

The adaptive control is based on the linearized perturbation equations about
the referenced trajectory. We need to derive appropriate linearized perturbation
equations suitable for developing the feedback controller which computes perturba-
tion joint torgues to reduce position and velocity errors along the nominal trajec-
tory. The L-E equations of motion of an »-link manipulator can be expressed in
state space representation as in Eq. (3.4-4). With this formulation, the controt
problem is to find a feedback control law w(s) = g[x(1)] such that the closed
loop control system x(7) = [{x(#), g[x(s)]} is asymptotically stable and tracks a
desired trajectory as closely as possible over a wide range of payloads for all
times.

Suppose that the nominal states x, (¢} of the system [Eq. (5.4-4)] are known
from the planned trajectory, and the corresponding nominal torques wu,(?) are also
known from the computations of the joint torques using the N-E equations of
motion. Then, both x,{(¢) and u,(1) satisfy Eq. (5.4-4):

X, (1) = f[x,(1), u,(1}] (5.8-18)
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Using the Taylor series expansion on Eq. (5.4-4} about the nominal trajectory, sub-
tracting Eq. (5.8-18) from i1, and assuming that the higher order terms are negligi-
bie, the associated linearized perturbation model for this centrol system car be
expressed as

8% (1) = V|, 5x(1} + V,f|, snin)

il

Alr) 6x(1) + B(y) Suin) (5.8-19)

where V. f|, and V,f|, are the jacobian matrices of f]x(1), u(v3} evaluated at
X, (r} and w, (¢}, respectively, 8x(¢) = x(r) —~ x,(1) and Su(t) = u{r) — wu,(1).

The system parameters, A(7} and B{r), of Eq. (5.8-19) depend on the instan-
tancous manipulator position and velocity along the nominal trajectory and thus,
vary slowly with time. Because of the complexity of the manipulator equations of
maotion, it is extremely difficult to find the elements of A(r) and B(#) exphicitly.
However, the design of a feedback control law for the perturbation equations
requires that the system parameters of Eq. (5.8-19) be known at alt imes, Thus,
parameter identification techniques must be used to identify the unknown clements
in A{2) and B(s).

As a result of this formulation, the manipulator control problem is reduced to
determining duis), which drives 8x(¢) to zero at all times along the nominal tra-
jectory. The overall controlled system is thus characterized by a feedforward com-
poncnt and a feedback component. Given the planned trajectory set points q(7),
§ (z) and §'(r), the feedforward component computes the correspongding nominal
torques W, (¢} from the N-E equations of metion. The feedback component com-
putes the corresponding perturbation torques du(r) which provide control effort to
compensate for smaill deviations from the nominal trajectory. The computation of
the perturbation torgues is based on a one-step optimal control law. The main
advantages of this formulation are twofeld. First, it reduces a nonlinear control
problem (o & lincar control problem: about a nominal trajectory; second, the com-
putations of the nominal and perturbation torques can be performed separately and
simultaneously. Because of this parallel computational structure, adaptive control
techniques can be easily implemented using present day low-cosl microprocessors.
A comirol block diagram of the method is shown in Fig. 5.15,

For implementation on a digital computer, Eq. (5.8-19) needs to be discretized
i obtain an appropriate discrete linear equations for parameter identification:

xf(k + DT = F&Tx(kTy + GUkDa(kh

k=0,1,... {3.8-20)

where T is the sampling period, n(&T) is 2n a-dimensional piecewise constani con-
trol input vector ol w(r) over the time interval betwoen any two consecutive sam-
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Figure 5.15 The adaptive perturbation control.

phing instants for AT < ¢+ < (K + DT, and x{kT) is a 2n-dimensional perturbed
state vector which is given by

x(kT) = T(AT, to)x(ty) + jf” T(kT, £YB(Hu(r)dr (5.8-21)

and PEAT, 15) is the state-transition matrix of the system. F(AT} and G(&T) are,
respectively, 2n X 2n and 2Zn X n matrices and are given by

F(kT)

i

T[(k + DT, k7] (5.8-22)
and Gk u(kT) = j;;“”i* ((k + DT, t1B(Ou(dt (5.823)

With this model, a total of 6r° parameters in the F(47) and G(iT) matrices need
10 be identifiad. Without confusion, we shall drop the sampling period T from the
rest of the equations for clarity and simplicity.

Various identification algorithms, such as the methods of least squares, max-
imum likelihood, instrumental variable, cross correlation, and stochastic approxi-
mation, have been applied successfully to the parameter identification problem.
Due to its simplicity and ease of application, a recursive real-time least-squares
parameter identification scheme is selected here for identifying the system parame-
ters in F(k) and G(k). In the parameter identification scheme, we make the fol-
towing assumptions: (1) the parameters of the system are slowly time-varying but
the variation speed is slower than the adaptation speed; (2) measurement noise is
negligible; and (3) the state variables x(k) of Eq. {5.8-20) are mcasurable.
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In order to apply the recursive least-squares identification algorithm to Eg.
(5.8-20), we need to rearrange the system equations in a form that s suitable for
parameter identification. Defining and expressing the ith row of the unknown
parameters of the system at the &th instant of time in a 3n-dimensional vector, we
have

Ofky = [futk), .. fip(k), gk, ..o (K] (5.8-24)
i= 12, ...,p
or, expressed in matrix form, as

[ fitk)y e fulk) ]

+

flp{k) e fpp(k}
8k) = g (k) - 8p1(k) = [8(k), 0(8), . .. ’e,a(k)E

. (5.8-25)

Salk) «-- gpfs(k)

where p = 2n. Similarly, defining the outputs and inputs of the perturbation sys-
tem [Bq. (5.8-200] at the kth instant of time in & 3n-dimensional vector as

(k) = {x(k), x:(k), . . . JEgkk), wy (k)L k), L (K)] (5.8-26)
and the states at the kth instant of time in a 2r-dimensional vector as
X(k) = [ k), % (k). .. L x,(k)) (5.8-27)
we have that the corresponding system equation in Eq. (5.8-20) can be written ag
xk + 1) = 2'tkgky i=1,2,...,p (5.8-28)

With this formulation, we wish to identify the parameters in each column of
@(k) based on the measurement vector (k). In order o examine the “goodness”
of the least-squares estimation algorithm, a 2n-dimensional error vector e{%), often
caled a residual, is included to account for the modeling error and noise in Eg,
(5.8-200:

e(ky = x(k + 1) - 2f0bky  i=1,2,...,p (5.8-29)

Basic least-squares parameter estimation assumes that the unknown parameters
are constant values and the solution is based on batch processing N sets of meas-
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urement data, which are weighted equally, to estimate the unknown parameters.
Unfortunately, this algorithm cannot be applied to time-varying parameters. Furth-
ermore, the solution requires matrix inversion which is computational intensive., In
order to reduce the number of numerical computations and to track the time-
varying parameters @(k) at each sampling period, a sequential least-squares
identification scheme which updates the unknown parameters at each sampling
period based on the new set of measurements at each sampling interval provides an
efficient algorithmic solution to the identification problem. Such a recursive, real-
time, least-squares parameter identification algorithm can be found by minimizing
an exponentially weighted error criterion which has an effect of placing more
weights on the squared errors of the more recent measurements; that is,

N
Iy = B 6"l ) (5.8-30)
j=1

where the error vector is weighted as
el(N) = [Vo" e 1), ¥pV2e,(2), . . . L edNYY (5.8-31)

and N > 3n is the number of measurements used to estimate the parameters
&,(N). Minimizing the error criterion in Eq. (5.8-30) with respect to the unknown
parameters vector §; and utilizing the matrix inverse lemma, a recursive real-time
least-squarcs identification scheme can be obtained for @,(k) after simple algebraic
manipulations:

Bk + 1) = (k) + v(PU)2z(k) [xk+1) — 2 ()6,(k) ] (5.8-32)
Pk + 1y = Py — (k) P(k}z{k)z’(k)P(k) (5.8-33)
and yky = [2(OPK2k) + 17! (5.8-34)

where {0 < g < 1, the hat notation is used o indicate the estimate of the parame-
ters 8,{k), and P(k) = P[Z(OZTH 1™ is a 3n X 3n symmetric positive definite
mattix, where Z{k) = [z(l), z(2), ... ,2z(k)] is the measurcment matrix up to
the kth sampling instant. If the errors ¢;{k) are identically distributed and indepen-
dent with zero mean and variance o, then P(k) can be interpreted as the covari-
ance matrix of the estimate if p is chosen as ¢

The above recursive equations indicate that the estimate of the parameters
Gk + 1) at the (k + 1)th sampling period is equal to the previous estimate
8,(k) corrected by the term proporticnal to |x;(k + 1) ~ 27(k)8,(ky}. The term
zT(k')é,‘(k) is the prediction of the value x;(k + 1) based on the estimate of the
parameters #;{k) and the measurement vector z{k). The components of the vector
w(k)P(k}z(k} are weighting factors which indicate how the corrections and the
previous estimate should be weighted to obtain the new estimate .(k+1). The
parameter p is a weighting factor and is commonly used for tracking slowly time-
varying parameters by exponentially forgetting the “aged” measurements. If
p << 1, a large weighting factor is placed on the more recent sampled data by
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rapidly weighing out previous samples. If p = 1, accuracy in tracking the time-
varying parameters will be lost duc to the truncation of the mcasured data
sequences, We can compromise between fast adaptation capabilities and loss of
accuracy in parameter identification by adjusting the weighting factor p. In most
applications for tracking slowly time-varying parameters, p is usually chosen to be
090 € p < 10.

Finally, the above identification scheme [Egs. {5.8-32) to (5.8-34)] can be
started by choosing the initial valees of P(0} to be

PO) = ok, (5.8-35)

where « is a large positive scalar and I, is a 3n X 3n identity matrix. The initial
estimate of the unknown parameters F(k) and G(k) can be approximated by the
following equations:

) Vg
F(O)=k, + {ﬂ[xn({))»lin{o)'i}ir+ {ﬁgxn({))&l;n(ﬂ)] L (5.8-36)
ax ax j

G(0)= {—[xn{e}, ,,wn} {gfix ). u ,,{O)E}
x {m‘?»fwix,,(m, uﬁ(on}f*’
. a“ .
af : 7
+ {Wixnwmnwn} { [x;xe),u,;een} (5.837)

where T is the sampling period.

With the determination of the parameters in F(k) and G(k), proper control
laws can be designed to obtain the required correction torques to reduce the posi-
tion and velocity errors of the manipulator along a nominal trajectory. This can be
done by finding ar optimal control u*(&) which minimizes the performance index
J{k) while satisfying the constraints of Eq. {5.8-20):

J(ky = w%[xTk + DOQx(k + 1) + o' ()Ruk)] {5.8-38)

where ) is a p X p semipositive definite weighting matrix and R is an n X 1 posi-
tive definite weighting matrix. The one-step performance index in Eq. ¢5.8-38)
indicates that the objective of the optimal control is to drive the position and velo-
city errors of the manipulator to zero along the nominal trajectory in a coordinated
position and rate control per interval step while, at the same time, attaching a cost
to the use of control cffort. The optimal control solution which minimizes the
functional in Eq. (5.8-38) subject to the constraints of Eq. {5.8-20) is well known
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and is found to be (Saridis and Lobbia [1972])
uHk) = —[R + GHOQGH 16 () QR (&) x(k) (5.8-39)

where ¥(k) and f}(k) are the system parameters obtained from the identification
atgorithm [Fgs. (3.8-32) to (5.8-34)] at the kth sampling instant.

The identification and control algerithms in Egs. (5.8-32) to ¢5.8-34) and
Eq. (5.839) do not require complex computations. In Eq. (5.8-34),
[2/(k)P(kyz(ky + p] gives a scalar, so its inversion is trivial. Although the
weighting factor p can be adjusted for each fth parameter vector §,(k} as desired,
this requires excessive computations in the P(k + 1) matrix. For real-time robot
arm control, such adjustments are not desirable. P{k + 1) is computed only once
at gach sampling time using the same weighting factor p. Moreover, since P(k) is
a symmetric positive definite matrix, only the upper diagonal matrix of P(k) needs
to be computed. The combined identification and contrel zlgorithm can be com-
puted in O{r*) time. The computational requirements of the adaptive perturbation
control are tabulated in Table 5.1. Based on the specifications of a DEC PDP 11/
43 computer, an ADDF (floating point addition) instruction requires 5.17pus and a
MULF (floating point multiply) instruction requires 7.17ps. I we asswme that for
each ADDF and MULF instruction, we need to fetch data from the core memory
twice and the memory cycle time is 450 ns, then the adaptive perturbation control
requires approximately 7.5 ms to compute the necessary joint torques to servo the
first three joints of a PUMA robot arm for a trajectory set point.

A computer simulation study of a three-joint PUMA manipulator was con-
ducted {Lec and Chung [1984,1985]) to evaluate and compare the performance of
the adaptive controller with the controller [Eq. {5.3-63}|, which is bagically & pro-
portional plus derivative control {PD controller). The study was carried out for
various loading conditions along a given trajectory. The performances of the PD
and adaptive controllers are compared and evaluated for three different loading

Table 5.1 Computations of the adaptive controller

Adaptive
controller Multiplications Additions

Newton-Euler

equations of motion 1170 ~ 24 1037 — 21
Least-squares

identification 301" + 52 + 1 308 + 3 — 1
atgorithm

Centrol

algorithm 8a + 2n° + 39 gn* —n® —n + 18

Total 8?4+ 322 + Sn + 40 &' + 2977 + 27 + 17
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Table 5.2 Comparisons of the PD and adaptive controllers

D controlier Adaptive comtrodler
Trajectory tracking Trajectory tracking
Various
loading Soint Max, error Max. error Final position  Max, error Max. error Final position
conditions {degrees)  (mm) error (degrees) {degrees) {mm) error {degrees)
No-load and H 6.089 155 (0.02% 0.020 .34 (3.000
10% error 2 (3.098 1.71 0.039 0.020 0.36 G004
In inertia tensor 3 3.328 2.86 0.121 0.032 0.28 0,002
A max. load 1 0.121 211 0.034 0045 078 0.014
and 10% error 2 0.147 2.57 0078 0.085% 14 0.050
In incrifa tensor 3 .480 4.19 0.245 0.096 0.83 0.077
Max. loat 1 {.145 2.53 0.082 0.069 1.20 0.023
and 10% error 2 0,185 3.23 G113 0.069 1.22 (.041
It inertia tensor 3 0.607 5.30 3360 G.066 0.58 0.01%

conditions and the results are tabulated in Table 5.2: (1) no-load and 10 percent
error in inertia tensor, (2) half of maximum load and 10 percemt error in inertia
tensor, and (3) maximum load (5 Ib) and 10 percent error in inertia temsor. In
each case, a 10 percent error in inertia matrices means = 10 percent error about
its measured inertial values. For all the above cases, the adaptive controller shows
better performance than the PD controller with constant feedback gains both in tra-
jectory tracking and the final position errors. Plots of angular position errors for
the above cases for the adaptive control are shown in Figs. 5.i6 to 5.18. Addi-
tional details of the simulation result can be found in Lee and Chung {1984, 1985],

5.8.4 Resoived Motion Adaptive Control

The adaptive control strategy of Sec. 5.8.3 in the joint variable space can be
extended to control the manipulator in cartesian coordinates under various loading
corditions by adopting the ideas of resolved motion rate and acceleration controls,
The resolved motion adaptive control is performed at the hand level and is based
on the limearized perturbation system along a desired time-based hand trajectory.
The resolved motion adaptive control differs from the resolved motion acceleration
control by minimizing the position/orientation and angular and Hnear velocities of
the manipufator hand along the hand coordinate axes instead of position and orien-
tation errors. Similar to the previous adaptive control, the controlled system is
characterized by feedforward and feedback components which can be computed
separately and simultancously. The feedforward component resolves the specified
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positions, velocities, and accelerations of the hand into a set of valies of Joint
positions, velocities, and accelerations from which the nominal joint toFques are
comprted using the Newton-Euler equations of motion to compensate for all the
interaction forces among the various joints. The feedback component computes the
perturbation joint torques which reduce the manipuiator hand position and velocity
errors along the nominal hand trajectory. A recursive least-squares identification
scheme is again used to perform en-line parameter identification of the lincarized
system.

Using the kinematic relationship between the joint coordinates and the carte-
sian coordinates derived previously in Egs. (5.7-1) to (5.7-14), the equations of
motion of the manipulator in cartesian coordinates can be easily obtained. The
acceleration of the manipulator has been obtained previously in Eq. (5.7-13) and is
repeated here for convenience:

¥(1) o et VO]
. = N{q, )N '(q) + N{q)g(s) (5.8-4n
i | =@ v [20] 4 scan
In order to include the dymamics of the manipulator into the above kinematics
equation [Eq. {5.8-40)], we need to use the L-E equations of motion given in Eg.
{3.2-26). Since D} q) is always nonsingular, §{(¢} can be obtained from Eg. (3.2-
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26) and substituted into Eq. (5.8-40) to obtain the accelerations of the manipuiator
hand:

V(1) =N(g, QN irv{r)}
. =Nig, )N (q}
me] Lﬁ(fﬁ

For convenience, let us partiion N(g), N"'(q). and P fq) into 3 x 3
submatrices and h{g, 4), ¢{q), and 7{r) into 3 x | submatrices:

+N(QOD U7 ~hg, §)—c(@)}
(5.8-41})

Nulq) le{(l)h
N(g) 2 J (5.8-42a)
[Nzl(fi) Ny q)
Ki(q) Ki(g) | _
N“Yq) 2 Keq) & R | (5.8-425)
4 W Ky (qg) KEZ{Q)J
D-Yq & Eq 2 { afay Ep(q (5.8-43a)
E;(q) Enp(q)
N hy(q, Q)W
ha D 2|y, ‘”J (5.8-43b)
A [ ¢)(q)
oq) = 5.8-44a
‘a »Cz(q)] ¢ )
o & T*m} (5.8-44h)
)

Combining Egs. (5.7-4), (5.7-8), and (3.8-41}, and using Eqgs. (5.8-42) to (5.8-44),
we can obtain the state equations of the manipulator in cartesian coordinates:

f?“ﬁi oo I; 0

®(6) | RN 0 S(®)

ORI F 0 R(q K0+ No(a, DK@ Kyla, $Kn(@) +Nia(g, HKz(a)
Q(”_ 0 0 Nu(g, @)Kn(@)+Na(q, Ka(q) Noi(q. QK@) + Nt g, §)Kaa(Q)

b | 0 0

| P(r) 0 [H
Xiwiry | T N @B (@ + No(E(@)  No{@Ea(@) + No(@)Ex(q)
sy No (@ Eq{g) + Nax{ ) E; () Ny (q)Ep{q) + Nn(g)Exn{q) |

(continited on next page)
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(g el (0 |
x (5.8-45)
~ By, )~ (g} +7a(1)

where 9 ig a 3 X 3 zero matrix. It is noted that the leftmost and middle veetors are
i2 x 1, the center left matrix is 12 X 12, the right matrix is 12 X 6, and the
rightmost vector is 6 x 1. Equation (5.8-45) represents the state equations of the
manipulator and will be used to derive an adaptive control scheme in cartesian
coordinates.

Defining the state vector for the manipulator hand as

A T
(1) 2 {x,x%, ... ,0p)

He-

(Per Py P 6 B, ¥, Veu ¥y, Yoy @0 @y, )7 (5.8-46)

lis

(p’. &7, 7, oy
and the input torque vector as

u) & ()T B )T (5.8-47)
Eq. (5.8-43) can be expressed in state space representation as:

x(1) = f[x(n), w()} {5.8-48)

where x{1) is a 2Zn-dimensional vector, w(#) is an n-dimensional vector, f{ +) is a
2r % 1 continuously differentiable, nonlinear vector-valued fanction, and # = 6 is
the nwmber of degrees of freedom of the manipulator,

Equation (5.8-48) can be expressed as

£ (1) = fi(x, w) = x(1)

1) = fo(x, u) = x(1)

(1) = fi(X, w) = x(1)

(1) = fa(X, u) = —secxs (X5 CoSks + Xp; Sinxg) €5.8349)

Xs(f) = fs(x, w) = secas{xpcosxs sinyg, — x|, cOSx5 COS X, )

X (£} = fo(X, 1) = —secxs (x4 sinx; Cosxg + Xx;q Sinxs Sinxg + Xyp COSXs )
Xipel)=fiye(3, 8)

=gir6{q OX() +hs(DONQ. @) +b;, 5(q)u(s)
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where i = 1, ... ,6and g, (g, q) is the (/ + 6)th row of the matrix:
00 L 0
60 ¢ S(¢)

0 0 Ny(q K+ Nota, ©Kn(a) Nyl Kia(g)+Nol(q, DKn(@)
60 &21(%&);(11(‘}}*"&22{‘]"-l)Kz%(‘”iJ Noi( g, @Kt q) + Nalq, §) Kaig)

and biog(q) is the (i + 6)th row of the matrix:
0 ]
i) )
Nu(E;(q) + Np(q)E;(¢) N (q}E;(q) + Npl{q)E;iq)
Na(e)Eq{q) + Nox(@)Ex(q) Nu(q)Ep(q) + NplqyEyig)

and -
—hi(g, g) — ¢;{q)

Mg, §) = _
; ~hy(q, §) — e(q)

Equation {5.8-45) describes the complete manipulator dynamics in cartesian coordi-
nates, and the control problem is to find a feedback control law w(y) = g[x(n] to
minimize the manipulator hand error aleng the desired hand trajectory over & wide
range of payloads. Again, perturbation theory is used and Taylor series expansion
is applied to Eq. (5.8-49) to obtain the associated linearized system and to design a
feedback control law about the desired hand trajectory. The determination of the
feedback control law for the lincarized system is identical to the one in the joint
coordinates [Eqs. (5.8-32) to (5.8-34) and Eg. (5.8-39)]. The resolved motion
adaptive control block diagram is shown in Fig. 5.19.

The overall resolved motion adaptive control system is again characterized by
a feedforward component and & feedback component. Such a formulation has the
advantage of employing parallel schemes in computing these components. The
feedforward component computes the desired joint torques as foliows: (1) The
hand trajectory set points pd(r), a(n), v, Fn, ¥i(1), and ﬂd(z) are resolved
into a set of values of desired joint positions, velocities, and accelerations; (2) the
desired joint torques along the hand trajectory are computed from the Newton-
Euler equations of motien using the computed sets of values of joint positions,
velocities, and accelerations. These computed torques constitute the nominal
torque values u,(r). The feedback component computes the perturbation joint
torques Sufr) the same way as in Eq. (5.8-39), using the recursive least-squares
identification scheme in Egs. (5.8-32) to (5.8-34).

A feasibility study of implementing the adaptive controller based on a 60-Hz
sampling frequency and using present-day low-cost microprocessors can be con-
ducted by looking at the computational requirements in terms of mathematical mul-
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tiplication and addition cperations. We assume that multiprocessors are available
for parallel computatdon of the controller, The feedforward component which
computes the nominal joint torques along a desired hand trajectory can be com-
puted seriafly in four separate stages. It requires a total of 1386 multiplications
and 988 additions for a six-joint manipulator. The feedback cortrol component
which computes the perturbation joint torques can be conveniently computed seri-
ally in three separate stages. It requires about 3348 multiplications and 3118 addi-
tions for a six-joint manipulator. Since the feedforward and feedback components
can be computed in parallel, the resolved motion adaptive control requires a tofal
of 3348 multiplications and 3118 additions in each sampling period. Computa-
tional requirements in terms of muitiplications and additions for the adaptive con-
troHer for a n-joint manipulator are tabulated in Table 5.3.

Based on the specification sheet of an INTEL B087 microprocessor, an integer
multiply requires 19 s, an addition reguires 17 s, and a memory fetch or store
requires 9 us. Assuming that two memory fetches are required for each multipli-
cation and addition operation, the proposed controller can be computed in about
233 ms whick is not fast emough for closing the servo loop. (Recall from Sec.
5.3.5 that a minimum of 16 msec is required if the sampling frequency is 60 Hz).
Similarly, looking at the specification sheet of a Motorola MC68000 microproces-
sor, an integer multiply requires 5.6 ps, an addition reguires 0.96 us, and a
memory fetch or store requires 0.32 ps, the proposed controller can be computed
in about 26.24 ms which is stili not fast enmough for closing the servo loop.
Finally, looking at the specification sheet of a PDP 11/45 computer, an integer
multiply requires 3.3 us, an addition requires 300 ns, and a memory fetch or store
requires 450 ns, the proposed controller can be computed in about 18 ms which
transiates to a sampling frequency of approximately 55 Hz. However, the PDP
11/45 is a uniprocessor machine and the parallel computation assumption is not
valid. This exercise should give the reader an idea of the required processing
speed for adaptive control of a manipulator. We anticipate that faster microproces-
sors, which will be able 10 compute the proposed resolved motion adaptive con-
troller within 10 ms, will be available in a few years.

5.9 CONCLUDING REMARKS

We have reviewed various robot manipulator control methods. They vary from a
simple servomechanism to advanced control schemes such as adaptive control with
an identification algorithm. The control techniques are discussed in joint motion
control, resolved motion control, and adaptive control. Most of the joint motion
and resolved motion control methods discussed servo the arm at the hand or the
joint level and emphasize nonlinear compensations of the coupling forces among
the various joints. We have also discussed various adaptive control strategies.
The model-referenced adaptive control is easy to implement, but suitable reference
models are difficult to choose and it is difficult 1o establish any stability analysis of
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Table 5.3 Computations of the resolved motion adaptive controlt

Adaptive Number of Number of
controlier mulsiplications additions
stage 1 Compute q" (iaverse kinematics) (39 4
s i wt o+ 27a + 327 A% 4+ 181 + 89
stage ompute ( (52%) 233)
tare 3 C e 5 4n* 4n* — 3n
stage ] “ompute g (144) (126)
tane 4 c ‘ s — 24 1032« 21
stage ompute 1 (678) (s9M)

Total feedforward computations

54 &+ 144n + 342
(1386)

% 4+ 18 + 100
(9R8)

Compute (p? #7137 48 22
stage | FaT T nt 4+ 27 - 21 a? 4 t8r — 15

Compute (v' 07} (177) (129)

Copute band errors [x(k} —x, (k)] 4] 2n
stage 2 ) {12)
stap Identification scheme 3347+ On 4 2 34%n? ~ 1n

{244} (1233}
. B +4p’ +n 1 8t —n
stage 3 Compute adaptive controlier (1879 (1722}
Total feedback comoutations B* + 38074370430 8r+35%wAt+ 1THR+Y
al

© P (3348) (3118)
Fotal 8003807 4370330 B4 35%nt 4 1T%R 4T
mathematical operations {3348} (3118)

+ Number inside parentheses indicate computations for n = 6.

the controlled system. Self-tuning adaptive control fits the input-output data of the
systern with an auntoregressive model. Both methods neglect the coupling forces
between the joints which may be severe for manipulators with rotary joints. Adap-
tive contro] using perturbation theory may be more appropriate for various mani-
pulators because it takes all the interaction forces between the joints into considera-
tion. The adaptive perturbation contrel strategy was found suitable for coatrolling
the manipulator in both the joint coordinates and cartesian coordinates. An adap-
tive perturbation control system is characterized by 2 feedforward component and a
feedback comporent which can be computed separately and simubtaneously in
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parallel. The computations of the adaptive control for a six-link robot arm may be
implemented in low-cost microprocessors for centrolling in the joint variable
space, while the resolved motion adaptive control cannot be implemented in
present-day low-cost microprocessors because they still do not have the required
speed to compute the controller parameters for the “standard” 60-Hz sampling fre-
quency.
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PROBLEMS

5.1 Consider the development of a single-joint positional controller, as discussed in Sec.
532 If the applied voltage v.{#) is linearly proportional to the position error and to the
rate of the output angular position, what is the open-loop transfer function @ (s)/E(s) and
the closed-loop transfer function ©,(s)/@%(s) of the system?

5.2 For the applied voltage used in Prob. 5.1, discuss the steady-state error of the system
due o a step input. Repeat for a ramp input.
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5.3 In the compuied torque control technique, if the Newton-Euler equations of motion are
used to compute the apphed joint torgues for a 6 degree-of-freedom maripakator with rotary
joints, what is the required number of multiplications and additions per trajectory set poini?
5.4 In the computed torgue contrel technique, the analysis is performed in the continuous
time, while the actual control on the robot amm is done in discrete time (i.e., by a sampled-
data system) bhecausse we use a digital computer for implementing the controller.  Explain
the condition under whick this practice is valid.

5.3 The equations of motion of the two-link robot arm in Sec. 3.2.6 can be written in a

compacl matrix-vector form as:
R 8, big | |l
By g i | n)

where g is the gravitational constant. Choose an appropriale state variable vector x(7} and a
contrel vector w(r) for this dynamic system. Assuming that D8 exists, express the
equations of motion of this robot arm explicitly in terms of 4;s, 8's, and ¢'s in a state-
space Tepresentation with the chosen state-variable vector and controi vector,

[ ] B0 + 2800000,
| b,(1) 5 1' —~ Bl

d () (b} |
dip (8 dyn

5.6 Design a variable structure controller for the robot in Prob. 5.5. (See Sec. 5.5))

5.7 Design a nonlinear decoupled feedback contreller for the robot in Prob. 5.5. (See Sec.
5.6

5.8 Find the jacobian matrix in the hase coordinate frame for the robot in Prob. 5.5, (See
Appendix B.)

5.8 Give two main disadvaniages of using the resoived motion rate conirol,

510 Give two main disadvantages of using the resolved motion acceleration controf.

5.11 Give two main disadvantages of using the model-referenced adaptive control.

8.12 Give two main disadvantages of using the adaptive perturbation conirol,





