CHAPTER

SEVEN

LOW-LEVEL VISION

Where ihere is no vision, the people perish.
Proverbs

7.1 INFRODUCTION

As is true in humans, vision capabilitics cndow a robot with a sophisticated sens-
ing mechanism that allows the mackine to respond to its environment in an “intel-
ligent” and flexible manner. The wse of vision and other sensing schemes, such as
those discussed in Chap. 6, is motivated by the continuing need to increase the
fiexibility and scope of applications of robotic systems. While proximity, touch,
and force sensing play a significant role in the improvement of robot performance,
vision is recognized as the most powerful of robot sensory capabilities. As might
be expected, the sensors, concepts, and processing hardware associated with
machine vision are considerably more compiex than those associated with the sen-
sory approaches discussed in Chap. 6.

Robot vision may be defined as the process of extracting, characterizing, and
interpreting information from images of a three-dimensional world. This process,
also commonly referred to as machine or computer vision, may be subdivided into
six principal areas: (1) sensing, (2) preprocessing, (3) segmentation, (4) descrip-
tion, (5) recognition, snd (6) interpretation. Sensing is the process that vields a
visual image. Preprocessing deals with technigues such as noise reduction apd
enhancement of details. Segmentation is the process that partitions an image into
objects of interest. Description deals with the computation of features (e.g., size,
shape) suitable for differentiating one type of object from another. Recognition is
the process that identifies these objects (e.g., wrench, bolt, engine block). Finally,
interpretation assigns meaning to an ensemble of recognized objects.

It is convenient to group these various arcas according to the sophistication
involved in their implementation. We consider three levels of processing: low-,
medium-, and high-level vision. While there are no clearcut boundaries between
these subdivisions, they do provide a useful framework for categorizing the various
processes that are inherent components of a machine vision system. For instance,
we associate with low-level vision those processes that are primitive in the semse
that they may be considered “automatic reactions” requiring no intellizence on the
part of the vision system. In our discussion, we shall treat sensing and preprocess-
ing as low-level vision functions. This will take us from the image formation pro-
cess itself to compensations such as neise reduction, and finatly to the extraction of
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primitive image features such as intensity discontinuitics. This range of processes
may be compared with the sensing and adaptation process a human goes through in
trying to find a seat in a dark theater immediately after walking in during a bright
afternoon. The intelligent process of finding an unoccupied space cannot begin
until a suitable image is available. '

We will associate wilh medium-level vision those processes that extract,
characterize, and label components in an image resulting from low-level vision. In
terms of our six subdivisions, we will treat segmentation, description, and recogni-
tion of individual objects as medium-level vision functioss. High-level vision
refers fo processes that attempt o emulate cognition, While algoréfhms for low-
and medium-leve!l vision encompass a reasonably well-defined spectrum of activi-
ties, our knowledge and understanding of high-level vision processes is consider-
ably more vague and speculative. As discussed in Chap. 8, these Hmitations lead
to the formulation of constraints and idealizations intended to reduce the complex-
ity of this task.

The categories and subdivisions discussed above are suggested to a large
extent by the way machine vision systems are generally implemented. H is not
implied that these subdivisions represent a model of human vision nor that they are
carried out independently of each other. We know, for example, that recognition
and interpretation are highly interrelated functions in a human. These relation-
ships, hewever, are not yet understiood to the point where they can be modeled
analytically. Thus, the subdivision of functions addressed in this discussion may
be viewed as a practical approach for implementing state-of-the-art machine vision
systems, given our level of understanding and the analytical tools currently avail-
able in this field,

The material in this chapter deals with sensing, preprocessing. and with con-
cepts and technigues required to implement low-level vision functions. Topics in
higher-level vision are discussed in Chap. 8. Although true vision is inherently a
three-dimensional activity, most of the work in machine vision is carried out using
images of a three-dimensioral scene, with depth infermation being obtained by
special imaging techniques, such as the structured-fighting approach discussed in
Sec. 7.3, or by the use of stereo imaging, as discussed in Sec. 7.4,

7.2 IMAGE ACQUISITION

Visual information is converted to electrical signals by visual sensors. When sam-
pled spatially and gquantized in amplitude, these signals vield a digiral image. In
this section we are interested in three main topics: (1) the principal imaging tech-
niques used for robotic vision, (2) the effects of sampling on spatial resolution, and
(33 the effects of amplitude quantization on intensity resclution. The mathematics
of image formation are discussed in Sec. 7.4.

The principal devices uscd for robotic vision are teigvision cameras, consisting
either of a tube or solid-state imaging sensor, amd associated electronics.  Although
an in-depth treatment of these devices is beyond the scope of the present discus-
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sion, we will consider the principles of operation of the vidicon tube, a commonly
used representative of the tube family of TV cameras. Solid-state imaging sensors
will be introduced via a brief discussion of charge-coupled devices (CCDs), which
are one of the principal exponents of this technology. Selid-state imaging deviees
offer a number of advantages over tube cameras, including lighter weight, smaller
size, longer life, and lower power consumption. However, the resolution of cer-
tain tubes is still beyond the capabilities of solid-state cameras.

As shown schematically in Fig, 7.1a, the vidicon camera tube is a cylindrical
glass envelope containing an electron gun at one end, and a faceplate and target at
the other. The beam is focused and deflected by voitages applied to the coils
shown in Fig. 7.1a. The deflection circuit causes the beam to scan the inner sur-
face of the target in order to “read” the image, as explained below. The inner
surface of the glass faceplate is coated with a transparent metal film which forms
an electrode from which an electrical video signal is derived. A thin photosensi-
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Figure 7.1 {a) Schematic of a vidicon tube. (b} Electron beam scanning pattern.



LUW-LEVEL VISION 299

tive “rarget” layer is deposited onto the metal film; this layer consists of very
small resistive globules whose resistance is inversely proportional to light intensity.
Behind the photosensitive target there is a positively charged fine wire mesh which
decelerates electrons emitted by the gun so that they reach the targel surface with
essentially zero velocity.

In normal operation, a positive voltage is applied to the metal coating of the
faceplate. In the absence of light, the photosensilive material behaves as a dielec-
tric, with the electron beam depositing a layer of electrons on the inner surface of
the target surface to balance the positive charge on the metal coating. As the elec-
tron beam scams the surface of the target layer, the photosensitive layer thus
becomes a capacitor with negative charge on the inrer surface and positive charge
on the other side. When light strikes the target layer, its resistance is reduced and
electrons are allowed o flow and neutralize the positive charge. Since the amount
of electronic charge that flows is proportional to the amount of light in any local
area of the target, this effect produces an image on the target layer that is identicat
to the fight image on the faceplate of the tube; that is, the remaining concentration
of electron charge is high in dark areas and lower in light areas. As the beam
again scans the target it replaces the lost charge, thus causing a current to flow in
the metal layer and out one of the wbe pins. This current is proportional to the
number of electrons replaced and, therefore, to the light intensity at a particular
location of the scanning beami. This variation in current during the electron beam
scanning motion produces, after conditioning by the camera circuitry, a video sig-
nal preportional to the intensity of the input image.

The principal scanpning-standard. used in the United States is shown in Fig.
7.16. The electron beam scans the entire surface of the target 30 times per
second, each complete scan (called a frame) consisting of 525 lines of which 480
contain image information. If the lines were scanned sequentially and the result
shown on a TV monitor, the image would ficker perceptibly. This phenomenor is
avoided by using a scan mechanism in which a frame is divided imo two inrer-
laced fields, each consisting of 262.5 lines and scanned 60 times each second, or
twice the frame rate. The first ficld of cach frame scans the odd lines (shown
dashed in Fig. 7.1a), while the second field scans the even lines. This scanning
scheme, called the RETMA (Radio-Electronics-Television Manufacturers Associa-
tion) scanning convention, is the standard used for broadcast television in the
United States. Other standards exist which vield higher Hne rates per frame, but
their principle of operation is essentially the same. For example, a popular scan-
ning approach in computer vision and digital image processing is based on 559
lines, of which 512 contain image data. Working with integer powers of 2 has a
number of advantages for both hardware and software implementations,

Whenr discussing CCD devices, it is convenient to subdivide sensors into two
categories: line scan sensors and area semsors. The basic component of a line
scan CCD semsor is a row of silicon imaging clements called phorosites. Image
photons pass through a transparent polycrystalline silicon gate structure and are
absorbed in the silicon crystal, thus creating electron-hole pairs. The resulting
photoelectrons are collected in the photosites, with the amount of charge collected
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at each photosite being proportional to the illumination intensity at that location.
As shown in Fig. 7.2a. a typical line scan semsor is composed of a row of the
imaging elements just discussed, two transfer gates used to clock the contents of
the imaging elements into so-called transport registers, and an output gate used to
clock the contents of the transport registers into an amplifier whose output is a vol-

tage signal proportional to the contents of the row of photosites.

o=t Transport register .
Comniend
e SRR 3t
-
2 {iate E
o i 4 Gutput o
k] EN; ! Photosites ]1} 2] 1 § cate ¥ Amplitier
i) . L
€ h
vt E Gate E
g ..
O]
ot Transport regisser
(i)
Horizoaal transport register
7 e SR e
i Gate |
[ T [ —. 1 - ‘{} — — __Q'_
3 RPN b umd L ged - L e 'g
Cpute — — — A
- 2 fr o b i - b -y
z - i |
- T
sz " b
_ -
g - & 3
21 ¥ g &
a = =]
ki &
= = =
O] >§ “
e b s L L -] b i - -] ]
e ] . ] — ==
[£2]

Figure 7.2 (a} CCD line scan sensor. (b} CCD area sensor.
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Charge-coupled area arrays are similar to the line scan sensors, with the
exception that the photosites are arranged in a matrix format and there is a gate-
transport register combination between columns of photosites, as shown in Fig,
7.2b. The contents of odd-numbered photosites are seguentially gated into the
vertical transport registers and then into the horizontal transport register. The con-
tent of this register is fed into an amplifier whose output is a line of video.
Repeating this procedure for the even-numbered lines compictes the second field of
a TV frame. This “scanning” mechanism is repeated 30 times per second.

Line scan cameras obviously yield only one line of an input image. These
devices are ideally suited for applications in which objects are moving past the
sensor (as in conveyor belts). The motion of an object in the direction perpendicu-
lar to the sensor produces a two-dimensional image. Line scan sensors with reso-
lutions ranging between 256 and 2048 elements are not uncommon. The resolu-
tons of area sensors range between 32 X 32 at the low end to 256 x 256 elements
for a medium resolution sensor. Higher-resolution devices presently in the market
have a resolution on the order of 480 x 380 elements, and experimental CCD sen-
sorg are capable of achieving a resclution of 1024 x 1024 elements or higher.

Throughout this book, we will use f(x, v) fo denote the two-dimensional
image out of a TV camera or other imaging device, where x and y denote spatial
(i.e., image plane) coordinates, and the value of f at any point (x, y) is propor-
tional to the brightness (intensity} of the image at that point. Figure 7.3 Hiustrates
this concept, as well as the coordinate convention on which all subsequent disous-
sions will be based. We will often use the variable z to denote intensity variations
in an image when the spatial Tocation of these variations is of no interest.

In order to be in a form suitable for computer processing, an image function
f(x. ¥) must be digitized both spatially and in amplitude (intensity). Digitization
of the spatial coordinates (x, y) will be referred to as image sampling, while
amplitude digitization will be called intensity or gray-level quantization. The latter
term is applicable to monochrome images and reflects the fact that these images
vary from black to white in shades of gray. The terms intensity and gray level
will be used interchangeably.

Suppose that a continuous image is sampled uniformly inte an array of N rows
and M columns, where cach sample is also quantized in intensity. This array,
called a digital image, may be represented as

0, 0) A8, 1) e SO M-
£, o AL D) oo ALM-1)

JIN-1,0) fIN=-L 1) -+ fIN~LM~1)

where x and y are now discrete variables: x =0,1.2,... , N—-1;, v =
4,1,2,..., M— 1. Fach clement in the array is called ar image element, pic-
ture element, or pivel. With reference to Fig. 7.3, it is noted that f¢0, 0)
represents the pixel at the origin of the image, f(0, 1) the pixel to its right, and so



302 ROBOTICS: CONTROL. SENSING, VISION, AND INTELLIGENCE

Origin
/ B

o FiE v
’a

X

Figure 7.3 Coordinate convention for image represestation. The value of any point (x, ¥) is
given by the value (intensity} of £ at that point.

on. It is common practice to let N, M, and the number of discrete intensity levels
of each quantized pixel be integer powers of 2.

In order to gain insight into the effect of sampling and gquantization, consider
Fig. 7.4. Part () of this figure shows an image sampled into an array of N x N
pixels with N = 512; the intensity of each pixel is quantized into one of 256
discrete Ievels. Figure 7.45 to ¢ shows the same image, but with N = 256, 128,
64, and 32, In all cases the number of allowed intensity levels was kept at 256,
Since the display arca used for each image was the same (512 x 512 display
points), pixels in the lower resolution images were duplicated in order 1o fill the
entire display field. This produced a checkerboard effect that is particufarly visible
in the low-resolution images. It is noted that the 256 X 256 image is reasonably
close 1o Fig. 7.4a, but image quality deteriorated rapidly for the other values of N.

Figure 7.5 iHustrates the effect produced by reducing the number of intensity
levels while keeping the spatial resolution constant at 512 x 312, The 256-, 128-,
and 64-level images are of acceptable guality. The 32-level image, however,
shows a slight degradation (particularly in areas of nearly constant intensity) as a
result of using too few intensity levels to represent each pixel. This effect is con-
siderably more visible as ridgelike structures {called false contours) in the image
displayed with 16 levels, and increases sharply thereafter,

The number of samples and intensity levels required to produce a useful (in
the machine vision sense) reproduction of an original image depends on the image
itself and on the intended application. As a basis for comparison, the reguirements
to obtain quality comparable to that of monochrome TV pictures are en the order
of 512 x 512 pixels with 128 intensity levels. As a rule, a minimum system for
general-purpose vision work should have spatial resolution capabilities on the order
of 256 x 236 pixels with 64 levels.
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Figure 7.4 Effects of reducing sampling-grid size. {a) 512 x 512, (&) 256 x 256. (0)
I28 = 128, (d) 64 X 64, {e} 32 x 32.
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Figure 7.5 A 512 x 512 image displayed with 236, 128, 64, 32, 16, 8, 4, and 2 levels.

7.3 ILLUMINATION TECHNIQUES

Niumination of a scene is an important factor that often affects the complexity of
vision algorithms. Arbitrary lighting of the environment is often not acceptable
because it can result in low-contrast Images, specular reflections, shadows, and
extraneous details. A well-designed lighting system iHuminates a scene so that the
complexity of the resulting image is minimized, while the information required for
object detection and extraction is enhanced.

Figure 7.6 shows four of the principal schemes used for illuminating a robot
work space. The diffuse-lighting approach shown in Fig. 7.6a can be emnployed
for objects characterized by smooth, regular surfaces. This lighting scheme is gen-
erally cmployed in applications where surface characteristics are important. An
example 15 shown in Fig. 7.7. Backlighting, as shown in Fig. 7.6, produces a
black and white (binary) image. This technique is ideally suited for applications in
which silhouettes of objects are sufficient for recognition or other measurements.
An example s shown in Fig. 7.8.
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Figure 7.5 {continued}

The structured-lighting approach shown in Fig. 7.6¢ consists of projecting
points, stripes, or grids onto the work surface. This lighting techaique has two
important advantages. First, it cstablishes a known light pattern on the work
space, and disturbances of this patters indicate the presence of an object, thus sim-
plifying the object detection problem. Second, by analyzing the way in which the
light pattern is distorted, it is possible to gain insight into the three-dimensional
characteristics of the object. Two examples of the structured-lighting approach are
shown in Fig. 7.9, The first shows a block illuminated by paraliel light planes
which become light stripes upon intersecting a flat surface. The example shown in
Fig. 7.9b consists of two light planes projected from different directions, but con-
verging on a single stripe on the surface, as shown in Fig. 7.10a. A line scan
camers, located above the surface and focused on the stripe would see a continu-
ous kine of light in the absence of an object. This line would be interrupted by an
abject which breaks both light planes simultaneously. This particular approach is
ideally suvited for objects moving on a conveyor belt past the camera. As shown in
Fig. 7.10b, two light sources are wsed to guarantee that the object witl break the
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Figure 7.6 Four basic illumination schemes. (From Mundy (1977}, © IEEE.}

light stripe only when it is directly below the camera. It is of interest o note that
the line scan camera sees only the line on which the two light planes converge, but
two-dimensional information can be accumulated as the object moves past the cam-
era.

The directional-lighting approach shown in Fig. 7.6d is useful primarily for
inspection of object surfaces. Defects on the surface, such as pits and scratches,
can be detected by using a highly directed light beam (2.g., a laser beam) and
measuring the amount of scatter. For flaw-free surfaces little light is scattered
upward to the camera. On the other hand, the presence of a flaw generally
increases the amount of light scattered to the camera, thus factlitating detection of
a defect. An example is shown in Fig. 7.11.
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Figure 7.7 Example of diffuse lighting,

7.4 IMAGING GEOMETRY

In the fellowing discussion we consider several important transformations used in
imaging, derive a camera model, and freat the stereo imaging problem in some
detail. Some of the transformations discussed in the following section were
aiready introduced in Chap. 2 in connection with robot arm kinematics. Here, we
consider a similar problem, but from the point of view of imaging.

7.4.1 Some Basic Transformations

The material in this section deals with the development of a unified representation
for problems such as image rotation, scaling, and franslation. Al transformations
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Figure 7.8 Example of backlighting.

are expressed in a three-dimensional (3D)) cartesian coordinate system in which a
point has coordinates denoted by (X, ¥, Z). In cases involving two-dimensional
images, we will adherc to our previous convention of wsing the lowercase
representation (x, y) to denote the coordinates of a pixel. It is common terminol-
ogy to refer o (X, ¥, Z) as the world coordinates of a point.

Translation. Suppose that we wish to translate a point with coordinates (X, ¥, Z)
to a new location by using displacements (X, ¥y, Zy). The trarsiation iy easily
accomplished by using the following equations:

Xt =X+ X,
V=Y + ¥, (7.4.1)
A Z + Z{;

where (X*, Y* Z*) are the coordinates of the new point. Equation (7.4-1) can be
expressed in matrix form by writing:

X 00 x| X
z* 001 7 ?

As indicated later in this section, it is often useful to concatenate several
transformations (o produce & composite result, such as transiation, followed by
scaling, and then rotation. The notational represemtation of this process is
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Figure 7.9 Two examples of structured lighting, (Part {0) is from Rocher and Keissling
[1975], © Kaufmann, Inc.; part (f) is from Myers [1980], © IEEE)
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Figure 7.16 {a) Top view of two Hght planes intersecting in a line of light. (6} Object will
be seen by the camera oniy when it interrupls both light planes. (Adapted from Holland
[1979], & Plenum.}
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Figure 7.1 Example of directional lighting. (From Mundy [1977], © IEEE.)

simplified considerably by using square matrices. With this in mind, we write Eq.
(7.4-2) in the following form:

o oo x] x|
o

v 010 Y Y 143
z* 001 Z |2

1 000 1 1

In terms of the values of X¥ ¥* and Z* Egs. (7.4-2) and (7.4-3} are clearly
equivalent.
Throughout this section, we will use the unified matrix representation

v¥ = Av (7.4-4)

where A is a 4 X 4 transformation matrix, v is a2 column vector containing the ori-
ginal coordinates:

et

v = (7.4-5)
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and ¥* is a column vector whose components are the transformed coordinates:

v = (7.4-6)

Using this notation, the matrix used for translation is given by

00 X
10 Y,
01 Z
00 1

(74-T)

L o

and the transiation process i accomplished by wsing Eg. (7.4-4), so that
v¥ = Tv,

Scaling. Scaling by factors 5., §,. and §, along the X, Y, and Z axes is given by
the transformation matrix

5 0 0 ¢
0 & 0 0

S = 4 (7.4-8)
0 0 S5 0
0 0 0 1

Rotation. The transformations used for three-dimensional rotation are inherently
more complex than the transformations discussed thus far. The simplest form of
these transformations is for rotation of a point about the coordinate axes. To rotate
a given point about an arbitrary point in space requires three transformations: The
first translates the arbitrary point to the origin, the second performs the rotation,
and the third translates the point back to its original position.

With reference to Fig. 7.12, rotation of a point about the Z coordinate axis by
an angle § is achieved by using the transformation

cosf  sinf 0O O

R, = —sind cosf® O O (7.4-9)
0 0 1 0
0 o 0 1

The rotation angle ¢ is measured clockwise when looking at the origin from a
point on the +Z axis, It is noted that this transformation affects only the values of
X and ¥ coordinates.
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X

Figere 7.12 Rotation of a point about each of the coordinate axes. Angles are measured
clockwise when fooking aleng the rotation axis toward the origin,

Rotation of 2 point about the X axis by an angle « is performed by using the
transformation

1 0 0 0

Rcz = 0 COs &Y sine O (7.4_ 1{})
8 —sine cosa O
0 0 0 1

Finally, rotation of a point about the Y axis by an angle 8 is achieved by using
the transformation

cos3 0 —sing O

Rg=| @ I 0 0 (74-1D)
sinff 0 cosf8 O
¢ o 0 i

Concatenation and Inverse Transformations. The application of several transfor-
mations can be represented by a single 4 X 4 transformation matrix. For example,
translation, scaling, and rotation about the Z axis of a point v is given by

vt = Re[S(Tv)] = Av {7.4-12)

where A is the 4 X 4 matrix A = R8T, It is important t0 note that these
matrices generally do not commute, and so the order of application is important.
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Although our discussion thus far has been limited to transformations of a sin-
gle point, the same ideas extend to transforming a set of m points simultaneously
by wusing a single twransformation. With reference to Eq. (7.4-5), let
Y1, Vi, ..., ¥, represent the coordinates of m points. If we form a 4 X m matrix
V whose columns are these column vectors, then the simultaneous transformation
of all these points by a 4 x 4 transformation matrix A is given by

V* = AV (7.4-13)

The resuiting matrix V* is 4 x m. s ith colomn, v?‘, contains the coordipates of
the transformed point corresponding to v;.

Before leaving this section, we point out that many of the transformations dis-
cussed above have inverse matrices that perform the opposite transformation and
can be obtained by inspection, For examnple, the inverse translation matrix is
given by

1 0 0 X,
= |90 K (7.4-14)
¢ 01 -4
6 0 ¢ 1
Similarly, the inverse rotation matrix R;™' is given by
cos(—#8) sin{~8#) 0 O
Remz - —sin(~8) cos{—6y 0 O (7.4-15)
0 0 10 )
G 0 o 1

The inverse of more complex transformation matrices is usually obtained by
oumerical techaiques.

7.4.2 Perspective Transformations

A perspective transformation (also called an imaging transformation) projects 3D
points onto a plane. Perspective transformations play a central role in image pro-
cessing because they provide an approximation to the manner in which an image is
formed by viewing a three-dimensional world. Although perspective transforma-
tions will be expressed later in this section in a 4 X 4 matrix form, these transfor-
mations are fundamentally different from those discussed in the previous section
because they are nonlinear in the sense that they involve division by coordinate
values.

A model of the image formation process is shown in Fig. 7.13. We define
the camera coordinate system (x, y, z} as having the image plane coincidenm with
the xy planc, and optical axis (established by the center of the lens) along the z
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Figure 7.13 Basic model of the imaging process. The camera coordinate system (x, v, )} is
aligned with the world coordinate system (X, ¥, Z).

axis. Thus, the center of the image plane is at the origin, and the center of the
lens is at coordinates (0, O, A). If the camera is in focus for distant objects, N is
the focal length of the lens. In this section, it is assumed that the camera coordi-
nate system is aligned with the world coordinate system (X, ¥, Z). This restric-
tion will be removed in the following section.

Let (X, ¥, 2} be the world coordinates of any point in a 3D scene, as shown
in Fig. 7.13, It will be assumed throughout the following discussion that Z > A,
that is, all points of interest lie in front of the lens. What we wish to do first is
obtain a relationship that gives the coordinates (x, y) of the projection of the point
(X, Y, Z) onto the image plane. This is easily accomplished by the use of similar
triangles. With reference to Fig. 7.13, it follows that
X X

= -y = (7.4-16)

Y Y
= =y = (7.4-17)

and

- R £

where the negative signs in front of X and Y indicate that image points are actually
inverted, as can be seen from the geometry of Fig. 7.13.

The image-plane coordinates of the projected 3D point follow directly from
Egs. (7.4-16) and (7.4-173

x = {7.4-18)

and y = : (7.4-19)
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It is mnportant to note that these equations are ronlinear because they involve divi-
sion by the variable Z. Although we could use them directly as shown above, it is
oflen convenient to express these equations in matrix form as we did in the previ-
ous section for rotation, translation, and scaling. This can be accomplished easily
by using homogeneous coordinates,

The homogeneous coordinates of a point with cartesian coordinates (X. Y. Z)
ate defined as (KX, kY, kZ, k), where & is an arbitrary, nonzero constant. Clearly,
conversion of homogencous coordinates back to cartesian coordinates is accom-
plished by dividing the first three homogeneows coordinates by the fourth, A point
i the cartesian work! coordinate system may be expressed in vector form as

‘X
W=y (7.4-20)
z
and its homogeneous counterpart is given by
kX
kY
Wpo= | o {7.4-21)
k -
If we define the perspective rransformation matrix
r
16 6 0
01 0 0
o=y, 0 1 o0 (7.4-22)
o0 11
A
Then the product Pw; vields a vector which we shall denote by ¢
10 0 @ LX kX W
101 0 o0 oy kY
¢, = Pwy, = 0 0 1 0 z = ¥4 P (7.4-23)
T R O N T -
A A

The elements of ¢, are the camera coordinates in homogeneous form. As indi-
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cated above, these coordinates can be converted to cartesian form by dividing each
of the first three components of ¢, by the fourth, Thus, the cartesian coordinates
of any point in the camera coordinate system are given in vector form by

e

f -

AX
A~ £
AY
A— 2
LV
-z

(7.4-24)

The first two components of ¢ are the (x, ¥) coordinates in the image plane of a
projected 3D point (X, ¥, Z), as shown earlier in Egs. {7.4-18) and (7.4-19). The
third component is of no inferest to us in terms of the medel in Fig. 7.13. As will
be seen below, this component acts as a free variable in the inverse perspective

transformation.

The inverse perspective transformation maps an image point back into 3D.

Thus, from Eq. (7.4-23},

w, = Pl {7.4-25)
where P~ is easily found to be
to 9 o
a_ o1 %o
| 0 o i 0 (7.4-26)
0« N 1

Suppose that a given image point has coordinates (x;, vg, 0}, where the 0 in
the z location simply indicates the fact that the image plane is located at z = 0.
This point can be expressed in homogeneous vector form as

€ =

kxg

kyp
0
k

{7.4-27)

Application of Bq. (7.4-25) then yields the homogeneous world coordinate vector

w,; =

kxg

kyg
0
k

(7.4-28)
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or, in cartesian coordinates,
X
w= | Y| = |y {7.4-29)
Z

This is obviously not what one would expect since it gives Z = O for any 3D
point. The problem here is caused by the fact that mapping 2 3D scene onto the
image plane is a many-to-onc transformation. ‘The image point (%, ¥g)
corresponds 1o the set of colinear 3D points which He on the line that passes
through (x5, yo, 0) and (0, 0, A). The equations of this line in the world coordi-
nate system are obtained from Eqs. (7.4-18} and {7.4-19); that is,

£
X = TU\ -~ £) (7.4-30)
Yo

These eguations show that, unless we know something about the 3D point which
generated a given irage point (for example, its Z coordinate), we cannot com-
pletely recover the 3D point from its image. This obscrvation, which is certainly
not unexpected, can be used as a way to formulate the inverse perspective transfor-
mation simply by using the z component of ¢, as a free variable instead of 0.
Thus, letting

kxg
o = | Fo (7.4-32)
kz

k

we now have from Bg. (7.4-25) that

W, = ke (7.4-33)
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which, upon conversion to cartesian coordinates, yields

B\X()

X
w= | ¥ = (7.4-34)
Z

Y = (7.4-35)

Az
A4z

Solving for z in terms of Z in the last equation and substituting in the first two
expressions yields

Xy
X=20 -2 (7.436)
Y = ;“‘;ii(x -7 (7437

which agrees with the above observation that recovering a 3D point from its image
by means of the inverse perspective transformation requires knowledge of at least
one of the world coordinates of the point. This problem will be addressed again in
Sec. 74.5.

7.4.3 Camera Model

Equations {7.4-23) and (7.4-24) characterize the formation of an image via the pro-
jection of 3D points onto an image planc. These two equations thus constitute a
basic mathematical model of an imaging camera. This model is based on the
assummption that the camera and world coordinate systems are coincident. In this
section we consider a more general problem in which the two coordinate systems
are allowed to be separate. However, the basic objective of obtaining the image-
plane coordinates of any given world point remains the same.

The situation is depicted in Fig. 7.14, which shows a world coordinate system
(X, ¥, Z) used to locate both the camera and 3D points (denoted by w). This
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Figure 7.14 Imaging geometry with two coordinate systems.

figure also shows the camera coordinate system (x, y, z} and image points
{deroted by ¢). Tt is assumed that the camera is mounted on a gimbal which
allows pan through ar angle @ and tilt through an angle . In this discussion, pan
is defined as the angle between the x and X axes, and tilt as the angle between the
z and Z axes. The offset of the center of the gimbal from the origin of the world
coordinate system is denoted by vector wy, and the offset of the center of the
imaging plane with respect to the gimbal center is denoted by a vector r, with
comporents (ry, 1z, 3 ).

The concepts developed in the last two sections provide all the necessary tools
to derive a camera model based on the geometrical arrangement of Fig. 7.14. The
approach is to bring the camera and world coordinate systems into alignment by
applying a set of transformations. After this has been accomplished, we simply
apply the perspective transformation given in Eq. (7.4-22) to obtain the image-
plane coordinates of any given world point. In other werds, we first reduce the
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problem to the geometrical arrangement shown in Fig. 7.13 before applying the
perspective transformation.

Suppose that, initially, the camera was in normal position, in the sense that the
gimbal center and origin of the image plane were at the origin of the world coordi-
nate system, and all axes were aligned. Starting from normal position, the
geometrical arrangement of Fig. 7.14 can be achieved in 2 number of ways. We
assume the following sequence of steps: (1) displacement of the gimbal center
from the origin, (2) pan of the x axis, (3} tlt of the 7 axis, and {4) displacement of
the image plane with respect 1o the gimbal center.

The sequence of mechanical steps just discussed obviously does not affect the
world points since the set of points seen by the camera after it was moved from
normal position is quite different. However, we can achieve normal position again
simply by applying exactly the same sequence of steps to all world points. Since a
camera in normal position satisfies the arrangement of Fig. 7.13 for application of
the perspective transformation, our problem is thus reduced o applying to every
world point a set of transformations which correspond to the steps given above.

Translation of the origin of the world coordinate system to the Jocation of the
gimbal center is accomplished by using the following transformation matrix:

1o 0 ~X

¢=|2 ! 0 -h (7.4-38)
o 0 1 -z
0 0 0 1

In other words, a homogeneous world point w, that was at coordinates
(Xo, Y. Zy) is at the origin of the new coordinate system after the transformation
GW;‘..

As indicated earlier, the pan angle is measured between the x and X axes. In
normal position, these two axes are aligned. In order to pan the x axis through the
desired angle, we simply rotate it by 8. The rotation is with respect o the z axis
and is accomplished by using the transformation matrix R, given in Eq. (7.4-9). In
other words, application of this matrix to all poinsts (including the point Gw,)
effectively rotates the x axis to the desired location. When using Eq. (7.4-9), it is
important to keep clearly in mind the convention established in Fig. 7.12. That is,
angles are considered positive when points are rotated clockwise, which implies a
counterclockwise rotation of the camera about the z axis. The unrotated (0°) posi-
tion corresponds to the case when the x and X axes are aligned.

At this point in the development the z and Z axes are still aligned. Since tlt is
the angle between these two axes, we tilt the camera an angle o by rotating the z
axis by o, The rotation is with respect to the x axis and is accomplished by apply-
ing the transformation matrix R, given in Eq. (7.4-10) to all points (including the
point R,Gw, ). As above, a counterclockwise rotation of the camers implics posi-
tive angles, and the 0° mark is where the z and Z axes are aligned.}

T A useful way to visualize these transformations is 1o construct an axis system (e.g., with pipe
cleaners), label the axes x, y, and z, and perform the rotations manually, ose axis al a time.
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According to the discussion in Sec. 7.4.4, the two rotation matrices can be
concatenated into a single matrix, R = R, R, It then follows from Egs. (7.4-9)
and (7.4-10) that

R

cos# sinf 0 0

R = e ﬁzn 4 ?Us o cosé ios o Sl e 0 (7.4-39)
sin # sin o — o8 sin & COS o 0
)] 0 0 1

Finally, displacement of the origin of the image plane by vector r is achieved by
the transformation matrix

1 0 0 - Py
8 1 4] e Py
C= (7.4-40)
9 01 —ry
(o 00 1

Thus, by applying to w, the series of transformations CRGw, we have brought
the world and camera coordinate systems into coincidence. The image-plane coor-
dinates of a point w,, are finally obtained by using Eq. (7.4-22). In other words, a
homogeneous worid point which is being viewed by a camera satisfying the
geometrical arrangement shown in Fig. 7.14 has the following homogeneous
representation in the camera coordinate system:

¢, = PCRGw, (7.4-41)

This equation represents a perspective transformation involving two coordinate sys-
tems.

As indicated in Sec. 7.4.2, we obtain the cartesian coordinates {x, ¥} of the
imaged point by dividing the first and second components of ¢, by the fourth.
Expanding Eq. (7.4-41) and converting to cartesian coordinates yields

(X Xgyeosfi+ (¥ ¥y ysinf—ry

=A 7.4-42
* —{X—Xyysinfsina+(Y=YylcosBsina—{Z—Zyrcosa+ry + A ( )

and

“x ~A{X-Xo)sinbcosa+ (Y- Y hcosfeosa+(Z-Zy)sina—n (7.443)
y= ~{ X~ Xg¥sintlsina 4+ {¥— Y cos@sina—{L—~Zg)cosatry+ A ’

which are the image coordinates of a point w whose world coordinates are
(X, Y, Z). | is noted that these equations reduce to Egs. (7.4-18) and (7.4-19)
when Xy = ¥y =4 =0, r, =r, =r; =0, andea = 6§ = 0°,

Example: As an illustration of the concepts just discussed, suppose that we
wish 1o find the image coordinates of the corner of the block shown in Fig.
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7.15. The camera is offset from the origie and is viewing the scenc with a
pan of 135° and a tilt of 135° We will fellow the convention eslablished
above that transformation angles are positive when the camera rotates in a
counterclockwise manner when viewing the origin along the axis of rotation.

Let us examine in detail the steps required to move the camera from nor-
mal pesition to the geometry shown in Fig. 7.15. The camera is shown in
normal position in Fig. 7.16a, and displaced from the origin in Fig. 7.165. 1t
is impertant to note that, after this step, the world coordinate axes are used
onfy to establish angle references. That is, after displacement of the world-
coordinate origin, all rotations take place about the new (camera) axes. Figure
7.16¢ shows a view along the z axis of the camera to establish pan. In this
case the rotation of the camera about the z axis is counterclockwise so world
points are rotated about this axis in the opposite direction, which makes § a
positive angle, Figure 7.16d shows a view after pan, along the x axis of the
camera o establish tik. The rotation abowr this axis is counterclockwise,
which makes o a positive angle. The world coordinate axes are shown dashed
in the latter two figures 1o emphasize the fact that their only use is to establish
the zero reference for the pan and tlt angles. We do not show in this figure
the final step of displacing the image plane from the center of the gimbal.

The foliowing parameter values apply to the problem:

Xy = Om
Yo = 0m
o o= Im
o = 135°
g = 135°
Fo= 0.03m

ro=r =9002m
A= 35mm = 0.035m

The corner in question is at coordinates (X, ¥, Z) = €1, 1, 0.2},
To compute the image coordinates of the block corner, we simply substi-
tute the above parameter values into Egs. (7.4-42) and (7 4-43); that is,

¢ = —~0.03
’ —1.53 + X
and y = —0.42

—1.53 + A
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X

Figare 7.15 Camera viewing a 3D scene.

Substituting A = (L0353 yields the image coordinates
x = 0.0007m
and y = §.009m

It is of interest to note that these coordinates are well within a2 1 X 1 inch
(0.025 x 0.025m) imaging plane. If, for example, we had used a lens with a
200-mm focal length, it is casily verified from the above results that the corner
of the block would have been imaged outside the boundary of a plane with
these dimensions (i.e., it would have been outside the effective field of view of
the camera).

Finally, we point out that all coordinates obtained via the use of Egs.
(7.4-42) and (7.4-43) are with respect to the center of the image plane. A
change of coordinates would be required to use the convention established ear-
Her, in which the origin of an image is at its top left corner. 1

7.4.4 Camera Calibration

In Sec. 7.4.3 we obeained explicit equations for the image coordinates {x, vy of a
world point w. As shown in Egs. {(7.4-42) and (7.4-43), implementation of these
equations requires knowledge of the focal length, camera offsets, and angles of pan
and tilt. While these parameters could be measured directly, it is often more con-
venient {e.g., when the camera moves frequently) to determine one or more of the
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Figure 7.16 (4) Camera in normal position. (#) Gimbal center displaced from origin. ()
Observer view of rotation about z axis to determine pan angle. (@) Observer view of rota-

tion about x axis for it

parameters by using the camera itself as a measuring device. This requires a set
of image points whose world coordinates are known, and the computational pro-
cedure used to obtain the camera paramelers using these known points is often

referred 10 as camera calibration.

With reference to Eq. (7.4-41), let A = PCRG. The elements of A contain
all the camera parameters, and we know from Eq. (7.4-41) that ¢, = Aw,. Let
ting £ = 1 in the homogencous representation, we may write

[ ey
Cr2
O3

Cha |

a4y
&y
sy

4]

apz
]
a2

ay2

ﬂ};; X
a Y

M (7.4-44)
N Z

61444; i
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From the discussion in the previous two sections we know that the camera coordi-
nates in cartesian form are given by

PR (7.4-45)
Chg
T,
and y = ci: (7.4-46)

Substifuting ¢,; = X0 and ¢y = o in Bg. (7.6-44) and expandiag the matrix
product yields

gy = apX + ap¥ + apl + ay
YCps = anX + {ig)_:{ ks 61232 4+ dag (74*47)
Cpg = a41X + QQY + a43Z + 227

where expansion of ¢;; has been ignored because it is related to z.
Substitution of ¢y in the first two equations of (7.4-47) yields two equations
with twelve unknown coeflicients:

a1§X+a;2 Y'i'au ZW(Z,;]XX”’“‘“R;L}_IYW‘ a43):2wa44x—§-a14 =0 (74’“48)
[e2 T X”‘“azz Y& {1232—{141 yX—a42 _VY—6143 yZ—a44 y+as =(} (74'49)

The calibration procedure then consists of (1) ebtaining m > 6 world points with
known coordinates (X, Y;, Z,), i = 1, 2, ... ,m (there are two equations involv-
ing the coordinates of these points, so at least six points are needed), (2} imaging
these points with the camera in a given position to obtain the corresponding image
points {x;, ¥,), i = 1,2, ... ,.m, and (3) using these results in Bqs. (7.4-48) and
{7.4-49) to selve for the unknown coefficients. There are many numerical tech-
nigues for finding an optimal solution to a linear system of equations such as (7.4~
48} and (7.4-49) (see, for example, Noble [1969]).

7.4.5 Stereo Imaging

It was noted in Sec. 7.4.2 that mapping a 3D scene onto an image plane is a
mary-to-one transformation. That is, an image point does not uniquely determine
the location of a corresponding world point. It is shown in this section that the
missing deprh information can be obtained by using stereoscopic (stereo for short)
imaging technigues,

As shown in Fig. 7.17, sterco imaging inveolves obtaining two separate image
views of an object of interest (e.g., a world point w). The distance between the
centers of the two lenses is called the basefine, and the objective is to find the
coordinates (X, ¥, Z) of a point w given its image points (x;, ¥, ) and (xp, ¥2).
1t is assumed that the cameras are identical and that the coordinate systems of both
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Figure 7.17 Model of the stereo imaging process,

cameras are perfectly aligned, differing only in the location of their origins, a con-
dition wsually met in practice. Recall our convention that, after the camera and
world coordinate systems have been brought into coincidence, the xy plane of the
image is aligned with the XY plane of the world coordinate system. Then, under
the above assumption, the Z coordinate of w is exactly the same for both camera
coordinate systems.

Suppose that we bring the first camera into coincidence with the world coordi-
nate system, as shown in Fig. 7.18. Then, from Eq. (7.4-31). w lies on the line
with (partial) coordinates

X
X, = -§~()\ - Zy) (7.4-50)
where the subscripts on X and Z indicate that the first camera was moved to the
origin of the world coordinate system, with the second camera and w foliowing,
but keeping the relative arrangement shown in Fig. 7.17, If, instead, the second

camera had been brought 10 the origin of the world coordinate system, then we
would have that w lies on the line with (partial) coordinates

Xy
X, = T" (A — Z) {7.4-51)

However, due to the separation between cameras and the fact that the Z coordinate
of w is the same for both camera coordinate systems, it follows that

X =X + B (7.4-52)
and Z, =27 =2 (7.4-53)

where, as indicated above, B is the baseline distance.
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Figure 7.18 Top view of Fig. 7.17 with the first camera brought into ¢oincidence with the
world coordinate systes.

Substitution of Egs. (7.4-52) and (7.4-33) into Egs. (7.4-50) and (7.4-51)
results in the following equations:

X
X, 4+ B = wfw(}\ - Z) (7.4-54)
X
and X = T* (A — 2) (7.4-55)

Subtracting Eq. (7.4-35) from (7.4-54) and solving for Z yields the expression

Z=x- M (7.4-36)
Xy — Xy

which indicates that if the difference between the corresponding image coordinates
x; and x; can be determined, and the baseline and focal length are known, calcu-
lating the Z coordinate of w is a simple matter. The X and ¥ world coordinates
then follow directly from Egs. (7.4-30) and (7.4-31) using ecither (x,, y;) or
(6, »).

The most difficult task in using Eq. (7.4-56) to obtain Z is to actually find two
correspording points in different images of the same scene, Since these points are
generally in the same vicinity, a frequently used approach is to select a pomt
within a small region in one of the image views and then attempt to find the best
matching region in the other view by using correlation techniques, as discussed in
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Chap. 8. When the scene contains distinct features, such as prominent corners, a
feature-matching approach will genmerally yield a faster solution for establishing
correspondence.

Before leaving this discussion, we point out that the calibration procedure
developed in the previous section is directly applicable to stereo imaging by simply
treating the cameras independently.

7.5 SOME BASIC RELATIONSHIPS BETWEEN PIXELS

In this section we consider several primitive, but important relationships between
pixels in a digital image. As in the previous sections, an image will be denoted by
Slx, ). When referring to a particular pixel, we will use jower-case letters, such
as pand g. A subset of pixels of f(x, y) will be denoted by S,

7.5.1 Neighbors of a Pixel

A pixel p at coordinates {(x, y} has four horizomal and vertical neighbors whose
coordinates are given by

(I+I, )’) {xw i’ ,V) (xs }!"i'E) (X,)’““““U

This set of pixels, called the 4-neighbors of p, will be denoted by N, (p). H is
noted that each of these pixels is a unit distance from (x, ¥) and also that some of
the neighbors of p will be outside the digital image if (x, ¥} is on the border of
the image.

The four diagonal neighbors of p have coordinates

(x+ 1,y + 1) x4+ 1, y— 1) x—5Ly«+ 1D x—1y—-1)

and will be denoted Np(p). These points, together with the 4-neighbors defined
above, are called the B-neighbors of p, denoted Ny(p). As before, some of the
points in Np{p) and Ny (p) will be outside the image if (x, y) is on the border to
the image.

7.5.2 Connectivity

Let V be the set of intensity values of pixels which are allowed to be connected:
for example, if only connectivity of pixels with intensities of 59, 60, and 61 is
desired, then ¥ = {59, 60, 61}. We consider three types «f connectivity:

1. 4-connectivity. Two pixels p and g with values from ¥ are 4.connected if ¢ is
in the set Ny(p).

2. B-connectivity. Two pixels p and g with values from ¥ are R-comnected if g is
in the set Nz (p).

3. meconnectivity {mixed connectivity). Two pixels p and g with values from V
are m-connected if



LOW-LEVEL VISION 329

4] | 1 il j e e} o] f~——=j

] ~ i

I Vi t

e !

4 t
& 2 G 9 2 0 [\] 2. G

N
Y ~
~ \\
\‘\\ \‘
4 [{] H 4 & H o o] 1
{a) (b} {ct

Figure 7.19 (@) Arrangement of pixels. (b} B-neighbors of the pixel Iabeled “2.” {c} m-
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(@) g is in Ny(p), or
(b) g is i Np(p) and the set Ny{p) N Ny(g) is empty. {This is the set of
pixels that are 4-neighbors of both p and g and whose values are from V)

Mixed connectivity is a modification of B-connectivity and is introduced to
eliminate the multiple connections which often cause difficulty when 8-connectivity
is used. For example, consider the pixel arrangement shown in Fig. 7.19a.
Assuming V = {1, 2}, the &-neighbors of the pixel with value 2 are shown by
dashed lines in Fig. 7.19b. It is important to note the ambiguity that results from
multiple connections to this pixel. This ambiguity is removed by using m-
connectivity, as shown in Fig. 7.19¢.

A pixel p is adjacent to a pixel g if they are connected. We may define 4-,
8-, or m-adjacency, depending on the type of connectivity specified. Two image
subsets §; and 57 are adjacent if some pixel in §; is adjacent to some pixel in §, .

A parh from pixel p with coordinates (x, y) 1o pixel g with coordinates (s, t)
is a sequence of distinct pixels with coordinates

(x()’ y{)}s (xisyl .)1 e J{xnt yn)

where  {xp, ) = (xr, ¥) and {(x, ¥) = (5, £, (x, ¥} is adjacent to

or m-paths, depending on the type of adjacency used.

If p and g are pixels of an image subset S, then p is connected to ¢ in S if
there is a path from p to g consisting entirely of pixels in §. For any pixel p in §,
the set of pixels in § that are connected to p is called a connected component of §.
1t then follows that any two pixels of a connected component are connected to each
other, ard that distinct connected components are disjoint.

7.5.3 Distance Measures

Given pixels p, ¢, and z, with coordinates (x, ¥), (s, 1), and (u, v), respectively,
we call D a distance function or metric if

L D(p,g) 2 0 {D(p.q) =0iff p = q]

2. D{(p, q) = D(q. p)
3. B(p.2y € D{p,g) + Dlg 2}

W

i
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The euclidean distance between p and g is defined as
D.p, gy = [(x ~ s + (y = N7 (7.5-1)

For this distance measure, the pixels having a distance less than or equal to some
value r from {x, y} arc the poinis contained in a disk of radius r centered at
(x, ¥}

The Dy distance (also called city-block distance) between p and g is defined as

Dy(p.q) = |x — 5| + |y — ¢f (7.5-2)

In this case the pixels having a D, distance less than or equal 1o some value r
from (x, y) form a diamond centered at (x, ¥). For example, the pixels with D,
distance < 2 from (x, y) (the center point) form the following cemours of con-
stant distance:

2
212
21012
212
2

It is noted that the pixels with Dy = | are the 4-neighbors of (x, y).
The Dy distance (also called chessboard distance) between p and ¢ is defined
as

Dg(p, q) = max(|x — s, |y — ¢]) (7.5-3)

In this case the pixels with Dy distance less than or equal to some value r form a
square centered at (x, ¥), For example, the pixels with Dy distance < 2 from
{(x, ¥) (the center point) form the following contours of constant distance:

222212

I S (S T o)
T b e
— Y
[ I
2

2

The pixels with Dg = 1 are the 8-neighbors of (x, ¥).

Tt is of interest to note that the D, distance between two points p and g is
equal to the length of the shortest 4-path between these two points. Similar com-
ments apply to the I distance. In fact, we can consider both the D, and Dy dis-
tances between p and g regardless of whether or not a connected path exists
between them, since the definition of these distances involve orly the coordinates
of these points. When dealing with m-connectivity, however, the value of the dis-
tance (length of the path) between two pixels depends on the values of the pixels
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along the path as well as their neighbors. For instance, consider the following
arrangement of pixels, where it is assumed that p, po, and py are valued ! and py
and py; may be valued O or 1:

Pi Ps
P P2
p

If we only allow comnectivity of pixels valued 1, and p;, and py are 0, the m-
distance between p and p, is 2. If either p; or p; is 1, the distance is 3. If both
pi and p; are 1, the distance is 4.

7.6 PREPROCESSING

In this section we discuss several preprocessing approaches used in robotic vision
systems. Although the number of techniques available for preprocessing general
image data is significant, only a subset of these methods satisfies the requirements
of computational speed and low implementation cost, which are essential elements
of an industrial vision system. The range of preprocessing approaches discussed in
this section arg typical of methods that satisfy these requirements.

7.6.1 Foundation

In this section we consider two basic approaches to preprocessing. The first is
based on spatial-domain techniques and the second deals with frequency-domain
concepts via the Fourier transform. Together, these approaches encompass most of
the preprocessing algorithms used in robot vision systems.

Spatial-Domain Methods. The spatial domain refers to the aggregate of pixels
composing an image, and spatial-domain methods are procedures thal operate
directly on these pixels. Preprocessing functions in the spatial domain may be
expressed as

g(x, y) = hlf(x, y1] (7.6-1)

where f(x, v) is the input image, g(x, y) is the resulting (preprocessed) image,
and h is an operator on f, defined over some neighborhood of (x, y). It is also
possible to let k operate on a ser of input images, such as performing the pixel-
by-pixel sum of K images for noise reduction, as discussed in Sec. 7.6.2.

The principal approach used in defining a neighborhood about (x, y) is 10 use
a square or rectangular subimage area centered at (x, y), as shown in Fig. 7.20.
The center of the subimage is moved from pixel to pixel starting, say, at the top
left corner, and applying the operator at each location (x, y) to yield g(x, y).
Although other neighborhood shapes, such as a circle, are sometimes used, square
arrays are by far the most predominant because of their ease of implementation.
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Figure 7.20 A 3 x 3 neighborhood about a point (x, y} in an image.

The simplest form of A is when the neighborhood is 1 x 1 and, therefore, g
depends only on the value of £ at (x, y}. In this case s becomes an intensity map-
ping or transformation T of the form

s = T(r (7.6-2)

where, for simplicity, we have used s und r as variables denoting, respectively, the
intensity of f{x, vy} and g(x, y) at any point {x, ¥). This type of trarsformation
is discussed in more detail in Sec. 7.6.3.

One of the spatial-demain fechriques used most frequently is based on the use
of so-catled convolution masks (also referred to as templates, windows, or filters).
Basically, a mask is a small (e.g., 3 x 3) two-dimensional array, such as the one
shown in Fig. 7.20, whose coeflicients are chosen to detect a given property in an
image. As an introduction to this concept, suppose that we have an image of
constart intensity which contains widely isolated pixels whose intensities are
different from the background. These points can be detected by using the mask
shown in Fig. 7.21. The procedure is as follows: The center of the mask (labeled
8y is moved around the image, as indicated above. At each pixel position in the
image, we multiply every pixel that is contained within the mask area by the
corresponding mask coefficient; that is, the pixel in the center of the mask is multi-
plied by 8§, while its 8-neighbors are multiplied by —1. The results of these ning
multiplications are then summed. If all the pixels within the mask area have the
same value (constant background), the sum will be zero. If, on the other hand, the
center of the mask is located at one of the isolated points, the sum will be different
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Figure 7.21 A mask for detecting isolated points different from a constant background,

from zero. If the isolated point is in an off-center position, the sum will also be
different from zero, but the magnitude of the response will be weaker. These
weaker responses can be eliminated by comparing the sum against & threshold.

As shown in Fig. 7.22, if we let wy, wy, . . ., w, represent mask coefficients
and consider the $-neighbors of (x, y), we may generalize the preceding discus-
sion as that of performing the following operation:

BfGu D = wiflx — Ly = I+ wftx — L y) & waf(x = 1, y + 1)
+owefla, y — 1)+ wsflx, ) + wef(x, y + 1)
+owrflx+ Ly~ 1)+ wyftx + 1, ¥)
+ wef(x + 1, y + 1) (7.6-3)

on a 3 X 3 neighborhood of (x, y).

e W Wy

o= oy =1} v - 83 [(r~ ¢t v+ 1)

By wy Wy

fa.y - i} F froy + 1}

Mg Wy Wy

o oy = 1 v = 83 Hee v+ 0}

Figure 7.22 A general 3 x 3 mask showing coefficients and corresponding image pixel
locations.
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Before leaving this section, we point out that the concept of neighberhood pro-
cessing is not Hmited to 3 X 3 areas nor to the cases treated thus far. For
instance, we will use neighborhood operations in subsequent discussions for noise
reduction, to obtain variable image thresholds, to compute measures of textare, and
to obtain the skeleton of an object,

frequency-Domain Methods. The frequency domain refers to an aggregate of
complex pixels resulting from taking the Fourier transform of an image. The con-
cept of “frequency” is often used in interpreting the Fourier transform and arises
from the fact that this particular transform is composed of compiex sinusoids. Due
o exfensive processing requirements, frequency-domain methods are not nearly as
widely used in robotic vision as are spatial-domain techniques. However, the
Fourier transform does play an important role in areas such as the analysis of
object motion and object description. In addition, many spatial techniques for
enhancement and restoration are founded on concepts whose origins can be traced
to a Pourier transform formulation. The material in this section will serve as an
introduction to these concepts. A more extensive treatment of the Fourier
transform and its properties may be found in Gonzalez and Wingz [1977].

We begin the discussion by considering discrete functions of one variable,

fx), v =0,1,2,... N - 1. The forward Fougier transform of f(x) is
defined as
1 M P
Flu) = — ¥ flx)e =¥ (7.6-4}
N x om )
foru =0,1,2,...,N— 1. In this equation j = V=1 and u is the so-called

Jrequency variable. The inverse Fourier transform of Flu) vields f{x) back, and
is defined as

N—1
flxy = 5 Fluyelmn (7.6-5)

=

for x =0,1,2,.. . ,N— 1. The validity of these expressions, called the
Fourier transform pair, is easily verified by substituting Eq. (7.6-4) for F(u) in
Eg. (7.6-5), or vice versa. In cither case we would get an identity.

A direct implementation of Eq. (7.64) for u = 0, 1, 2,... ,¥N — 1 would
require on the order of N additions and multiplications. Use of a fast Fourier
transform (FFT) algorithm significantly reduces this number to N logy N, where N
is assumed to be an integer power of 2. Similar comments apply to Eq. (7.6-5)
forx =@, §,2,... ,N — I. A number of FFT algorithms are readily available
in a variety of computer languages.

The two-dimensional Fourier transform pair of an N X N image is defined as

N—-1 N-1
F(u, V) = _;]_ E E f():, y)eﬁfl‘x(m + vy NN (76-6)
r=0 y=0
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H

foruw, v=0,12,... , N~ 1, and

N—3 N—I
flx, y) = “1{7 Y L Fiu, vyeltrte (1.6-7)
u=0v=20

forx, y=10,1,2,...,N — 1. Itis possible to show through some manipula-
tion that each of these equations can be expressed as separate one-dimensional
sammations of the form shown in Eq. (7.6-4). This leads to a straightforward pro-
cedure for computing the two-dimensional Fourier transform using only a one-
dimensional FFT algorithm: We first compute and save the transform of each row
of f(x, ¥}, thus producing a two-dimensional array of intermediate results. These
results are multiplied by N and the one-dimensional transform of each column is
computed. The final result is F(u, v). Similar comments apply for computing
Six. ¥} given F(u, v). The order of computation from a row-column approach
can be reversed to a column-row format without affecting the final result.

The Fourier transform can be used in a number of ways by a vision system,
as will be shown in Chap. 8. For example, by treating the boundary of an object
as a one-dimensional array of peints and computing their Fourier transform,
selected values of F{x) can be used as descriptors of boundary shape. The one-
dimensional Fourier transform has also been used as a powerful tool for detecting
object motion. Applications of the discrete two-dimensional Fourier transform in
image reconstruction, enhancement, and restoration are abundant although, as men-
tioned earlier, the usefulness of this approach in industrial machine vision is still
guite restricted dug to the extensive computational requirements needed to imple-
ment this transform. We point out before leaving this section, however, that the
two-dimensional, continuous Fourier transfotm can be computed ¢at the speed of
lighty by optical means. This approach, which requires the use of precisely
aligned optical equipment, is used in industrial environments for tasks such as the
inspection of Anished metal surfaces. Further treatment of this topic is outside the
scope of our present discussion, but the interested reader is referred to the book by
Goodman [1968] for an excelient introduction to Fourier optics.

7.6.2 Smoothing

Smoothing operations are used for reducing noise and other spurious effects that
may be present in an image as a result of sampling, quantization, transmission, or
disturbances in the environment during image acquisition. In this section we con-
sider several fast smoothing methods that are suitable for implementation in the
vision system of a robot.

Neighborhood Averaging. Neighborhood averaging is a straightforward spatial-
domain technique for image smoothing. Given an image f(x, ¥), the procedure is
0 generate a smoothed image g(x, y) whose intensity at every point (x, v} is
obtained by averaging the intensity values of the pixels of f contained in a
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predefined neighborhood of (x, ¥). In other words, the smoothed image is
obtained by using the relation

fu == T finm (7.6-8)

(n, myes

for all x and y in fix, ¥). 5 is the set of coordinates of points in the neighbor-
hood of {x, ¥), including (x, ¥) itsclf, and P is the total number of points in the
neighborhood. If a 3 % 3 neighborhood is used, we note by comparing Eqgs. (7.6-
8) and (7.6-3) that the former equation is a special case of the latter with wy, = 1%,
Of course, we are not limited o square acighborheods in Eq. (7.6-8) but, as men-
tioned in Sce. 7.6.1, these are by far the most predominant in robot vision sys-
tems.

Example: Figure 7.23 illustrates the smoothing effect produced by ncighbor-
hood averaging. Figure 7.23a shows an image corrupted by noise, and Fig.
7.23b is the result of averaging every pixel with its 4-neighbors. Similarly,
Figs. 7.23¢ through f are the results of using neighborhoods of sizes
3x3,5x5 7x7, and 11 x 11, respectively. It is noted that the degree of
smoothing is strongly proportional to the size of the neighborhood used. As is
true with most mask processors, the smoothed value of each pixel is deter-
mined before any of the other pixels have been changed. [

Median Filtering. One of the principal difficulties of neighborhood averaging is
that it blurs edges and other sharp details. This blurring can often be reduced
significantly by the use of so-called median filters, in which we replace the inten-
sity of each pixel by the median of the intensities in a predefined neighborhood of
that pixel, instead of by the average.

Recall that the median M of a set of values is such that half the values in the
set are less than M and half the values arc greater than M. In order to perform
median filtering in a neighborhood of a pixel, we first sort the values of the pixel
and its neighbors, determine the median, and assign this value to the pixel. For
example, in a 3 X 3 neighborhood the median is the ffth largest value, ina 5 x 5
neighborhood the thirteenth largest value, and so on. When several values in a
neighborhood are the same, we group all equal values as follows: Suppose that a
3 x 3 neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, i00). These
values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a
median of 20. A little thought will reveal that the principal function of median
fiitering is to force points with very distinet intensitics to be more like their neigh-
bors, thus actuaily eliminating intensity spikes that appear isolated in the area of
the filter mask.

Example: Figure 7.24a shows an original image, and Fig. 7.245 shows the
same image but with approximately 20 percent of the pixels corrupted by
“impuilse noise.” The result of neighborhood averaging over 2 5 X 5 area is
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Figure 7.23 (a3 Noisy image. (k) Result of averaging each pixel along with its 4-neighbors.
(¢) through {7} are the results of using neighborhood sizes of 3 x 3,5 X 5,7 x 7, and
il % 11, respectively.
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Figure 7.24 («) Original image. ¢b) Image corrupied by impulse noise. (¢) Result of 5 x 3
neighborhood averaging. (d) Resuit 0of 5 % 5 median filtering. (Courtesy of Martin Connor,
Texas lostroments, Inc., Lewisville, Texas.)

shown in Fig, 7.24¢ and the result of a 5 X 3 median filter is shown in Fig.
7.24d. The superiority of the median filker over neighborhood averaging
needs no explanation. The three bright dots remaining in Fig. 7.24d resulted
from a large concentration of noise at those points, thus biasing the median
calculation. Two or more passes with a median filter would eliminate those
poinis. il

Image Averaging. Consider a noisy image g(x, ¥) which if formed by the addi-
tion of noise n(x, y) to an uncorrupted image f(x, y); that is,

glx, ¥) = flx, ) + nlx, ») (7.6-9)
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where it is assumed that the noise is uncorrelated and has zero average value. The
objective of the following procedure is to obtain a smoothed result by adding a
given set of noisy images, g;(x, v), i = 1,2, ... K,

if the noise satisfies the constraints just stated, it is a simple problem to show
(Papoulis [1965]) that if an image g{x, ) is formed by averaging K different noisy
images,

[ K
2ix, v} = ?&7 ): (x, ¥ (7.6-10)
then it follows that
E{glx. y)} = flx, ») (7.6-11)
4 1
and g, (x. ¥) = e 0,,(1 ¥) {7.6-12)

where E{g(x, y)} is the expected value of £, and ag.(x, y) and oZ(x, y) are the
varigneess of g and n, all at coordinates (x, y). The standard deviation at any
point in the average image is given by

o lx, y) = %{ a,(x, ¥) (7.6-13)
N

Equations (7.6-12) and (7.6-13) indicate that, as K increases, the variability of the
pixel values decreases. Since E{g(x, y)} = f{x, y), this means that ${x, y) will
approach the uncorrapted image f(x, v) as the number of noisy fmages used in the
averaging process increases.

It is Bnportant o note that the technique just discussed implicitly assumes that
ali noisy images are registered spatially, with only the pixel intensities varying. In
terms of robotic vision, this means that all object in the work space must be at rest
with respect to the camera during the averaging process. Many vision systems
have the capability of performing an entire image addition in one frame time inter-
val (i.e., one-thirtieth of a second). Thus, the addition of, say, 16 images will take
on the order of %2 s, during which no motion can take place.

Example: An an #lustration of the averaging method, consider the images
shown in Fig. 7.25. Part (@) of this figure shows a sample noisy image and
Fig. 7.25b to f show the results of averaging 4. &, 16, 32, and 64 such images,
respectively. It is of interest to note that the results are quite acceptable for

= 32. £J

Smoothing Binary Images. Binary images result from using backlighting or struc-
tured lighting, as discussed in Sec. 7.3, or from processes such as edge detection
or thresholding, as discussed in Secs. 7.6.4 and 7.6.5. We will use the convention
of labeling dark points with & 1 and light points with a 0. Thus, since binary
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Figure 7.25 (a) Sample noisy image. (b) through (f) are the results of averaging 4, 8,
32, and 64 such images.
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images are two-valued, noise in this case produces effects such as irregular boun-
daries, small heles, missing corners, and isclated points.

The basic idea underlying the methods discussed in this section is to specify a
boolean function evaluated on a neighborhood centered at a pixel p, and to assign
e pal or @, depending on the spatial arrangement and binary values of its neigh-
bors. Due to limitations in available processing time for industrial vision tasks,
the analysis is typically limited 1o the 8-neighbors of p, which leads us to the
3 % 3 mask shown ir Fig. 7.26. The smoothing approach (1) filis in small (one
pixel) holes in otherwise dark areas, (2) fills in small notches in straightedge seg-
ments, (3) climinates isolated 1's, (4) eliminates small bumps along straightedge
segments, and (5) replaces missing corner points.

With refergnce to Fig. 7.26, the first two smoothing processes just mentioned
are accomplished by using the boolean expression

Bl =pAbegr(dt+e)+dee«(b+ ) (7.6-14)
where ©+7 and “+” denote the logical AND and OR, respectively. Following
the convention established above, a dark pixel contained in the mask area is
assigned a logical 1 and a light pixel a logical 0. Then, if B = 1, we assign a 1
o p, otherwise this pixel is assigned a (. Equation (7.6.14) is applied to all pixels
simultancousty, in the sense that the next value of each pixel location is determined
before any of the other pixels have been changed.

Steps 3 and 4 in the smoothing process are similarly accomplished by evaluat-
ing the boolcan expression

By=p-llatb+dy-(et+g+h)+bdcred - (d+ f+ g}
{7.6-15)

simultaneously for ali pixels. As above, welet p = 1 if B = 1 and zero other-
wise.

Figure 7.26 Neighbors of p used for smoothing binary images. Dark pixels are denoted by
i and light pixels by 0.
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Missing top, right corner points are filled in by means of the expression

B=pe{dfegyrla+b+ec+te+h +p (7.6-16)

where overbar denotes the logical complement. Similarly, lower right, top left,
and lower left missing corner points are filled in by using the expressions

By=pfa-bdyr{ctre+fH+esH+p (761D

Bs = fefergoh)yc{lat+rbrctrd+ i +p {7.6-18)

and By =pg-(brcreyrfat+d+f+g+hy+p (7.6-19)
These last four expressions implement step 5 of the smoothing procedure.

Example: The concepts just discussed are illustrated in Fig. 7.27. Figure
7.27a shows a noisy binary image, and Fig. 7.27& shows the result of apply-
ing By. Note that the notches along the boundary and the hole in the dark
area were filled in. Figure 7.27c shows the result of applying B, 1 the image
in Fig. 7.27b. As expected, the bumps along the boundary of the dark area
and all isolated points were removed (the image was implicitly extended with
O’s for points en the image border). Finally, Fig. 7.27d shows the result of
applying B; through By to the image in Fig. 7.27¢. Only B, had an effect in
this particular case. [

7.6.3 Enhancement

One of the principal difficulties in many low-level vision tasks is to be able to
automatically adapt to changes in illumination. The capability to compensate for
effects such as shadows and “hot-spot” reflectances quite often plays a central role
in determining the success of subsequent processing algorithms. In this subsection
we consider several enhancement techniques which address these and similar prob-
lems. The reader is reminded that enhancement is a major area in digital image
processing and scene analysis, and that our discussion of this topic is limited to
sample techniques that arc suitable for robot vision systems. In this context, “suit-
able” implies having fast computational characteristics and modest hardware
requirements.

Histogram Equalization. Let the variable r represent the intensity of pixels in an
image to be enhanced. Tt will be assumed initially that r is a normalized, continn-
ous variable lying in the range 0 < r € 1. The discrete case is considered later
in this section.

For any r in the interval {0, 1], attention will be focused on transformations of
the form

s = T(r) {7.6-2(0)
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Figure 7.27 (aj Original image. (&) Result of applying B,. (c) Resul of applying B, {d)
Final result after application of B, through B,

which prodace an intensity value s for gvery pixel value r in the input image. It
is assumed that the transformation function 7 satisfies the conditions:

1. T(ry is single-valued and monotonically increasing in the interval 0 € 7(r) <
L.
20 Tin g ifor0grg 1.

Condition 1 preserves the order from black to white in the intensity scale, and con-
dition 2 guaraniccs a mapping that is consistent with the allowed O to 1 range of
pixel values. A transformation function satisfying these conditions is illustrated in
Fig. 7.28.

The inverse transformation function from s back to r is denoted by

r=T"1s (7.6-21)

where it is assumed that 77 '(s) satisfies the two conditions given above.
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Figure 7.28 An intensity transformation function.

The intensity variables r and s are random guantities in the interval [0, 1] and.
as such, can be characterized by their probability density functions (PDFs) p,{r}
and p.{s}. A great deal can be said about the general appearance of an Image
from its intensity PDF. For example, #n image whose pixels have the PDF shown
in Fig. 7.29¢ would have fairly dark characteristics since the majority of pixel
values would be concentrated on the dark end of the intensity scate. On the other
hand, ar image whose pixels have an intensity distribution like the one shown in
Fig. 7.29b would have predominant light tones.

Ak g

{n) [

Figure 7.29 (a} Intensity PDF of a “dark™ image and (b} a “light” image.
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It foliows from eclementary probability theory that if p.(r) and T{r} are
known, and 77 !(s) satisfies condition 1, then the PDF of the transformed intensi-
ties is given by

p(s) = {pr(r) %} (7.6-22)
_ red"s

Suppose that we cheose a specific transformation function given by

§ o= T(r) = j; pwydw 0<€rgl (71.6-23)

where w is a dummy variable of integration. The rightinost side of this eguation is
recognized as the cumulative distribution function of p.(r), which is known to
satisfy the two conditions stated earlier, The derivative of s with respect to r for
this particular transformation function is easily found 1o be

ds
- = ) (7.6-24)

Substitution of dr/ds into Eq. (7.6-22} yields

B 1
Pis) {p’m 2:(7) } reT(s)

= [

=1 0gs<1 (7.6-25)

which i a uniform density in the interval of definition of the transformed variable
s. It is noted that this result is independent of the inverse transformation function.
This is important because it is often quite difficalt to find 77 '(s) analyticatly. It is
also noted that using the transformation function given in Eg. {7.6-23) vields
transformed intensities that always have a flat PDF, independent of the shape of
p.(r), a property that is ideally suited for antomatic enhancement. The net effect
of this transformation is to balance the distribution of intensities. As will be seen
below, this process can have a rather dramatic effect on the appearance of an
image.

In order to be useful for digital processing, the concepts developed above must
be formulated in diserete form. For intensities that assume discrete values we deal
with probabilities given by the relation

PO = 0<n <] (7.6:26)

k=9,1,2,...,L-1

where L is the number of discrele intensity levels, p.(r;) is an estimate of the pro-
bability of intensity #,, ny is the number of times this intensity appears in the
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image, and n is the toral number of pixels in the image. A plot of p{r,) versus
1 is usually cailed a histogram, and the technique used for obtaining a uaiform
histogram is known as histogram equalization or histogram linearization.

The discrete form of Eq. (7.6-23) is given by

k

l!j.'
S =My =Y —=
p=0 7
k
= ¥ pAr) (7.6-27)
j=0
for 0 € rp € land k=0, 1,2,...,L — 1. It is noted from this equation that

in order 10 obtain the mapped value 5; corresponding to ry, we simply sum the his-
togram components from 0 to #;.
The inverse discrete fransformation is given by

=T s 0<€s 1 €7.6-28)

where both T(ry) and T7'(s,) are assumed to satisfy conditions { and 2 stated
above. Although T7'(s,) is not used in histogram equalization, it plays a central
role in histogram specification, as discussed below.

Example: As an illustration of histogram equalization, consider the image
shown in Fig. 7.30a and its histogram shown in Fig. 7.30b. The result of
applying Eq. (7.6-27) to this image is shown in Fig. 7.30¢ and the correspond-
ing equalized histogram is shewn in Fig. 7.30d. The improvement of details
is evident. H is noted that the histogram is not perfectly flat, & condition gen-
erally encountered when applying to discrete values a method derived for con-
tinwous quantities. =

Histogram Specification. Histogram equalization is ideally suited for automatic
enhancement since it is based on a transformation function that is uniquely deter-
mined by the histogram of the input image. However, the method is mited in the
sense that its only function is histogram linearization, a process that is not applica-
ble when a priori information is available regarding a desired output histogram
shape. Here we generalize the concept of histogram processing by developing an
approach capable of generating an image with a specified intensity histogram. As
wili be seen below, histogram equalization is a special case of this technique.

Starting again with continuous quantities, let p,(r) and p.(z) be the original
and desired intensity PDFs. Suppose that a given image is first histogram equal-
ized by using Eq. (7.6-23); that is,

s = T(r) = j; pAwydw (7.6-29)
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Figure 7.30 {g) Original image and {(b) its histogram. (¢) Histogram-equalized image and
{c) its histogram. (From Woods and Gonzalez [1981], © IEEE

If the desired image were available, its levels could also be equalized by using the
transformation function

v = Gz} = 5; poAw) dw {7.6-30)

The inverse process, £ = G~ '(v) would then yield the desired levels back. This,
of course, is a hypothetical formulation since the z levels are precisely what we are
trying to obtain. It is noted, however, that p(s}) and p,(v) would be identical
uniform densities since the use of Egs. (7.6-29) and (7.6-30) guarantees a uniform
density, regardless of the shape of the PDF inside the integral. Thus, if instead of
using v in the inverse process, we use the inverse levels s obtained from the origi-
nal image, the resulting levels z = G~ '(s) would have the desired PDF, p,(z).
Assuming that G~ (s) is single-valued, the procedurc can be summarized as fol-
lows:

1. Equalize the levels of the original image vsing Eq. (7.6-29).
2. Specify the desired intensity PDF and obtain the transformation function G{z)
using Eq. (7.6-30).
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3. Apply the inverse transformation z = G7(s) to the intensity levels of the
histogram-equalized image obtained in step 1.

This procedure yields an output image with the specified intensity PDF.
The two transformations required for histogram specification, T{r)} and
G H(s), can be combined into a single transformation:

=G5 = G {7.6-3D)

which relates r to z. It is noted that, when G™'[7(#)] = T(r), this method
reduces to histogram equalization.

Equation (7.6-31) shows that the input image need not be histogram-equalized
explicitly in order to perform histogram specification.  All that is required is that
T(r) be determined and combined with G~ '(s) inte a single transformation that is
applied directly to the faput image. The real problem in using the two transforma-
tions or their combined representation for continuous variables Hes in obtaining the
inverse function analytically. In the discrete case this problem is circumvented by
the fact that the number of distinct intensity levels is usually relatively small (e.g.,
256) and it becomes feasible to calculate and store a mapping for each possible
integer pixel value.

The discrete formulation of the foregoing procedure paraliels the development
in the previous section:

k
s = Ty = X pAr) {7.6-32)
i=0
Glz) = ) plzp) (7.6-33)
=0
and 7= GTHs) (7.6-34)

where p.(r;) is computed from the input image, and p,(z;) is specified,

Example: An illustration of the histogram specification method is shown in
Fig. 7.31. Part (@) of this figure shows the input image and Fig. 7.315 is the
resalt of histogram equalization. Figure 7.31¢ shows a specified histogram
and Fig. 7.314 is the result of using this histogram in the procedure discussed
above, It is noted that, in this case, histogram equalization had little effect on
the image. il

Local Enhapcement. The histogram equalization and specification methods dis-
cussed above are global, in the sense that pixels arc modified by a transformation
function which is based on the intensity distribution over an entire image. While
this global approach is suitable for overall enhancement, it is often necessary lo
enhance details over small areas. Since the number of pixels in these areas may
have negligible influence on the computation of a global transformation, the use of
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Figure 7.31 (¢} Iaput image. {) Result of histogram equalization. (c) A specified histo-
gram. (f) Result of enhancement by histogram specification. (From Wooeds and Gonzalez
[1981], © 1EEE.)

global techniques seldom yields acceptable local enhancement. The solution is to
devise transformation functions that are based on the intensity distribution, or other
properties, in the neighborhood of every pixel in a given image.

The histogram-processing techniques developed sbove are ecasily adaptable to
local enhancement. The procedure is to define an n X m neighborhood and move
the center of this area from pixel to pixel. At each location, we compute the his-
togram of the n x m points in the neighborhood and obtain either a histogram
equalization or histogram specification transformation function. This Runction is
finally used to map the intensity of the pixel centered in the neighborhood. The
center of the n X m region is then moved 1o an adjacent pixel location and the pro-
cedure is repeated. Since only one new row or column of the neighborhood
changes during a pixel-to-pixel translftion of the region, it is possible to update the
histogram obtained in the previous location with the new data introduced at each
motion step. This approach has obvious advantages over repeatedly computing the
histogram over ail n X m pixels every time the region is moved ene pixel location,
Another approach often used to reduce computation is to employ nonoverlapping
regions, but this eften produces an undesirable checkerboard effect.
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Example: An illustration of local histogram equalization where the neighbor-
hood is moved from pixel to pixel is shown in Fig. 7.32. Part (@) of this
figure shows ar image with constant background and five dark square areas.
The image is slightly blurred as a result of smoothing with a 7 % 7 mask to
reduce noise {see Sec. 7.6.2). Figure 7.32h shows the result of histogram
equalization. The most striking feature in this image is the enhancement of
noise, a problems that commonly occurs when using this technique on noisy
images, even if they have been smoothed prior to equalization. Figure 7.32¢
shows the result of local histogram equalization using a neighborhood of size
7 x 7. Note that the dark areas have been enhanced to reveal an inner struc-
ture that was not visible in either of the previous two images. Noise was also
enhanced, but its texture is much finer due o the local nature of the enhance-

L e e =

Figure 7.32 {a) Original image. (#) Result of global histogram equalization. (¢) Result of
local histogram egualization using a 7 X 7 neighborhood zbout each pixel.
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ment approach. This example clearly demonstrates the necessity for using
local enhancement when the details of interest are too small to influence
significantly the overall characteristics of a global technique, O

Instead of using histograms, one could base local enhancement on other pro-
perties of the pixei intensities in a neighborhood. The intensity mean and variance
{or standard deviation) are two such properties which are frequently used because
of their relevance to the appearance of an image. That is, the mean is a measure
of average brightness and the variance is a measure of contrast. A typical local
transformation based on these concepts maps the intensity of an input image
flx, ¥) into a new image g(x, y) by performing the following transformation at
each pixcl focation (x, y):

glx, y3 = A{x, V)[flx, p) = mlx, v)1 + m(x, y) (7.6-35)
where
Ax =k —T o<k<i (7.6-36)
oix, y)

In this formulation, m{x, ¥) and o(x, y} are the intensity mean and standard devi-
ation computed in a neighborhood centered at (x, y), 3 is the global mean of
Sf(x, ¥), and k is a constant in the range indicated above.

Tt is important to note that A, m, and ¢ are variable quantities which depend
on a predefined neighborhood of (x, y). Application of the local gain factor
A(x, ¥} to the difference between f(x, ¥) and the local mean amplifies local varia-
tions. Since A(x, y) is inversely proportional to the standard deviation of the
intensity, areas with low contrast receive larger gain. The mean is added back in
Eq. (7.6-35) 10 restore the average intensity level of the image in the local region.
In practice, it is often desirable to add back a fraction of the local mean and to
restrict the variations of A{x, y) between two limits [Ay, Amex ] i order to bal-
ance out large excursions of intensity in isolated regions.

Example: The preceding emhancement approach has been implemented in
hardware by Narendra and Fitch [1981], and has the capability of processing
images in real time (i.e., at 30 image frames per second). An example of the
capabilities of the technique using a local region of size 15 X 15 pixels is
shown in Fig. 7.33. Note the enhancerment of detail at the boundary between
two regions of different overall intensities and the rendition of intensity details
in each of the regions. ]

7.6.4 Edge Detection

Edge detection plays a central role in machine vision, serving as the initial prepro-
cessing step for numerous object detection algorithms. In this chapter we are
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Figure 7.33 Tmages before and after focal enhancement. (From Narendra and Ficch [1981],
@ IEEE.)

interested in fundamental techniques for detecting edge points. Subsequent pro-
cessing of these edge points is discussed in Chap. 8.

Basic Formulation. Basically, the idea underlying most edge detection technigues
is the computation of a local derivative operator. This concept can be easily illus-
trated with the aid of Fig. 7.34. Part (a) of this figure shows an image of a simpie
tight object on a dark background, the intensity profile along 2 horizontal scan line
of the image, and the first and second derivatives of the profile. Tt is noted from
the profile that an edge (transition from dark to light) is modeled as a ramp, rather
than as an abrupt change of intensity. This model is representative of the fact that
edges in digital images are generally slightly blurred as a result of sampling.

The first derivative of an edge modeled in this manner is zero in all regions of
constant intensity, and assumes a constant value during an intessity transition. The
second derivative, on the other hand, is zero in all locations, except at the onset
and termination of an intensity transition. Based on these remarks and the con-
cepts illustrated in Fig. 7.34, it is cvident that the magaitude of the first derivative
can be used fo detect the presence of an edge, while the sign of the second deriva-
tive can be used to determine whether an edge pixel lies on the dark (background)
or light (object) side of an edge. The sign of the second derivative in Fig. 7.34a,
for example, is positive for pixels lying on the dark side of both the Ieading and
trailing edges of the object, while the sign is negative for pixels on the light side
of these edges. Similar comments apply to the case of a dark object on a light
background, as shown in Fig. 7.34h. It is of interest to note that identically the
same interpretation regarding the sign of the second derivative is true for this case.

Although the discussion thus far has been limited to a one-dimensional hor-
izontal profile, a similar argument applies to an edge of any orientation in an
image. We simply define a profile perpendicular to the edge direction at any given
point and interpret the results as in the preceding discussion. As will be shown
below, the first derivative at any point in an image can be obtained by using the
magnitude of the gradient at that point, while the second derivative is given by the
Laplacian,
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Figure 7.34 Elements of edge detection by derivative operators. (a) Light object on a dark
background. (b) Dark object on a light background.

Gradient Operators. The gradient of an image f(x, y) at location (x, y} is
defined as the two-dimensional vector

af

G dx
Glf(x, )] = [ x} = s (1.6-37)
ay
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It is well known from vector asalysis that the vector G points in the direction of
maximum ratc of change of # at location (x, y}. For edge detection, however, we
arc interested in the magnitude of this vector, generally referred to as the gradient
and denoted by GEf(x. y)]. where

[GI + Gi1'” (7.6-38)

IERaEi

It is common practice fo approximate the gradient by absolute values:

Glfix, y)

i

Glfix, 1 = |G| + 1G,| (7.6-39)

This approximation is considerably casier te implement, particularly when dedi-
cated hardware is being employed.

It is noted from Eq. (7.6-38) that computation of the gradient is based on
obtaining the first-order derivatives 8f/8x and 8f/0y. There are a number of ways
for doing this in a digital image. One approach is 1o use first-order differences
between adjacent pixels; that is,

G, = %f = flx, y) — flx — 1L, ¥} (7.6-40)
and G, = % = fle.y) = fl,y—1) (7.6-41)

A slightly more complicated definition involving pixels in 2 3 %X 3 neighborhood
centered at (x, y) is given by

Go=L —ffa s Ly— D+ yar L+ Ly D)
=Ly =) 2= Loy 4 S Ly + D]
=(g 4+ 2h 4+ i} ~ {a -+ 2b + ) (7.6-42)
and

GFE%WU(,{M1.y+1)+2f(x,y+1)+f(x+1,y+l)}

—{fir-Ly- D+ 2xy~ 1)+ flx+ 1Ly - 1]

={c+Z2e+i)—f(a+2d+ g} (7.643)

where we have used the letters o through i to represent the neighbors of point
{x, ¥}. The 3 x 3 neighborhood of (x, ¥) using this simplified notation is shown
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i Fig. 7.35a. Tt is noted that the pixels closest to (x, y) are weighted by 2 in
these particular definitions of the digital derivative. Computing the gradient over a
3 % 3 area rather than using Eqgs. (7.6-40) and (7.6-41} has the advantage of
increased averaging, thus tending to make the gradient less sensitive to noise. It is
possibie o define the gradient over larger neighborhoods (Kirseh [1971]), but
3 % 3 operators are by far the most popular in industrial computer vision because
of their computational specd and modest hardware requirginents.

It foliows from the discussion in Sec. 7.6.1 that G, as given in Eq. €7.6-42),
can be computed by using the mask shown'in Fig. 7.35b. Similarly, G, may be
obtained by vsing the mask shown in Fig. 7.35¢. These two masks are commonly
referred 10 as the Sobel operators. The responses of these two masks at any point
(x, ¥) are combined asing Eqs. (7.6-38) or (7.6-39) to obtain an approximation to
the gradient at that point. Moving these masks throughout the image f(x, v)
yields the gradient at all points in the image.

There are numerous ways by which ome can generate an output image,
g(x, y), based on gradient computations. The simplest approach is to let the value
of g at coordinate (x, ¥) be equal to the gradient of the input image f at that
point; that is,

glx. ¥ = G[f(x, y) ] (7.6-44)

An example of using this approach to generate a gradient image is shown in Fig,
7.36.

e {r. v} ¢

el

"

(i (€}

Figure 7.35 (a} 3 » 3 neighborbood of point (x, ¥). (b} Mask used to compute G,. (¢}
Mask used to compute G‘
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Figure 7.36 (@) Input image. (7 Result of using Eg. (7.6-44).

Another approach is to create s binary image using the following relationship:

I Gl ) > T

#x, y) = 3 (7.6-45)

| 0 FOfie, I T

A
where T Is a nonnegative threshold. In this case, only edge pixels whose gradients
exceed T are considered important. Thus, the use of Eq. (7.6-45) may be viewed
as a procedure which extracts only those pixels that are characterized by significant
(as determined by T) transitions in infensity. Further analysis of the resuiting pix-
els is usually required o delete isolated points and to link pixels along proper
boundaries which ultimately determine the objects segmented out of an images. The
use of Eq. (7.6-43) in this context is discussed and illustrated in Sec. 8.2.1.

Laplacian Operator. The Laplacian is a second-order derivative operator defined
as

2 2
LLfx, y)] = Zxé + g}f (7.6-46)

For digitai images, the Laplacian is defined as

Lifo I = L+ Loy + fle = Loy) 4 flr, y + 1) + fix, y = D]
=4 flx, 3y} {7.647)

This digital formulation of the Laplacian is zero in constant arcas and on the ramp

section of an edge, as expected of a second-order derivative. The implementation
of Eq. (7.6-47) can be based on the mask shown in Fig. 7.37.
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Figure 7.37 Mask used to compute the Laplacian.

Although, as indicated at the beginning of this section, the Laplacian responds
to transitions in intensily, it is seldom used by itself for edge detection. The rea-
son is that, being a second-derivative operator, the Laplacian is typically unaccept-
ably sensitive to roise. Thus, this operator is usually delegated the secondary role
of serving as a detector for establishing whether a giver pixel is on the dark or
light side of an edge.

7.6.5 Thresholding

Image thresholding is one of the principal techniques used by industrial vision sys-
tems for object detection, especially in applications requiring high data
throughputs. In this section we are concerned with aspects of thresholding that fall
in the category of low-level processing. More sephisticated uses of thresholding
technigues are discussed Chap. 8.

Suppose that the intensity histogram shown in Fig. 7.38a corresponds to an
image, f{x, y), composed of light objects on a dark background, such that object
and background pixels have intensities grouped into two dominant modes. One
obvious way {0 extract the objects from the background is to select a threshold T
which separates the intensity modes. Then, amy point {x, y} for which
Ffix, ¥y > Tis called an object point; otherwise, the point is cailed a background
point. A slightly more general case of this approach is shown in Fig. 7.38b. In
this case the image histogram is characterized by three dominant modes (for exam-
ple, two types of light objects on a dark background). Here, we can vse the same
basic approach and classify a point (x, y) as belonging o one object class if
Ty <fix, y) € T, to the other object class if f{x, yv) > Ty, and to the back-
ground if flx, ¥) < 1). This type of multilevel thresholding is generally less
reliable than its single threshold counterpart because of the difficulty in establishing
multiple thresholds that effectively isolate regions of interest, especially when the
number of corresponding histogram modes is large. Typically, problems of this
nature, if handled by thresholding, are best addressed by a single, variabie thres-
hold, as discussed in Chap. 8.

Based on the foregoing concepts, we may view thresholding as an operation
that involves tests against a function T of the form

T=Tlx, y. pix, ¥), flx, 1] (7.6-47)
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Figure 7.38 Intensity histograms that can be partioned by (¢} a single threshold and b)
muktiple thresholds.

where f(x, ) is the intensity of point (x, y), and p(x, y) deaotes some local pro-
perty of this point, for example, the average intensily of a neighborhood centered
at (x, y). We c¢reate a thresholded image g(x, y} by defining

1 if flx, vi > T
glx, ¥y) = (7.6-48)
] iffix, T

Thus, in examining géx, v}, we find that pixels labeled | {or any other convenient
intensity level} correspond to objects, while pixels labeled O correspond to the
background.

When T depends only on f{x, y), the threshold is called global (Fig. 7.38a
shows an cxample of such a threshold). If T depends on both f{x, y)} and
p{x, v), then the thresheld is called local. If, in addition, T depends on the spatial
coordinates x and v, it is called a dynamic threshold. We associate with low-level
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@y

Figure 7.39 (ay Original image. (b)) Histogram of intensities in the range 0 10 255. (&
[mage obtained by using Eq. (7.6-48) with a global threshold 7' = 90,

vision those thresholding techniques which are based on a single, giobal value of
T. Since thresholding plays a central role in object segmentation, more sophisti-
cated formulations are associated with functions in medivm-level vision. A simple
example of global thresholding is shown in Fig. 7.39,

7.1 CONCLUDING REMARKS

The material presented in this chapter spans a broad range of processing functions
normally associated with low-level vision. Although, as indicated in Sec. 7.1,
vision is a three-dimensional problem, most machine vision algorithms, especially
those used for low-level vision, are based on images of a three-dimensional scene.
The range sensing methods discussed in Sec. 7.2, the structured-lighting
approaches in Sec. 7.3, and the material in Sec. 7.4 are important techniques for
deriving depth from image information.
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Qur discussion ol low-level vision and other relevant topics, such as the nalure
of imaging devices, has been at an intreductory level, and with a very directed
focus toward robot vision. It is important to keep in mind that many of the areas
we have discussed have a range of application much broader than this. A good
example is enhancement, which for years has been an important topic in digital
image processing. One of the salient features of industrial applications, however,
is the ever-present (and often contradictory) requirements of low cost and high
computational speeds. The selection of topics included in this chapter has been
influenced by these requirements and also by the value of these topics as funda-
mental material which would serve as a foundation for further study in this field.
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PROBLEMS

7.1 How many bits would if (ake to store a 5i2x 312 image in which each pixel can have
256 possible intensity values?



LOW-LEVEL VISION 361

7.2 Propose a lechnique that uses a single light sheet to determine the diameter of cylindri-
cal obiects, Assume a linear array camera with a resofution of ¥ pixels and aiso that the
distance between the camera and the center of the cylinders is fixed.

7.3 (a3 Discuss the accuracy of your solution to Prob. 7.2 in terms of camera resolution (N
points on a line} and maximum expected cylinder diameter, ... (5 What is the max-
imum error if N = 2048 pixels and D, = I m?

7.4 Determine if the world point with coordinates (3/2, 1/2, \;’E/Z} is on the optical axis of
a camera located at (0, 0, \fﬁ}, panned I35° and tilted 135°. Assume a 50-mem lens and
letrp =1 = r3 = £,

7.5 Siart with Eg. (7.4-41) and derive Egs. (7.4-42) and (7.4-43).

7.6 Show that the D, distance between two points p and g is equal to the shortest 4-path
between these points. Is this path unigue?

7.7 Skow that a Fourier transform algorithm that computes Fu) can be used without
modification 0 compute the inverse transform. (Minr: The answer lies on using complex
conjugates).

7.8 Verify that substitutios of Eq. (7.6-4) into Eq. {(7.6-5) yields an identity.

7.9 Give the boolean expression equivalent to Eq. (7.6-16) for a 8 x § window.

7.10 Develop a procedure for computing the median in an # X » neighborhood.

7.1 Explain why the discrete histogram egualization technique will not, in general, yield a
flat histogram.

7.12 Propose & method for updating the local histogram for use in the enhancement tech-
nigue discussed in Sec. 7.6.3.

7.13 The results obtained by a single pass through an image of some two-dimensional

masks can also be achieved by two passes of a one-dimensional mask. For example, the

result of using a 3 X 3 smocthing mask with coefficients % (see Sec. 7.6.2) can also be

obtatned by first passing through an image the mask [} 1 1], The result of this pass is
i

then followed by a pass of the mask é . The final resuit is then scaled by % . Show
|

that the Sobel masks (Fig. 7.35) can be implemented by one pass of a differencing mask of

the form {~1 ¢ 1] {or its vertical counterpart) foliowed by a smoothing mask of the

form {1 2 1] {or its vertical counterpart).

T.14 Show that the digital Laplacian given in Eq. (7.6-47) is proportional (by the factor

— %) to subtracting from f(x, ¥} an average of the 4.neighbors of (x, y). {The process of

subtracting a blurred version of f{x, y} from itself is called wnsharp masking )





