## Today

- Review
  - Intracochlear electrode array
- Questions on homeworks or projects?
- System continued
  - Digital filtering
  - Mapping
  - Telemetry
  - stimulator



## Review

Neural Prosthetic Engineering

## In block diagram form,

### A brief conceptual block diagram



## **Spatial Specificity**

- the degree of spread of neural activity across a place in cochlea that responds to a stimuli from an electrode site
- Spatial specificity of stimulation depends on...
  - The number and distribution of surviving ganglion cells
  - Whether neural processes peripheral to the ganglion cells are present or not
  - The proximity of the electrodes to the target neurons
  - The electrode coupling configuration (monopolar, bipolar)

## **Straight vs. Pre-curved**

### Types of cochlear electrode array

Straight vs Pre-curved





- Straight types
  - Deep insertion
  - Far from target cells
  - Lateral wall insertion

- Pre-curved types
  - Close to target cells
  - Using stylet or sheath to insert
  - Perimodiolar insertion

## **Peri-modiolar Placement**

- Positioning of electrodes in ST
  - Place close to inner wall of ST to minimize the distance between electrodes and SG
    - Maximize the number of largely non-overlapping populations of neurons
    - Improve spatial specificity of stimulation
    - Reduce threshold voltage
    - Increase battery life

### Performance vs. Number of channels

- 8 is enough



FIG. 4. Recognition of HINT sentences as a function of the number of spectral channels for normal-hearing listeners (dashed line with small filled symbols) or as a function of the number of electrodes used with Nucleus-22 cochlear implant listeners (filled symbols) and Clarion cochlear implant listeners (open symbols). The solid line plots the best performance level across all 19 cochlear implant listeners. From left to right the panels present consonant recognition as a function of decreasing signal-to-noise ratio.

L.M.Friesen et al., J. Acoust. Soc. Am, 2001

#### Neural Prosthetic Engineering

## Auditory system



Auditory system - Wikipedia

### **Cochleostomy and round window approach**





## **Cochlear Implant System & Circuit**

### A Brief Conceptual Block Diagram



### **Cochlear Implant**

### Components in cochlear implant

- Microphone
- DSP processor
- Inductive coil
- ASIC chip

...

Electrode arrays





### Neural Prosthetic Engineering



Nurobiosys Corp., Korea

### **Cochlear Implant – General System Overview**



Nurobiosys Corp., Korea

# Trying to make these waveforms appear at the electrodes

 Waveforms at various points in the system. Top trace in each panel shows a speech input measured at an output node of the analog preprocessor, and the bottom three traces in each panel show stimuli for the three of the eight channels of stimulation The lower panel shows the interlacing of stimulus pulses across channels using an expanded time scale. The segment shown is indicated by the dotted rectangle in the upper panel.



**Neural Prosthetic Engineering** 

# Signal Processing performed within the DSP hardware.



### A/D conversion

• Ex) 10 bit ADC with Sampling frequency of 17 kHz

### FFT (Fast Fourier Transform)

- Power spectral density extraction
- Transform time domain into frequency domain

### Average power calculation (the channel-to-frequency allocation rule)

 $\sum$  power spectral density of one channel

Average channel power =  $\frac{2}{band}$  size (# of spectral peaks) of one channel

### Nonlinear mapping

Stimulation level = log (average channel power)

## Mapping



## MAPPING-EXAMPLE



| Frequency Allocation |                      |
|----------------------|----------------------|
| Electrode            | Frequency range (Hz) |
| E1                   | 300- 450             |
| E <sub>2</sub>       | 400-550              |
| E3                   | 550-700              |
| E <sub>4</sub>       | 700-850              |
| E <sub>5</sub>       | 850-1000             |
| E <sub>6</sub>       | 1000-1250            |
| E7                   | 1250-1500            |
| E <sub>8</sub>       | 1500-1800            |
| Eg                   | 1800-2200            |
| E10                  | 2200-2600            |
| E11                  | 2600-3200            |
| E12                  | 3200-3800            |
| E <sub>13</sub>      | 3800-4600            |
| E14                  | 4600-5500            |
| E15                  | 5500-6500            |
| E <sub>16</sub>      | 6500-7800            |
|                      |                      |

### **Power Amplifier**

Class E amplifier

**PWM** 

signal

2.5MHz

Oscil

Class E operation: the loss in the switching element of the converter becomes very low.

L<sub>choke</sub>

C<sub>series</sub>

C<sub>shunt</sub>

н

**External** 

£

coil



### **Telemetry-later-use separate file**

- Data can be transferred via inductive link simultaneously with power
- Bi-directional Telemetry



**Neural Prosthetic Engineering** 

### **Block Diagram of the Internal Device**



### **Current source**



### **Current Stimulator**



### **Current Stimulator**



### **Current Stimulator**

### Overall schematic



### Result

 Waveforms at various points in the system. Top trace in each panel shows a speech input measured at an output node of the analog preprocessor, and the bottom three traces in each panel show stimuli for the three of the eight channels of stimulation The lower panel shows the interlacing of stimulus pulses across channels using an expanded time scale. The segment shown is indicated by the dotted rectangle in the upper panel.



**Neural Prosthetic Engineering** 

### Reference

- F.G.Zeng et al., (IEEE Reviews in Biomedical Engineering, 2008)
- P.C.Loizou, (IEEE Engineering in Medicine and biology, 1999)
- B. Wilson et al., (Nature, 1991)
- D.Riss et al., (Otology & Neurotology, 2011)
- N.B.Frederigue, (Brazilian J. Otorhinolaryngology, 2003)