CHAPTER

NINE
ROBOT PROGRAMMING LANGUAGES

Observers are not led by the same physical
evidence to the same picture of the

vniverse uniess their linguistic backgrounds
are sitnilar o1 can in some way be calibrated.
Benjamin Lee Whorf

9.1 INTRODUCTION

The discussion in the previous chapters focused on kinematics, dynamics, control,
trajectory planning, sensing, and vision for computer-based manipulators. The
algorithms used to accomplish these functions are usually embedded in the control-
ling software modules. A major obstacle in using manipulators as general-purpose
assembly machines is the lack of suitable and efficient communication between the
user and the robotic system so that the user can direct the manipulator to accom-
plish a given task. There are several ways to communicate with a robot, and three
major approaches to achieve it are discrete word recognition, teach and playback,
and high-level programming languages.

Current state-of-the-art speech recognition sysiems are quite primitive and gen-
erally speaker-dependent. These systems can recognize a set of discrete words
from a limited vocabulary and usually require the uscr to pause between words.
Although it is now possible to recognize discrete words in real time due to faster
cotnputer components and efficient processing algorithms, the usefulness of discrete
word recognition to describe a robot task is quite limited in scope. Moreover,
speech recognition generally requires a large memory or secondary storage to store
speech data, and it usually requires a training period to build up speech templates
for recognition.

TFeach and playback, also known as guiding, is the most commenly used
method in present-day industrial robots. The method involves teaching the robot
by leading it through the motions the user wishes the robot to perform. Teach and
playback is typically accomplished by the following steps: (1) leading the robot in
slow motion using manual control through the entire assembly task and recording
the joint angles of the robot at appropriate locations in order to replay the motion;
(2) editing and playing back the taught motion; and (3) if the taught motion is
correct, then the robot is run at an appropriate speed in a repetitive mode.

Leading the robot in slow motion usually can be achieved in scveral ways:
using a joystick, a set of pushbuttons (one for cach joint), or a master-slave mani-
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pulator system. Presently, the most commonly used syslem is a manual box with
pushbutions.  With this method, the user moves the robot manually through the
space. and presses a button to record any desired angular position of the manipula-
tor. The set of angular positions that are recorded form the set-points of the tra-
jectory that the manipulator has traversed. These position set-points are then inter-
polated by mumerical methods, and the robot is “played back™ along the smoothed
trajectory. In the edit-playback mode, the user can edit the recorded angular posi-
tions and make sure that the robot will not collide with obstacles while completing
the task. In the run mode, the robot will run repeatedly according to the edited
and smoothed trajectory. If the task is changed, then the above three steps are
repeated.  The advantages of this method are that it requires only a relatively small
memory space to record apgular positions and it is simple to learn. The main
disadvantage is that it is difficult to utilize this method for intcgrating sensory feed-
back information into the control system.

High-level programming languages provide a more general approach to solv-
ing the human-robot communication problem. In the past decade, robots have
been successfully used in such areas as arc welding and spray painting using guid-
ing (Engelberger [1980]). These tasks require ne ipteraction between the robot
and the environment and can be easily programmed by guiding. However, the use
of robots to perform assembly tasks requires high-level programming techniques
because robot assembly usually relies on sensory feedback, and this type of un-
structured interaction can only be handled by econditjonally programmed methods.

Robot programming is substantially different from traditional programming.
We can identify several considerations which must be handled by any robot pro-
gramming method: The objects to be manipulated by a robot are three-dimensional
objects which have a variety of physical properties; robots operate in a spatially
complex cnvironment; the description and representation of three-dimensional
objects in a computer are imprecise; and sensory information has to be monitored,
manipulated, and properly utilized. Current approaches to programming can be
classified into two major categories: robof-oriented programming and object-
oriented, or task-level programming.

In robot-oriented pregramming, an assembly task is explicitly described as a
sequence of robot motions. The robot is guided and controfled by the program
throughout the entire task with each statement of the program roughly correspond-
ing to one action of the robot. On the other hand, task-level programming
describes the assembly task as a sequence of positional goals of the obiects ruther
than the motion of the robot nesded to achieve these goals, and hence no explicit
robot motion is specified. These approaches are discussed in detail in the foliow-
ing two sections.

9.2 CHARACTERISTICS OF ROBOT-LEVEL LANGUAGES

The most common approach taken in designing robot-level language is to extend
an existing high-level language to meet the requirements of robot programming.
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To a certain extent, this approach is ad hoc and there are ro guidelines on how to
implement the extension.

We can easily recognize several key characteristics that are common 1o all
robot-oriented languages by examining the steps involved in developing a robot
program. Consider the task of inserting a bolt into a hole (Fig. 9.1). This
requires moving the robot to the feeder, picking up the bolt, moving it to the beam
and inserting the bolt into onc of the holes. Typically, the steps taken to develop
the program are:

1. The workspace is set up and the parts arc fixed by the use of fxtures and
feeders.

2. The location (orientation and position} of the parts (feeder, beam. et} and
their features (beam_bore, boli_grasp, etc.) are defincd using the data strue-
tures provided by the language.t

3. The assembly task is partitioncd into a sequence of actions such as moving the
robot, grasping objects, and performing an insertion.

4. Sensory commands are added to detect abnormal situations {(such as inability to
locate the bolt while grasping) and monitor the progress of the assembly task.

+ The reader will recall that the use of the underscore symbol is a commoen practice in program-
mitg fanguages to provide an effective idensity in a variable name and thus improve legibility,

Werld
Beam bore

Feuder

Figure 9.1 A simpic robotic nsertion iask.
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5. The program is debugged and refined by repeating steps 2 to 4.

The important characteristics we recognized are position specification (step 2},
motion specification (step 3), and sensing (step 4). These characteristics are dis-
cussed in detail in this section.

We will use the languages AL (Mujtaba et al. [1982]) and AML (Faylor ¢t al.
[1983]) as examples. The choice of using these two languages is not arbitrary.
Al has influenced the design of many robot-oriented languages and is still actively
being developed. Tt provides a large set of commands o handie the requirements
of robot programming and it also supports high-level programming features. AML
is currently available as a commercial preduct for the control of IBM's robots and
its approach is different from AL. Its design philosophy is to provide a system
environmeni where different robot programming interfaces may be built. Thus, it
has a rich set of primitives for robot operations and allows the users to design
high-level commands according to their particular needs. These two languages
represent the state of the art in robot-oriented programming languages. A brief
description of the two languages is shown in Table 9.1,

Tabfe 9.1 A brief summary of the AL and AML robot
programming languages

AL was developed by Stanford University. Currenily AL can be cxecuted on a VAX com-
puter and real-time control of the arms are performed on a stand slone PBP-11. Its charac-
teristics are:

High-level language with features of ALGOL and Pascal

Supports both robot-level and task-level specification

Compiled into fow-level language and interpreted on & real time control machine

Has real-time programming language constructs like synchronization, concurrent execu-
tion, and ona-conditions

ALGOL like data and control structure

Support for world modeling

AML was developed by IBM. It is the control language for the IBM RS-1 robot, It runs on
a Series-I computer (or TBM personal computer) which aiso controls the robot. The RS-}
robot is a cartesian manipulator with 6 degrees of freedom. Its first three joints are
prismatic and the last three joints are rotary. Its characteristics are:

Provides an envizonment where different user-interface can be built

Supports features of LISP-like and APL-like constructs

Supports data aggregation

Supports joint-space trajectory planning subject to position and velocity constrainls
Provides absolute and relative motions

Provides sensor monitoring that can interrupt motion
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Table 9.2 AL and AML definitions for base frames

AL:
hase — FRAME(nilrot, VECTOR(20, 0, 15)+inches);
beam — FRAME(ROT(Z, 90+deg), VECTOR20, 15, Opsinches);
feeder - FRAME{nilrot, VECTOR(23, 20, Opxinches);
Notes: nilrot is a predefined frame which has value ROT(Z, O«deg).
The “- " is the assignment operator in AL,
A semicolon lerminates a statement.
The ““+™ is a type-dependent multiplication operator. Here, it is used to append units
to the elements of the vector.
AML.:
base = < <320,0, 15>, EULERROT{<0, 0, 0>)>;
beam = < <20, 15, 0>, EULERROT(<G, G, 90>)>;
feeder = < <25, 20, 0>, EULERROT(<(, 0, 053>
Note: BULERROT is a subroutine which forms e rotation matrix given the angles.

9.2.1 Position Specification

In robot assembiy, the robot and the parts are generally confined to 2 well-defined
workspace. The parts are usually restricied by fixtures and feeders to minimize
positional uncertainities. Assembly from a set of randemly placed parts requires
vision and is not yet a common practice in industry.

The most common approach used to describe the orientation and the position
of the objects in the workspace is by coordinate frames. They are usually
represented as 4 X 4 homogeneous trunsformation matrices. A frame consists of a
3 x 3 submatrix (specifying the orientation) and 2 vector (specifying the position)
which are defined with respect to some base frame. Table 9.2 shows AL and AML
definitions for the three frames base, beam, and feeder shown in Fig. 9.1. The
approach taken by AL is to provide predefined data structures for. frames
(FRAME), rotational matrices (ROT), and vectors (VECTOR)}, all of them i
cartesian coordinates. ©On the other hand, AML provides a general structure called
an aggregate which allows the user to design his or her own data structures. The
AML frames defined in Table 9.2 are in cartesian coordinates and the format is
< vector, matrix >, where vector is an aggregate of three scalars representing posi-
tion and matrix is an aggregate of three vectors representing orientation.

In order to further explain the potation used in Table 9.2, the first statement in
AL means the cstablishment of the coordinate frame base, whose principal axes
are parallel (nilrot implies no rotation) to the principal axes of the reference frame
and whose origin is at location (20, 0, 15) inches from the origin of the reference
frame. The sccond statement in AL establishes the coordinate frame beam, whose
principal axes are rotated 90° about the Z axis of the reference frame, and whose
origin is at location (20. 15, 0) inches from the origin of the reference frame. The
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third statement has the same meaning as the first, ¢xcept for location. The meaning
of the three statements in AML is exactly the same as for those in AL.

A convenient way of referring fo the features of an object is to define a frame
{with respect 10 the object’s base frame) for it. An advantage of using a homeo-
geneous transformation matrix is that defining frames relative to a base frame can
be simply done by postmultiplying a transformation matrix to the base frame.
Table 9.3 shows the AL and AML statements used to define the features 76, E,
bolt. tip, bolt_grasp, and beam_bore with respect to their base frames, as indicated
in Fig. 9.1. AL provides a matrix multiplication operater (=) and a data structure
TRANS {a transformation which consists of a rotation and a translation operation)
to represent transformation matrices. AML has no built-in matrix multiplication
operator, but a system subroutine, DOT, is provided.

In order to illustrate the meaning of the statements in Table 9.3, the first AL
statement means the establishment of the coordinate frame 76, whose principal
axes are rotated 180° about the X axis of the base coordinate frame, and whose
origin is at location (15, 0, 0} inches from the origin of the base coordinate frame.
The second statement establishes the coordinate frame E, whose principal axes are
parallel (nilrot implies neo rotation) to the principal axes of the 76 coordinate
frame, and whose origin is at lecation (0, 0, 5) inches from the origin of the T6
coordinate frame. Simdlar comments apply to the other three AL statements. The
meaning of the AML statements is the same as those for AL.

Figure 9.2a shows the relationships between the frames we have defined in
Tables 9.2 and 9.3. Note that the frames delined for the arm are not needed for
AL because AL uses an implicit frame to represent the position of the end-effector
and does not allow access to intermediate frames (76, E). As parts are moved or

Table 9.3 AL and AML definitions for feature frames

Al
76 — base » TRANS(ROT(X, 18Cwdeg), VECTOR(IS, 0, Oysinches);
E — T6 «+ TRANSilret, VECTOR(O, 0, 5)*inches):
holi_tip — feeder » TRANS(nilrot, nifvect)
holt_grasp — bolt_tip » TRANS{(nilrot, VECTOR(S, 0, 1)sinches):
beam_bore — beam » TRANS(nitrot, VECTOR, 2, 3xinches);
Nofe: nilvect is a predefined vecior which has value VECTOR(O, 9, Ojsinches.

AML:
76 = DOT(buse, < <15, 0, 0>, EULERROT(< 180, 0, 04>)>),
E = DOT(T6, <<0,0, 5>, EULERROT(<0, 0, 0>}> )
boli_tip = DOT{feeder, < <0, 0, 0>, BEULERROT(<0, 0, 03>},
bolt_grasp = DOT(bol_tip, < <3, 0, 1>, EULERROT(<0, 0, 0>) >
beani_bore = DOT(beam. < <0, 2, 3>, EULERROT{(<0, 0, 0>)>);
Note: DOT is a subroutine that multiplies two matrices.
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Figure 9.2 Relationships batween the frames.

are attached to other objects, the frames are adjusted to reflect the current state of
the world (see Fig. 9.25).

Another way of acquiring the position and orientation of an object is by using
the robot as a pointing device to gather the information interactively, POINTY
(Grossman and Taylor {1978]), a system designed for AL, allows the user to lead
the robot through the workspace (by hand or by a pendant) and, by pointing the
hand (equipped with a special tool) to objects, it generates AL declarations similar
to those shown in Tables 9.2 and 9.3. This eliminates the need to measure the dis-
tances and angles between frames, which can be quite tedious.

Although coordinate frames are quite popular for representing robot
configurations, they do have some limitations. The natural way to represent robot
configurations is in the joint-variable space rather than the cartesian space. Since
the inverse kinematics problem gives nonunique solutions, the robot’s configuration
is not uniquely determined given a point in the cartesian space. As the number of
features and objects increases, the relationships between coordinate frames become
complicated and difficult to manage. Furthermore, the number of computations
required also increases significantly.

9.2.2 Motion Specification

The most common operation in robot assembly is the pick-and-place operation. It
consists of moving the robot from an initiai configuration to a grasping
configuration, picking up an object, and moving to a final configuration. The
motion is usually specified as a sequence of positional goals for the robot 1o atlain.
However, only specifying the initial and final configurations is not sufficient. The
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path is planned by the system without considering the objects in the workspace and
obstacles may be present on the planned path, In order for the system to gencrate
a collision-free path, the programmer must specify enough intermediate or via
points on the path. For example, in Fig. 9.3, if a straight line motion were used
from point 4 to point C, the robot would collide with the beam. Thus, intermedi-
ate point 8 must be used to provide a safe path.

The positional goals can be specified cither in the joint-variable space or in the
cartesian space, depending on the language. In AL, the motion is specified by
using the MOVE command to indicate the destination frame the arm should move
to. Via points can be specified by using the keyword “VIA™ followed by the
frame of the via point (sce Table 9.4). AML allows the user to specify motion in
the joint-variable space and the user can wrile his or her own routings to specify
motions in the cartesian space. loints are specified by joint numbers {1 through 6)
and the motior can be either refative or absolute {sce Table 9.4),

One disadvantage of this type of specificalion is that the programmer must
preplan the entire metien in order to sclect the intermediate points. The resulting
path may produce awkward and inefficient motions. Furthermore, describing a
complex path as a sequence of points produces an unnecessarily long program.

As the robot’s hand departs from its starting cenfiguration or approaches is
final comfiguration, physical constraints, such as an imsertion, which require the
hand to travel along ar axis, and environmental constraints, such as moving in a
crowded area, may prohibit certain movement of the robot. The programmer must
have control over various details of the motion such as speed, acceleration,
deceleration, approach and departure directions to produce a safe motion. Instead

Figure 9.3 Trajeciory of the robot.
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Table 9.4 Examples of AL and AML motion statements

AL:
{ Move arm from rest 1o frame 4 and then 1o bolt_grasp }
MOVE barm TO A4;
MOVE barm TO bolt.grasp;

{ Another way of specifying the above movement }
MOVE barm TO bolt_grasp VIA 4;

{ Move along the current Z axis by 1 inch, Le., move relative }
MOVE barm TO @ ~ [s+Zxinches;
Notes: barm is the name of the robot arm.
@ indicates the current location of the arm which is equivalent 10 base » 76 « E.
Statements inside brackets { - - - } are comments,

AML:
-- Move joint 1 and 4 1o 10 inches and 20 degrees, respectively (absolute move)
MOVE(<IE, 4>, <10, 20>3;

- Move joints |, 3 and 6 by | inch, 2 inches, and 5 degrees, respectively (relative move)
DMOVE(<1, 3, 6>, <1, 2,5>);
Noteys: Statements preceedad by “--7" are commenis,

of separate commands, the usual approach is to treat them as constraints to be
satisfied by the move command. AL provides a keyword “WITH” to attach con-
straint clauses to the move cormmand. The constraints can be ar approach vector,
departure vector, or a time limit. Table 9.5 shows the AL statements for moving
the robot from bolt_grasp to A with departure direction zlong +Z of feeder and
time duration of 5 seconds (i.e., move slowly). In AML, aggrepates of the form
< speed, acceleration, deceleration> can be added w the MOVE statement to specify
speed, acceleration, and deceleration of the robot.

In general, gripper motions kave to be tgilored according 10 the environment
and the task. Most languages provide simple commands on gripper motion so that
sophisticated motions can be buailt using them. For a two-fingered gripper, one can
either move the fingers apart (open) or move them together (close). Both AML
and AL use a predefined variable to indicate the gripper (bhand corresponds to
barm for AL and GRIPPER for AML). Using the OPEN (for AL) and MOVE
(for AML) primitives, the gripper can be programmed to move to a certain open-
ing (see Table 9.5).

9.2.3 Sensing and Flow of Control

The location and the dimension of the objects in the workspace can be identified
only to a certain degree of accuracy. For the robot to perform tasks in the pres-
ence of these uncertainties, sensing must be performed. The sensory information
gathered also acts as a feedback from the environment, enabling the robot to exam-



ROBOT PROGRAMMING LANGUAGES 459

Table 9.5 Examples of AL and AML motion statements

AL:
{ Move arm from bolt.graspto 4 }
MOVE barm TO 4
WITH DEPARTURE = Z WRT feeder
WITH DURATION = Sssecopds;

{ Open the hand to 2.5 inches }
OPEN bhand TO 2.5sinches;

Note: WRYT {means with respect [0} generates a vector in the specified frame.

AML.:
- Move joint 1 and 4 to 10 inches and 20 degrees, respectively, with speed
1 inch/second,
-- Acceleration and deceleration | %mhlsecen(}z
MOVE(<L, 4>, <10, 20>, <1, 1, I>)

- Open the hand to 2.3 inches
MOVE(GRIPPER, 2.5);

ine and verify the state of the agsembly. Sensing in robot programming can be
classified into three types:

1. Position sensing is used to identify the current position of the robot. This is
usually done by encoders that measure the joint angles and compute the
corresponding hand position in the workspace.

2. Force and tactile sensing can be used to detect the presence of objects in the
workspace. Force sensing is used in compliant motion to provide feedback for
forge-controiled motions. ‘Tactile sensing can be used to detect shippage while
grasping an object.

3. Vision is used to identify objects and provide a rough estimate of their position.

There is no general consensus on how 1o implement sensing cominands, and
cach language has its own syntax. AL provides primitives like FORCE(axis) and
TORQUE(axis) for force sensing. They can be specified as conditions like FORCE(Z)
> 3sounces in the control commands. AML provides a primitive called MONI-
TOR which can be specified in the meotion commands to detect asynchronous
events. The programmer can specify the sensors to monitor and, when the sensors
are triggered, the motion is halted (see Table 9.6). It also has position-sensing
primitives like QPOSITION (joint numberst) which returns the current position of
the joints. Most languages do not explicitly support vision, and the user has to
provide modules to handle vision information,

T Specified as an aggregate like < 1, 5> which specifies joiats 1 and 5,
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Table 9.6 Force sensing and compliant motion

AL:
{ Test for presence of hole with force sensing §
MOVE barm TO @ - 1sZ«inches ON FORCE(Z} > 10sounces
DO ABORT(“No Hole™);

{ Insert boit, exert downward force while compiving side forces |

MOVE barm TO beam_bore
WITH FORCE(Z) = — 10=ounces WITH FORCE(X) = Owouncey
WITH FORCESYY = (=ounges  WITH DURATION = Jasegonds:

AML:
- Define a monitor for the force sensors SLP andd SLR; Monitor triggers if the sensor
— values exceed the range 0 and F
Jmons = MONITOR(<SLP, SRP>, 1,0, F)
-- Move joint 3 by T inch and stop if finons is triggered
DMOVE{<3>, <i>, finons}
Note: The syntax for moaitor is MONITOR{scensors, test type, limitl, imit2).

One of the primary uses of sensory information is to initiate or terminate an
action, For example, a part arriving on a conveyor belt may rip an optical sensor
and activate the robot to pick up the part, or an action may be terminated if an
abnormal condition has occurred. Table 9.6 illustrates the use of force sensing
information to detect whether the hand has positioned correctly above the hole.
The robot arm is moved downward slightly and, as #t descends, the foree exerted
on the hand along the £ axis of the hand coordinate frame is returned by
FORCE(Z). If the force exceeds 10 ounces, then this indicates that the hand
missed the hole and the task is aborted.

The flow of a robot program is usually governed by the sensory information
acquired. Most languages provide the usual decision-making constructs like “if_
then__else..”, “case..”, “do.untii.”, and “while_do..” to contro} the flow of the
program under different conditions.

Certain tasks require the robot to comply with external constraimts. For exam-
ple, insertion requires the hand to move along one direction onty. Any sideward
forces may generate unwanted friction which would impede the motion. In order
to perform this compliant motion, force sensing is needed. Table 9.6 iHustrates the
use of AL’s force sensing commands to perform the insertion task with compli-
ance. The compliant motion is indicated by guantifying the motion staternent with
the amount of force allowed in each direction of the hand coordinate frame. In
this case, forces are applied only along the Z axis of this frame.

9.2.4 Programming Support

A language without programming support (editor, debugger, etc.) is useless to the
user. A sophisticaied fanguage must provide a prograrmming environment that
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allows the user to support it. Complex robot programs are difficult to develop and
can be difficult to debug. Moreover, robot programming imposes additional
requirements on the development and debugging facilitates:

1. On-fine modification and immediate restart, Since robot tasks requires complex
motions and long execution time, it is not always feasible to restart the program
upon failure. The robot programming system must have the ability to allow
programs to be modified on-line and restart at any time.

2. Sensor outputs and program fraces. Real-time interactions between the robot
and the enviromment are not always repeatable; the debugger should be able to
record sensor values along with program traces.

3. Simulation. This feature allows testing of programs without actually setting up
robot and workspace, Hence, different programs can be tested more efficiently.

The reader should realize by now that programming in a robot-oriented
language is tedious and cumbersome. This is further illustrated by the following
example.

Example: Table 9.7 shows a complete AL program for performing the inser-
tion task shown diagramatically in Fig. 9.1, The notation and meaning of the
statements have already been explained in the preceding discussion. Keep in
mind that a statersent is not considered terminated until a semicolon is encoun-
tered. 0

Table 9.7 An AL program for performing an insertion task

BEGIN insertion

{ set the variables }

bolt_diameter — 0.5=+inches;

bolt _height — Eeinches;

trigs — &

grasped - false;

{ Define base frames }

beam — FRAME(ROT(Z, 90+deg), VECTOR(20, 15, O)=inches);
feeder — FRAME(nifrot, VECTOR(25, 20, D)+inches);

{ Define feature frames }

bolt. grasp — feeder = TRANS(nilrot, nilvect);

bolt..tip — bolr_grasp » TRANS{nilrot, VECTOR(D, 0, 0.5)«inches);
beam_bore — beam = TRANS(nilrot, VECTORQ, O, Ixinches);

{ Define via points frames }

A — feeder » TRANS(nilrot, VECTOR(O, §, 5)«inches);

B — feeder + TRANS(nilrot, VECTOR{D, 0, B)=xinches);

C — beam._bore * TRANS(nilrot, VECTOR{0, {, S)*inchesy;
D~ beam_bore « TRANS(niirot, bolt. height+Z7);
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Table 9.7 (continued)

{ Open the hand }
QPEN bhand TO bolt_diameter + 1=inches,

{ Position the hand just above the bolt }
MOVE barm TO bolr.grasp VIA A
WITH APPROACH = —7 WRT feeder;

! Anemnpt to grasp the bolt }
DO
CLOSE bhand TO 0.9«boli..diameter,
1F bhand < belt_diameter THEN BEGIN{ failed to grasp the bolt, try again }
OPEN bhand TO bolt_diameter + Isinches:
MOVE barm TO @ — |#Zsinches:
END ELSE grasped — true;
tries — tries + 1;
UNTIL grasped OR {tries > 3);

{ Abort the operation if the bolt is not grasped in three tries. }
IF NOT grasped THEN ABORT{(failed to grasp bolt”);

{ Move the arm o B }
MOVE barm TO B
ViA A
WITH DEPARTURE = Z WRT feeder;

{ Move the armwo D }
MOVE barm TO D VIA C

{ Check whether the hole i there }
MOVE barm TO @ — 0.1sZ=inches ON FORCE(Z) > [0+ounces
X3 ABORT{ 'No hole™;

{ Do insertion with compliance }

MOVE barmi TO beam.. bore DIRECTLY
WITH FORCE(Z) = - |(xounces
WITH FORCE{X) = (=ounces
WITH FORCE(Y) = (sounces
WITH DURATION = S5aseconds;

END insertion.

9.3 CHARACTERISTICS OF TASK-LEVEL LANGUAGES

A completely different approach in robot programming is by task-level program-
ming. The natural way to describe an assembly task is in terms of the objects
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being manipulated rather than by the robot motions. Task-level languages make
use of this fact and simplify the programming task.

A task-level programming system allows the user to describe the task in a
high-level language (task specification); a task planner will then consult a database
(world meodels) and transform the fask specification imo a robot-level program
(robot program synthesis) that will accomplish the task. Based on this description,
we can conceptually divide task planning into three phases: world madeling, task
specification, and program synthesis. It should be noted that these three phases are
not completely independent, in fact, they are computationally refated.

Figure 9.4 shows one possible architecture for the task planper. Fhe task
specification is decomposed into a sequence of subtasks by the task decomposer
and information such as initial state, final state, grasping position, operand,
specifications, and attachment relations are extracted. The subtasks then pass
through the subtask planmer which generates the required robot program,

The concept of task planning is quite similar to the idea of automatic program
generation in artificial intelligence. The user supplies the input-output requirements
of a desired program, and the program gemerator then generates a program that
will produce the desired input-output behavior (Barr et al. [1981, 1982},

Task-level programming, like autoratic program generation, is, in the research
stage with many problems still unsolved, In the remaining sections we will discuss
the problems encountered im task planning and some of the solutions that have
been proposed to solve them.,

9.3.1 World Medeling

Workd modeling is required to describe the geometric and physical properties of
the objects {including the robot} and to represent the state of the assembly of
objects in the workspace.

Geometric and Physical Models. For the task planrer to generate a robot pro-
gram that performs a given task, it must have information about the objects and
the robot itself. These include the geometric and physical propertics of the objects
which can be represented by models.

A geometric model provides the spatial information {dimension, volume,
shape} of the objects in the workspace. As discussed in Chap. 8, numerous tech-
niques exist for modeling three-dimensional obiects (Baer et al. [1979], Requicha
[1980]). The most common approach is constructive solid geometry (CSG), where
objects are defired as comstructions or combinations, using regularized set opera-
tions (such as union, intersection), of primitive objects (such as cube, cylinder).
The primitives can be represented in various ways:

1. A set of edges and points
2. A set of surfaces

3. Generalized cylinders

4. Celi decomposition



464 ROBOTICS: CONTROL, SENSING, VISION. AND INTELLIGENCE

Tusk speeifivation

Task decomposer

LI RN A}

Knowlodge e Subtask planmer w— Maodels

I

Raohen progens

Figure 9.4 Task planner.

In the AUTOPASS sysiem (Lieberman and Wesley [1977]), objects are
modeled by wilizing a modeling system called GDP {geometric design processor)
{Wesley et al. [1980]) which uses a procedural representation to describe objects.
The basic idea is that each object is represenied by a procedure name and a set of
parameters. Within this procedure, the shape of the object is defined by calls to
other procedures representing other objects or set operations.

GDP provides a set of primitive objects (all of them are polyhedra) which can
be cuboid, cylinder, wedge, cone, hemisphere, lamisum, and revelute, These
primitives are internally represented as a list of surfaces, edges, and points which
are defined by the parameters in the corresponding procedure. For example,

CALIL SOLID{CUBOID, “Block™, xlen, ylen, zken),

will invoke the procedure SOLID to define a rectangular box called Block with
dimensions xien, ylen, and zlen. More complicated objects can then be defined by
calling other procedures and applying the MERGE subroutine to them, Table 9.8
shows a description of the bolt used in the insertion task discussed in Sec. 9.2.

Physical properties such as inertia, mass, and coefficient of friction may limit
the type of motion that the robot can perform. Instead of storing each of the pro-
perties explicitly, they can be derived from the ebject model. However, no modzl
can be 100 percent accurate and identical parts may have slight differences in their
physical properties. To deal with this, tolerances must be introduced nto the
model (Requicha [1983]).

Representing World States. The task planner must be able fo stimulate the
assembly sleps in order to generate the robot program. Each assembly step can be
succinctly represented by the current state of the world. One way of representing
these states is to use the configurations of all the objects in the workspace.

AL provides an attachment relation called AFFIX that allows frames to be
attached to other frames. This is equivalent to physicaily attaching a part to



ROBOT PROGRAMMING LANGUAGES 465

Table 9.8 GDP description of a bolt

Boit: PROCEDURE(shaft. height, shafi_radius, shaft.nfacets, head_height, bead_radius,
head_ nfacets);

[+ defing parameters =/

DECLARE
shaft. height, /% height of shaft +/
head_heighs, /% height of head #/
shafi.radius, £ radius of shaft =/
head_radius, f# radius of head +/
shaft_nfacets, 7+ number of shaft faces =/
head..nfacets, /% pumber of head faces =/

/x specily floating point for above variables +/
FLOAT;

f# define shape of the shaft =/
CALE SOLID{CYLIND, “Shaft”, shaft_height. shaft..radius, shaft. nfacets);

/= defing shape of head +f
CALL SOLID{CYLINE."Head ", head_height, head_radius, head . nfacets);

/= perform set union to get bolt =/
CALL MERGE(“Shaft”, “Head”, union);

END Bolt.
Note: The notation /¢ - -+ %/ indicates a comment,

another part and if one of the parts moves, the other parts attached will also move,
AL auwtomaticaily updates the locations of the frames by multiplying the

appropriate transformations. For example,

AFTIX beam. bore TO beam RIGIDLY,
beam_bore = FRAME(nilrot, VECTOR(1.0,0yxinches);

describes that the frame beam.. bore is attached to the frame beam.

AUTOPASS wses a graph to represent the world state. The rodes of the
graph represents objects and the edges represent relationships. The relations can

be one of:

1. Attachment. An object can be rigidly, nenrigidly, or conditionally attached to
another object. The first two of these have a function similar to the AFFIX
statement in AL. Conditionally attachment mesns that the object is supported

by the gravity (but not serictly attached).

2. Constraines.  Constraint relationships represent physical constraints between

objects which can be translational or rotational,

3. Assembly component. This is used to indicate that the subgraph linked by this

edge is an assembly part and can be referenced as an object.
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As the assembly proceeds, the graph is updated to reflect the current state of
the assembly.

9.3.2 Task Specification

Task specification is done with a high-level language. At the highest level one
would like to have natural languages as the input, without having to pive the
assembly steps. An entire task like building a water pump could then be specified
by the command “build water pump.” However, this level of input is stil quite
far away. Not even omitting the assembly sequence is possible. The current
approach is to use an input language with a well-defined syntax and semantics,
where the assembly sequence is given.

Am assembly task can be described as a sequence of states of the world modsl.
The states can be given by the configurations of all the objects in the workspace,
and one way of specifying configurations is to use the spatial relationships between
the objects. For example, consider the biock world shown in Fig, 9.5, We define
a spatial relation AGAINST to indicate that two surfaces are touching each other,
Then the statements in Table 9.9 can be used to describe the two situations dep-
icted in Fig. 9.5, If we assume that state A is the initial state and state B is the
goal state, then they can be used to represent the task of picking up Block3 and
placing it on top of Block2. If state A is the goal state and state B is the initial
state, then they would represent the task of removing Block? from the stack of
blocks and placing it on the table. The advantage of using this type of representa-
tion is that they are easy to interpret by a human, and therefore, easy to specify
and modify. However, a serious limitation of this method is that it does not
specify all the necessary information needed to describe an operation. For exam-
ple, the torque required to tighten a bolt cannot be incorporated into the state
description.

An alternate approach is to describe the task as a sequeace of symbaelic opera-
tions on the objects. Typically, a set of spatial constrainis on the objects are also
given to eliminate any ambiguity. This form of description is quite similar to
those used in an indusirial assembly sheet. Most robot-oriented languages have
adopted this type of specification.

Face 3
Bluck 3 #
4

Bluck 3 |
Bloek 2 Face |
Biock |

Table. Tuble

Block 2

Biock |

Figure 9.5 Block world.



ROBOT PROGRAMMING EANGUAGES 467

Table 9.9 State description of block world

State A: Stawe B:
{Block] _face] AGAINST tabie) {Blacki _fuce! AGAINST Table)
{Block] . face3 AGAINST BlockZ. facel) {Blockl_fuced AGAINST Block2. facel)
{Block3 face! AGAINST Tabie) {Block2 _faced AGAINST Block3_ facel)

AL provides a limited way of describing a task using this method. With the
AFFIX statements, an object frame can be attached to barm to indicate that the
hand is holding the object. Then moving the object to another point can be
described by moving the object frame instead of the arm. For example, the insert-
ing process in Fig. 9.1 can be specified as

AFFYX bolt.tip TQ barm;
MOVE bole_tip TO beam..bore;

Popplestone et al. [1978] have proposed a language called RAPT which uses
contact relations AGAINST, FIT, and COPLANAR to specify the relationship
hetween object features. Object features, which can be planar or spherical faces,
cylindrical shafts and holes, edges, and vertices, are defined by coordinate frames
similar to those used in AL. For example, the two operations in the block world
example can be deseribed as:

PLACE Block3 SO THAT (Block2_ face3 AGAINST Block3_ facel)
PLACE Block3 8O THAT {Block3_facel AGAINST Tuble)

The spatial relationships are then extracted and solved for the configuration con-
straints on the objects required to perform the task.

AUTOPASS also uses this type of specification but it has a more elaborate
syntax. Tt divides its assembly related statements into three groups:

1. State change statement: Describes an assembly operation such as placement and
adjustrent of parts.

2. Tools statement: Describes the type of tools to use.

3. Fastener statement: Describes a fastening operation.

The syntax of these statements is complicated (see Table 9.10). For example,
PLACE bolr ON beam SUCH THAT boli_tip 1S ALIGNED WITH beam_bore;
DRIVE IN belt AT bolt_grasp SUCH THAT TORQUE IS EQ 12.0 IN-LBS
USING air_driver,

would be used to describe the operation of inserting a bolt and tightening it.
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Table 9.10 The syntax of the state change and tool statements in AUTOPASS

State change statement

PLACE <obiect> < preposition> <object> < grasping> < finai-condition>
< comnstraint > < then-hold >

where

< object > ts & symbalic name for the object.

< preposition > Is either IN or ON; it is used to determine the type of opera-
tion,

< grasping > Specifies how the object should be grasped.

<< constraint > Specifies the constraints to be met during the execution of the
command.

< then-hold > Indicates that the hand is to remain in position on completion

of the commasd.

Tool statement

OPERATE <wol> <load-lHist> <at-position> < attachment> < final-condition >
< tool-parameters > < then-hold >

where

<1ocl > Specifies the tool to be used.

< load-list > Specifics the list of accessories,

< at-position > Specifies where the tool is to be operated.

< attachment > Specifies new adachment.

< fipal-condition > Specifies the final condition to be satisfied at the completion of
the commasnd.

<tool-parameters > Specifies tool operation parameters such as direction of rotation
and speed.

< then-hold > Indicates that the hend is 0 remain Is position on compietion

of $he command.

9.3.3 Robot Program Synthesis

The synthesis of a robot program from a task specification is one of the most
important and most difficult phases of task planning. The major steps in this phase
are grasping plamning, motion planning, and plan checking. Before the task
planner can perform the planning, # must first convert the symbolic task
specification into a usable form. One approach is to obtain configuration con-
straints from the symbolic relationships. The RAPT interpreter extracts the sym-
bolic relationships and forms a set of matrix equations with the constraint parame-
ters of the objects as unknowns. These equations zre then solved symbolically by
using a set of rewrite rules to simplify them. The result obtained is a set of con-
straints on the configurations of each object that must be satisfied to perform the
operation.

Grasping planning is probably the most important problem in task planning
because the way the object is grasped affects all subsequent operations. The way
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the robot can grasp an object is constrained by the geometry of the object being
grasped and the presence of other objects in the workspace. A usable grasping
configuration is one that is reachable and stable. The robot must be able to reach
the object without colliding with other objects in the workspace and, once grasped,
the object must be stable during subsequent motions of the robot.

Typically, the method used to choose a grasp configuration is a variation of the
following procedure:

1. A set of candidate grasping configurations are chosen based on:
Object geometry {e.g., for a parallel-jaw gripper, a good place to grasp is on
either side of parallel surfaces).
Stability (one heuristic is to have the center of mass of the object lie within the
fingers).
Uncertainty reduction.
2. The set is then pruned according to whether they:
Are reachable by the robot.
Would lead to collisions with other objects,
3. The final configuration is selected among the remaining configurations (if any)
such that:

It would lead to the most stable grasp.
It would be the most unkikely to have a collision in the presence of position
errors.

Most of the current methods for grasp planning focus only on finding reachable
grasping positions, and only a subset of constraints are considered. Grasping in
the presence of uncertainties is more difficult and often invelves the use of sensing.

After the object is grasped, the robot must move the object to its destination
and accomplish the operation. This motion can be divided into four phases:

1. A guarded departure from the current configuration

2. A free motion to the desired configuration without collision
3. A puarded approach o the destination

4. A compliant motion to achieve the goal configuration

One of the important problems here is planning the collision-free motion. Several
algorithms have been proposed for planning collision-free path and they can be
grouped into three classes:

1. Hypothesis and test. In this method, a candidate path is chosen and the path is
tested for collision at a set of selected configurations. If a collision occurs, a
correction is made to avoid the collision (Lewis and Bejczy [1973]). The main
advantage of this method is its simplicity and most of the tools needed are
already available in the geometric modeling system. However, generating the
correction is difficult, particularly when the workspace is clustered with obstacles.
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2. Penalty functions. This mcthod involves defining penalty functions whose
values depend on the proximity of the obstacles. These functions have the
characteristic that, as the robot gets closer to the obstacles, their values
increase. A total penalty function is computed by adding all the individual
penalty functions and possibly a penalty term relating to minimum path. Then
the derivatives of the total penalty function with respect to the configuration
parameters are estimated and the collision-free path is obtained by following the
local minima of the total penalty function. This method has the advantage that
adding obstacles and constraints is easy. However, the penalty fuactions gen-
erally are difficult to specify.

3. Explicit free space. Several algorithms have been proposed in this class,
Lozano-Perez [1982] proposed 1o represent the free space (space free of obsia-
cles) in terms of the robot’s configuration (configuration space}. Conceptually,
the idea is equivalent to transforming the robot’s hand holding the object into a
point, and expanding the obstacles in the workspace appropriately. Then,
finding a collision-free path amounts to finding a path that does not intersect
any of the expanded obstacles. This algorithm performs reasonably welt when
only translation is considered. However, with rotation, approximations must be
made to generate the configuration space and the computations required increase
significantly. Brooks [1983a, 1983#] proposed another method by representing
the free space as overlapping generalized cones and the volume swept by the
moving object as a function of its orientation. Then, finding the collision-free
path reduces to comparing the swept volume of the object with the swept
volume of the free space.

Generating the compliant motion is another difficult and important problem.
Current work has been based on using the task kinematics to constraint the legal
robot configurations to lie on a C-surfacet (Mason [1981D) in the robots
configuration space. Then generating compliant motions is equivalent to finding a
hybrid position/force control strategy that guarantees the path of the rebot to stay
on the C surface.

9.4 CONCLUDING REMARKS

We have discussed the characteristics of robot-oriented languages and task-level
programming languages. In robot-oriented languages, an assembly task is expli-
citly described as a sequence of robot motions. The robot is guided and controlled
by the program throughout the entire task with each statement of the program
roughly corresponding to one action of the robot. On the other hand, task-level

T A C-surface is defined on a C-frame. It is a task configuration which aliows oniy partiai free-
dom in position. Along its tangent is the positional freedom and along its normal is the force freedom.
A C-frame is an orthogenal coordinate System in the cartesian space. The frame is so chosen that the
task freedoms are defined to be transfation aleng and rotasion abouz each of the three principal axes.
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Table 9.31a Comparison of various existing robot control languages

Language AL AML AUTOPASS HELP JARS MAPLE
Institute Stanford  [BM IBM GE JPL IBM
Robot PUMA IBM BM Allegro PUMA  IBM
controlled  Stanford  Arm Stanford

Arm Arm
Robot-or Mix Robot Object Robot Ruobot Robot
object-ievel
Language  Concurrent Lisp, APL, PL/l Pascal Pascat PLA
basis Pascal Pascal
Compiler or Both Interpreter Both Interpreter  Compiler Interpreter
interpreter
Geometric  Frame Aggregate Model None Frame None
data type
Motion Frame Joints implicit Joints Joints, Transiation,
specified by frame rotation
Control Pascal Pascal PLA Pascal Pascal PLA
struefure
Sensing Position,  Position  Ferce, Force, Proximity, Foree,
commamd  force tactile vision vision proximity

Paraliel COBEGIN, None IN PARALLEL Semaphores None IN PARALLEL
processing  semaphores

Mulkiipie Yes No No Yes No Yes
robot
References 1 2 3 4 5 6

1. Mujtaba et al. {£982].

2. Taylor et al. [19831,

A Lieberman and Wesley [1977].

4. Automation Systems A2 Assembly Robotr Operator’s Maonual, PSOVEQZS, General Electric Co.,
Bridgeport, Conn., February 1982,

. Craig {1980].

4. Darringer and Blasgen [1973).

LA

languages describe the assembly task as a sequence of positional goals of the
objects rather than the motion of the robot needed to achieve these goals, and
hence no explicit robot motion is specified. Two existing robot programming
languages, Al and AML, were used to Hlustrate the characteristics of robot-
orienied languages. We conclude that a robot-oriented language is difficult to use
because it requires the user to program each detailed robot motion in cempleting a
task. Task-level languages are much easier to use. However, many problems in
task-level languages, such as task planning, object modeling, obstacle avoidance,



472 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

Table 9.115
Language MCI. PAL RAIL RPL VAL
Institute MeDonnell Purdue Automatix SRI Unimate
Douglas
Robot Cincinnati Stanford Custom- PUMA PUMA
controlled Milacron Arm designed
T-3 Cartesian arm
Rabot-or Robot Robot Robot Robot Robiot
object-level
Language APT Transform Pascal Fortran, Basic
basis base Lisp
Complier or Compiler Interpreter Interpreter Both Interpreter
interpreter
Geometrie Frame Frame Frame None Frame
data type
Motion Translation, Frame Joints, Joints Jeints,
specified by rotation frame frame
Control If-then-else if-then-clse Pascal Fortran H-then
structuse while-do
Sensing Position Force Force, Position, Position,
command vision vision force
Paraltel INPAR None None None Semaphores
processing
Multiple Yes No No No No
robot
References 1 2 3 4 5

1. Oldroyd [1981).

2. Takase et al. {1981}

3. Franklin and Vanderbrug {1982}

4. Park [1981].

5. User's Guide fv VAL, version [, second edition, Unimation, Inc., Danbury, Cona., 1979,

trajectory planning, sensory information utilization, and grasping configurations,
mest be solved before they can be used effectively. We conclude this chapter with
a comparison of various languages, as showy in Table 9.11a and b.

REFERENCES

Further reading in robot-level programming can be found in Bonner and Shin
[1982], Geschke [1983], Gruver et al. [1984], Lozano-Perez [1983a], Oldroyd
[1981}, Park [1981], Paul [1976, 1981], Popplestone et al. [1978, 1980], Shimano
[1979], Syader {1985], Takase et al. [1981], and Taylor et al. [1983]. Further
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reading in task-level programming can be found in Binford [1979], Darringer and
Blasgen [1975], Finkel et al. [1975], Licberman and Wesiey [1977], and Mujtaba
et al. [1982]. Languages for describing objects can be found in Barr ¢t al, [198],
1982], Grossman and Taylor [1978], Licberman and Wesley [1977], and Wesley et
al. [1980]. Takase et al. [1981] presented a homogeneous transformation matrix
equation in describing a task sequence 10 a manipylator,

Varicus obstacie avoidance algorithms embedded in the programming
languages can be found in Brooks [1983a, 19834}, Brooks and Lozano-Perez
11983], Lewis and Bejezy [1973], Lozano-Perez [19834], Lozano-Perez and Wesley
[1979]. In task planning, Lozano-Perez [1982, 19835] presented a configuration
space approach for moving an object through a crowded workspace.

Futare robet programming languages will incorporate technigues in artificial
intelligence (Barr et al. [1981, [982]) and utilize “knowledge” to perform reason-
ing {Brooks {1981} and planning for robotic assembly and manufacturing.

PROBLEMS

8.1 Write an AL statesnent for defining a coordinate frame grasp which ¢an be obtained by
rotating the ¢oordinate {rame block through an angle of 65° about the Y axis and then
translating it 4 and 6 inches in the X and Y axes, respectively.

9.2 Repeat Prob. 9.1 with an AML statement.

9.3 Write an AL program to palletize nine parts from a feeder 10 a tray consisting of a2 3 x
3 array of bins. Assume that the locations of the feeder and tray are known, The program
has to index the location for each pallet and signal the user when the tray is full.

9.4 Repeat Prob. 9.3 with an AML program.

9.5 Repear Prob, 9.3 with a VAL program.

9.6 Repeat Prob, 9.3 with an AUTOPASS program.

9.7 Tower of Hanoi problem. Three pegs, 4, B, and €, whose coordinule frames are,
respectively, (X, Y4, 243, (X5 Y& %), and (X¢, Yo, %o, are ab a known location from
the reference coordinate frame {x;, ¥o, Zp), as shown in the figure below. Initially, peg 4
has two disks of different sizes, with disks having smaller diameters always on the wop of
disks with larger diameters, You are asked to write sn AL program to control a robot
equipped with a special suction gripper (to pick up the disks) lo move the two disks from
peg A to peg C so that at any instant of time disks of smaller diameters are always on the
top of disks with larger diameters. Each disk has an equal thickness of | inch.

]
30

L4

Yo

S i

9.8 Repeat Prob. 9.7 with an AML program.

x4



CHAPTER

TEN
ROBOT INTELLIGENCE AND TASK PLANNING

That which is apprehended by intelligence and
reason % always in the same state; but

that which is conceived by opinion with the
help of sensation and without reason, is
always is a process of becoming and
perishing and sever reaily is.

Timaeus, in the “"Dialogues of Plato’’

10.1 INTRODUCTION

A basic problem in robotics is plosning motions 1o solve some prespecified task,
and then comrolling the robot as it executes the commands necessary to achieve
those actions, Here, planning means deciding on a course of action before acting.
This action synthesis part of the robot problem can be solved by a problem-solving
systens that will achieve some stated goal, given some initial situzation. A plan is,
thus, a representation of a course of action for achieving the goal.

Research on robot problem solving has led to many ideas about problem-
solving systems in artificial intelligence. In a typical formulation of a robot prob-
lem we have a robet that is equipped with sensors and a set of primitive actions
that it can perform in some easy-to-understand world. Robot actions change one
state, or configuration, of the world into another. In the “blocks world,” for
example, we imagine a world of several labeled blocks resting on a table or on
each other and a robot consisting of a TV camera and a moveable arm and hand
that is able to pick up and move blocks. In some problems the robot is a mobite
vehicle with 2 TV camera that performs tasks such as pushing objects from place
to place through an environment containing other objects.

In this chapter, we briefly introduce several basic methods in problem solving
and their applications to robot planning.

10.2 STATE SPACE SEARCH

One method for finding a solution to a problem is fo try out various possible
approaches until we happen to preduce the desired solution. Such an attempt
involves essentially a (rial-and-error search. To discuss solution methods of this
sort, it is helpful te introduce the netion of problem states and operators. A prob-

474
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lem state, or simply state, is a particular problem situation or configuration. The
set of all possibie configurations is the space of problem states, or the stare space.
An operator, when applied to a state, transforms the state into another state. A
solution 10 2 problem is a sequence of operators that transforms an initial state into
a goal state.

It is useful to imagine the space of states reachable from the initial state as a
graph containing nodes corresponding to the states. The nodes of the graph are
linked together by arcs that correspond to the operators. A solution to a prablem
could be obtained by a search process that first applics operators to the initial state
to produce new states, then applies operators to these, and so on uniil the goal
state is produced. Methods of organizing such a search for the goal state are most
conventently described in terms of a graph representation.

19.2.1 Introductery Examples

Before proceeding with a discussion of graph search technigues, we consider
briefly some basic examples #s a means of introducing the reader to the concepts
discussed in this chapter.

Blocks World. Consider that z robot’s world consists of a table 7 and three
biocks, 4, B, and €. The initial state of the world is that blocks 4 and B are on
the table, and block C is on top of block 4 (see Fig. 10.1}. The robot is asked to
change the initial state to a goal state in which the three blocks are stacked with
block A on top, block B in the middle, and block C on the bottom. The only
operator that the robot can use is MOVE X from ¥ to Z, which moves object X
from the top of object ¥ onto object Z. In order to apply the operator, it is
required that (1) X, the object to be moved, be a block with nothing on top of it,
and (2) if Z is a block, there must be nothing on it.

We can simply use a graphical description like the one in Fig. 10.1 as the state
representation. The operator MOVE X frem Y to Z is represented by
MOVE(X,Y.Z). A graph representation of the state space search is illustrated in
Fig. 10.2. If we remove the dotted lines in the graph (that is, the operator is not
to be used 1o generate the same operation more than once), we obtain a state space

i “

Figure 10.1 A configuration of robot and blocks.
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Figure 10.2 State space search graph,

search tree. It is easily seen from Fig. [0.2 that a solution that the robot can
obtain consists of the following operator sequence:

MOVE((A4.T), MOVE(B,T,C), MOVE(A,T,B)

Path Selection. Suppose that we wish to move a Iong thin object 4 through a
crowded two-dimensional environment as shown in Fig. 10.3, To map motions of
the object once it is grasped by a robot arm, we may choose the state space
representation (x, y, o) where

H

x horizontal coordinate of the object 1 €x 5

M

il

¥y = vertical coordinate of the object l€yg3

1

« = orientation of the object
0 if object 4 is paraliel to x axis
1 if object 4 is paraliel to y axis

Both position and orientation of the object are quantized. The operators or robot
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Figure 10.3 Physical space for Example 2.

commands are:

MOVE % x direction one unit
MOVE = y direction one unit
ROTATE 90°

The state space appears in Fig. 104, We assume for illustration that each “move”
is of length 2, and each “‘rotate” of length 3. Let the object A be initially at loca-
tion (2,2), oriented parallel to the y axis, and the goal is to move 4 to (3,3) and
oriented parallel to the x axis. Thus the initial state is (2,2,1) and the goal state is
{3,3,00.

There are two equal-length solution paths, shown in Fig, 10.5 and visualized
on a sketch of the task site in Fig. 10.6. These paths may not look like the most
direct route. Closer examination, however, reveals that these paths, by initially
moving the object away from the geal state, are able to save two rotations by util-
izing a little more distance.

Monkey-and-Bananas Problem. A monkey? is in a room containing a box and a
bunch of bananas (Fig. 10.7). The bananas are hanging from the ceiling out of
reach of the menkey. How can the monkey get the bananas?

The four-clement Hst (W x,¥,2) can be selected as the state representation, where

W = horizontal position of the monkey
x = 1 or O, depending on whether the monkey is on top of the box or not,

respectively

T it is noted rhar the monkey could be 2 mobile robot.
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Figure 10.4 Graph of the problem ia Fig. 10.3,

e
i

horizontal position of the box

z = | or 0, depending on whether the monkey has grasped the bananas or
not, respectively

The operators in this problem are:
L. goto(U). Monkey goes to horizontal pesition U/, or in the form of a production
rule,

goto( I7}
(W0.¥,2) —>» (U0,Y2)

That is, state (W,0,Y.z) can be transformed into (U,0,¥,7) by the applying
aperator goto( /.

Figare 19.5 Solution to the graph of Fig. 10.4,
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Figure 10.6 Visualization of solution path for Fig. 10.5.

2. pushbox{ V). Monkey pushes the box to horizontal position ¥, or

pushbox{ ¥)
(W:G’W,z} —> (V,O,V,Z)

It shouid be noted frem the left side of the production rule that, in order 0
apply the operator pushbox(¥), the monkey should be at the same position W
as the box, but not on top of it. Such a condition imposed on the applicability
of an operator is called the precondition of the production rule.

3. climbbox. Menkey climbs on top of the box, or

climbhbox,
(W56’le) —> (WJI’W’Z)

It should be noted that, in order to apply the operator climbbox, the monkey
must be at the same position W as the box, but not on top of it.

Figure 10.7 Monkey-and-bananas problem.
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4. grasp. Monkey grasps the bananas, or

grasp
(C.1,6,0y —= (C1,CD)

where C is the location on the floor directly under the bananas. It should be
noted that in order to apply the operator grasp, the monkey and the box should
both be at position € and the monkey should already be on the top of the box.

It is noted that both the applicability and the effects of the operators are
expressed by the production rules. For example, in rule 2, the operator
pushbox( V') is only applicable when its precondition is satisfied. The effect of the
operator is that the monkey has pushed the box to position V. In this formulation,
the set of goal states is described by any list whose last element is 1.

Let the initial state be {4,0,8,0). The only operator that is applicable is
goto (U}, resulting in the next state (U/,0,8,0). Now three operators are applica-
ble; they are goto(l/), pushbox(V) and climbbox (if U/ = B)., Continving to
apply all operators applicable at every state, we produce the state space in terms of
the graph representation shown in Fig. 10.8. It can be easily seen that the
sequence of operators that transforms the initial state into a goal state consists of
goto{ B}, pushbox(C), climbbox, and grasp.

{4.0.8.0) | Swrt node

gorstEi)
golol t)) LF.O‘B,O)
Set §f = B, Set I/ = B, climbbox.
pushbox{¥y
puskbox( V) {#.1.8.0
climbhuos gotof Uy
Set V= (.

LRISp

(C.LC4 | Goud node

Figure 10.8 Graph representation for the monkey-and-bananas problem,
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10.2.2 Graph-Search Techniquoes

For small graphs, such as the one shown in Fig. 10.8, a solution path from the ini-
tial state to 2 goal state can be casily obtained by inspection. For a more compli-
cated graph a formal search process is needed to move through the state {problem)
space until a path from an initial state to a goal state is found. Ope way 1o
describe the search process is to use production systems. A production system
consists of:

1. A database that contains the information relevant to the particular task.
Depending on the application, this database may be as simple as a small matrix
of numbers or as complex as a large, relational indexed file structure.

2. A set of rules operating on the database. Each rule consists of a left side that
determiines the applicability of the rule or precondition, and a right side that
deseribes the action to be performed if the rule is applied. Application of the
rule changes the database.

3. A control strategy that specifies which rules should be applied and ceases com-
putation when a termination condition on the database is satisfied.

In terms of production system terminology, a graph such as the one shown in
Fig. 10.8 is generated by the control straregy. The various databases produced by
rule applications are actually represented as nodes in the graph. Thus, a graph-
search control strategy can be considered as a means of finding a path in a graph
from a {starl) node representing the initial database to one {goal node) representing
a database that satisfies the termination {or goal) condition of the production sys-
termn.

A general graph-search procedure can be described as follows.

Step 1. Create a search graph ( consisting solely of the start node 5. Put s on 2
list called OPEN,

Step 2. Create a list called CLOSED that is initially empty.

Step 3. LOOP: if OPEN is empty, exit with failure,

Step 4. Select the first node on OPEN, remove it from OPEN, and put it on
CLOSED. Call this mode ».

Step 5. If » is a goal node, exit successfully with the solution obtained by tracing
a path along the pointers from 1 to 5 in G (pointers are established in step
7.

Step 6. Expand node n, generating the set Af of its successors ihat arc not ances-
tors of #. Install these members of M as successors of r# in G/

Step 7. Establish a pointer to n from those members of M that were not already in
OPEN or CLOSED. Add these members of M to OPEN. For each
member of M that was already on OPEN or CLOSED, decide whether or
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net to redirect #s pointer to n. For each member of M already on
CLOSED, decide for each of its desceadants in G whether or not to
redirect its pointert.

Step 8, Reorder the list OPEN, either according to some arbitrary criterion or
according to heuristic merit.

Step 9. Go 1o LOOP.

If no heuristic information from the problem domain is used in ordering the
nodes on OPEN, some arbitrary criterion must be used in step 8. The resulting
search procedure is called uninformed or blind. The first type of blind search pro-
cedure crders the rodes on OPEN in increasing order of their depth in the search
tree.t The search that results from such an ordering is called breadth-first search.
It has been shown that breadth-first search is guaranteed to find a shortest-length
path to a goal node, providing that a path exists. The second type of blind search
orders the nodes on OPEN in descending order of their depth in the scarch tree.
The deepest nodes are put first in the list. Nodes of equal depth are ordered
arbitrarily. The search that results from such an ordering is called depth-first
search, To prevent the search process from running away along some fruitless
path forever, a depth bound is set. Ne node whose depth in the search tree
exceeds this bound is ever generated,

The blind search methods described above are exhaustive search technigues for
finding paths from the start rode 0 a goal nede. For many tasks it is possible to
use task-dependent information te help reduce the search. This class of search
procedures is called heuristic or best-first search, and the task-dependent informa-
tion used is called heuristic information. In step 8 of the graph search procedure,
heuristic information can be used to order the nodes on OPEN so that the search
expands along those sectors of the graph thought 1 be the most promising. One
important method uses a real-valued evaluation function to compute the “promise”
of the nodes. Nodes on OPEN are ordered in increasing order of their values of
the evaluation function. Ties among the nodes are resolved arbitrarily, but always
in favor of goa! nodes. The choice of evaluation function critically determines
search results. A useful best-first search algorithm is the so-cailed A* zlgorithm
described below.

Let the evaluation function f at any node n be

flny = gln) + hin)

where g(n) is a measure of the cost of getting from the start node to node n, and

T H the graph being scarched is a tree, then none of the successors generated in stiep O has been
genetated previously. Thus, the rmembers of M are not already on either OPEN or CLOSED. Ia this
case, each member of A is added to OPEN and is installed in the search tree as successors of 2, 1f the
graph being searched is nol a tree, it is possible that some of the members of M have aircady been gen
erated, that is, they may already be on OPEN or CLOSED.

¥ To promote carlier terminalion, goat nodes should be put at the very beginning of OPEN.
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h{n) is an estimate of the additional cost from node n 1o a goal node. That is,
F(n) represents an estimate of the cost of getting from the slart node to a goal
node along the path constrained to go through aode .

The A* Algorithm

Step 1.

Step 2.

Start with OPEN containing only the start node. Set that node’s g value
to 0, #ts kb value to whatever it is, and #s f value to £ + 0, or k. Set
CLOSED to the empty list.

Untif a goal node is found, repeat the following procedure: If there are no
nodes on OPEN, report filure. Otherwise, pick the node on OPEN with
the towest f value. Call it BESTNODE. Remove it from OPEN. Place it
on CLOSED. See if BESTNODE is a goal node. H so, exit and report a
solution (either BESTNODE if all we want is the node, or the path that
has been created between the start node and BESTNODE if we are
interested in the path). Otherwise, generate the successors of BEST-
NODE, but do not set BESTNODE to point to them yet, (First we need
10 see if any of them have already been generated.) For cach such SUC-
CESSOR, do the following:

a. Set SUCCESSOR to point back to BESTNODE. These back links will
make it possible to recover the path once a solution is found.

b. Compute g(SUCCESSOR) = g(BESTNODE) + cost of getting from
BESTNODE to SUCCESSOR.

¢. See if SUCCESSOR is the same as any node on OPEN (.e., il has
already been generated but not processed). If so, call that node OLD.
Since this node already exists in the graph, we can throw SUCCES-
SOR away, and add OLD to the list of BESTNODE's successors.
Now we must decide whether OLD’s parent link should be reset to
point to BESTNQDE. It should be if the path we have just found to
SUCCESSOR is cheaper than the current best path to OLD (since
SUCCESSOR and OLD are really the same node). So see whether it
is cheaper to get to OLD via its current parent or to SUCCESSOR via
BESTNODE, by comiparing their g values. If OLD is cheaper (or just
as cheap), then we need do nothing. If SUCCESSOR is cheaper, then
reset OLD's paremt link to point to BESTNODE, record the new
cheaper path in g{OLD)}, and update f(OLD).

d. If SUCCESSOR was not on OPEN, see if it is on CLOSED. If so,
call the node on CLOSED OLD, and add OLD 1o the tlist of
BESTNODE’s successors. Check to see if the new path or the old path
is better just as in step 2¢, and set the parent link and g and f values
appropriately, If we have just found a better path to OLD, we must
propagate the improvement to OLD’s successors. This is a bit tricky.
OLD points to its successors. Each successor in tum points to its suc-
cessors, and so forth, until each branch terminates with a node that
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either is still on OPEN or has ne successors. Se to propagate the new
cost downward, do a depth-first traversal of the tree starting at QLD,
changing each node’s g value (and thus aiso its f value), terminating
each branch when you reach eithcr 2 node with no successors or a
node to which an cquivalent or better path has already been found.
This condition is easy to check for. FHach nede’s parent link points
back to its best known parent. As we propagate down (0 a node, see if
s parent points to the node we are coming from. H so, continue the
propagation. If not, then its g value already reflects the betier path of
which it is part. So the propagation may stop here. But it is possible
that with the new value of g being propagated downward, the path we
are following may become better than the path through the current
parent. So compare the two, I the path through the current parent is
still berer, stop the propagation, If the path we are propagating
through is now better, reset the parent and continue propagation.

e. If SUCCESSOR was not already on cither OPEN or CLOSED, then
put it on OPEN, and add it to the Hst of BESTNODE's successors.
Compute fISUCCESSOR) = g(SUCCESSOR) + ASUCCESSOR).

It is easy to see that the A* algorithm is essentiafly the graph scarch atgorithm
using fin) as the evaluation function for ordering nodes. Note that because g{n)
and h{n) must be added, it is important that #(n) be a measure of the cost of get-
ting from node # 1o a goal node.

The objective of & search procedure is to discover a path through a problem
space from arn initial state to a goal siate. There ure two directions in which such
a search could proceed: (1} forward, from the initial states, and (2) backward,
from the goal states. The rules in the production system model can be used to rea-
son forward from the initial states and to reason backward from the goal states.
To reason forward, the left sides or the preconditions are matched against the
current state and the right side (the resuits) are used to generate new nodes until
the goal is reached. To reason backward, the right sides are matched against the
current state and the left sides are used wo generate new nodes representing new
goal states to be achjeved. This continues until one of these goal states is maiched
by a initial state.

By describing a search process as the application of a set of rules, it is easy o
describe specific search algorithis without reference to the direction of the search,
Of course, another possibility is to work both forward from the initial state and
backward from the goal state simultancously until two paths meet somewhere in
between, This strategy is called bidirectional search.

10.3 PROBLEM REDUCTION

Another approach Lo problem solving is problem reduction. The main idea of this
approach is 1o reason backward from the problem to be solved, establishing sub-
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Figure 10.9 An AND/OR graph.

problems and sub-subproblems until, finally, the original problem is reduced o a
set of trivial primitive problems whose solutions are obvious. A problem-
reduction operator transforms a problem description into a set of reduced or suc-
cessor problem descriptions. For a given problem description there may be many
reduction operators that are applicable. Bach of these produces an alternative set
of subproblems. Some of the subproblems may not be solvable, however, so we
may have to iry several operators in order to produce a set whose members are atl
solvable. Thus it again requires a search process.

The reduction of problem to alternative sets of successor problems can be con-
veniently expressed by a graphlike strusture. Suppose problem A can be solved by
solving all of its three subproblems B, €, and D; an AND arc will be marked on
the incoming ares of the nodes B, €, and D. The nodes B, C, and D are called
AND nodes. On the other hand, if problem B can be solved by solving any one of
the subproblems £ and F, an OR arc will be used. These relationships can be
shown by the AND/OR graph shown in Fig. 10.9. I is easily seen that the search
methods discussed in Sec. 10.2 are for OR graphs through which we want to find
a single path from the start node te a goal node.

Example: An AND/OR graph for the monkey-and-bananas problem is shown
in Fig. 10.10. Here, the problem configuration is represented by a wiple
(S,F,G), where S is the st of starting states, F is the set of operators, and G
the set of goal states. Since the operator set F dees not change in this prob-
lem and the initial staie is (A4,0,B,0), we can suppress the symbol F and
denote the problem simply by ({(4,0.8,0)},G}. Ome way of selecting
problem-reduction operators is through the use of a difference. Loosely speak-
ing, the difference for {S5,F.(7) is a partial list of reasons why the goal test
defining the set G is failed by the member of §. (If some member of § is in
G, the problem is solved and there is no difference.)
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From the example in Sec. 102.1, F = {f; . fr.fs.f4} = {goto(L),
pushbox{ V), climbbox, grasp}. First, we calculaie the difference for the ini-
tial problem. The reason that the list {4,0,8,0) fails to satisfy the goal test is
that the last element is not 1. The operator relevant to reduce this difference
is fy = grasp. Using fs to reduce the initial problem, we obtain the follow-
ing pair of subproblems: ({(4,0,B,0)}.G..) and ({f;(5,)}G), where G, is
the set of state descriptions to which the operator f, is applicable and s, is
that state in G, obtained as a consequence of solving ({(4,0,B,0)},G,).

To solve the problem {{{A.0,8,0)},G,), we first calelate its difference.
The state described by (4,0,8,0) is not in G, because (I) the box is not at C,
(2) the monkey is not at C, and (3) the monkey is not on the box. The opera-
tors relevant to reduce these differences are, respectively, f5 = pushbox(C),
f1 = goto{C), and f3 = climbbox. Applying operator f> resuits in the sub-
problems ({{4,0,B.00},G;,) and (f>(sy;).Gy), where s;, € Gy is obtained as
a copsequence of solving the first subproblem.

Since ({(4,0.B,0},G,) must be solved first, we calculate its difference.
The difference is that the monkey is not at B, and the relevant operator is
f1 = goto(B). This operator is then used to reduce the problem to a pair of
subproblems ({{4,0,B,00},G,,) and (f; (815 1Gp). Now the first of these
problems is primitive; its difference is zero since (4,0,8,0) is in the domain
of fi and f; is applicable to solve this problem. Note that fi(s,) =
(B,0,B.0) s the second problem becomes ({(B,0,8.00},G). This problem
is also primitive since (B,0,B,0) is in the domain of f,, and f> is applicable
to solve this problem. This process of completing the solution of problems
generated earlier is continued until the initial problem is solved. [}

In an AND/OR graph, one of the nodes, culled the srate node, corresponds to
the otiginal problem description.  Those nodes in the graph corresponding to prim-
itive problem descriptions arve called zerminal nodes. The objective of the search
process carried out on an AND/OR graph is to show that the start node is solved.
The definition of a solved node can be given recursively as follows:

1. The terminal nodes are solved nodes since they are associated with primitive
problems.

2. If a nonterminal node has OR successors, then it is a solved node if and only if
at least one of its successors is sobved.

3. If a nonterminal node has AND successors, then it is a solved nede if and only
if all of its successors are solved,

A solution graph is the subgraph of solved nodes that demonstrates that the
start node is solved. The task of the production system or the search process is to
find a solution graph from the start node (o the terminal nodes. Roughly speaking,
a solution graph from node # to a set of nodes N of an AND/OR graph is analo-
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gous to a path in an ordinary graph. It can be obtained by starting with node n
and selecting exactly one outgoing arc. From each successor node to which this
arc is directed, we continue to select one outgoing arc, and so on until eventually
every successor thus produced is an element of N

In order to find solutions in an AND/OR graph, we need an algorithm similar
to A¥, but with the ability to handle the AND arc appropriately. Such an algo-
rithm for performing heuristic search of an AND/OR graph is the so-cailed AO*

algorithm.

The AOQ* Algorithm

Step 1. Let G consist only of the node representing the initial state. (Call this
node INIT.) Compute A(INIT).

Untif INIT is labeled SOLVED or until INIT’s h value becomes greater
than FUTILITY, repeat the following procedure:

Step 2.

a.

Trace the marked arcs from INIT and select for expansion one of the
as yet unexpanded nodes that occurs on this path, Call the selectad
node NODE,

. Generate the successors of NODE. If there are none, then assign

FUTILITY as the h value of NODE. This is equivalent to saying that

NODE is not solvable. If there are successors, then for each oune

(called SUCCESSOR) that is not also an ancestor of NODE do the fol-

fowing:

(1) Add SUCCESSOR w0 G.

(2) If SUCCESSOR is a terminal node, label it SOLVED and assign it
an h value of 0.

{3) i SUCCESSOR is not a terminal node, compute its A value.

. Propagate the newly discovered information up the graph by doing the

following: Let § be a set of nodes that have been marked SOLVED or

whose A values have been changed and so need to have valves pro-

pagated back to their parenis. Initialize § to NODE. Until § is empty,
repeat the following procedure:

{1} Select from § a node none of whose descendants in ( occurs in S.
(In other words, make sure that for every node we are going to
process, we process it before processing any of its ancestors.) Call
this rode CURRENT, and remove it from §.

(2) Compute the cost of each of the arcs emerging from CURRENT.
The cost of each arc is equal to the sum of the # values of each of
the nodes at the end of the arc plus whatever the cost of the arc
itself is. Assign as CURRENTs new /4 value the minimum of the
costs just computed for the arcs emerging from it.

(3) Mark the best path out of CURRENT by marking the arc that had
the minimum cost as computed in the previous step.

(4) Mark CURRENT SOLVED if all of the nodes connected to it
through the new marked arc have been labeled SOLVED.
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(3 ¥ CURRENT has been marked SOLVED or if the cost of
CURRENT was just changed, then its new status must be pro-
pagated back up the graph. So add to § all the ancestors of
CURRENT.

it is noted that rather than the two lists, OPEN and CLOSED, that were used
in the A* algorithm, the AO* algerithm uses a single structure G, representing the
portion of the scarch graph that has been explicitly generated so far. Bach node in
the graph points both down to its immediate successors and up to its immediate
predecessors. Each node in the graph is associated with an & value, an estimate of
the cost of a path from itself to a set of solution nodes. The g value {the cost of
getting from the start node to the current node) is not stored as in the A% algo-
rithm, and h serves as the estimate of goodness of a node. A quantity FUTILITY
is needed. I the estimated cost of a solution becomes greater thar the value of
FUTILITY, then the search is abandoned. FUTILITY should be selected to
correspond to a threshold such that any solution with a cost above it is too
expensive to be practical, even if it could ever be found.

A breadth-first algorithm can be obtained from the AO* algerithm by assipn-
ing h = 0.

10.4 USE OF PREDICATE LOGIC

Robot problem solving requires the capability for representing, retrieving, and
manipulating sets of statements. The language of logic or, more specifically, the
first-order predicate calculus, can be used to express a wide variety of statements,
The logical formalism is appealing because it immediately suggests a powerful way
of deriving new knowledge from old (i.e., mathematical deduction). In this Formal-
ism, we can conclude that a new statement is true by proving that it follows from
the statements that are already known to be true. Thus the idea of a proof, ag
developed in mathematics as a rigorous way of demonstrating the truth of an
already believed proposition, can be extended to include deduction as a way of
deriving answers to guestions and solutions to problems.

Let us first explore the use of propositional logic as a way of representing
knowledge. Propositional logic is appealing because it is simple to deal with and
there exists a decision procedure for it. We can easily represent real-world facts
as logical propositions written as well-formed formulas (wffs) in prepositional
logic, as shown in the following:

It s raining.
RAINING

T At this poinl. readers who are unfamiliar with propositienal and predicate logic may wani to con-
sult & good introductory logic text before reading the rest of this chapter. Readers whe want a more
complete and formal preseatation of the matesial ia this section shouid consuit the book by Chang and
Lee {19731
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It is sunny.
SUNNY

Tt is foggy.
FOGGY

If it is raining (hen it is not sunny.
RAINING — ~SUNNY

Using these propositions, we could, for example, deduce that it is not sunny if
it is raiming. But very quickly we run up against the limitations of propositional
jogic. Suppose we want to represent the obvious fact stated by the sentence

John is a man
We could write
JOHNMAN
But if we also wanted o represent
Paul is a man
we would have to write something such as
PAULMAN

which would be a totally separate assertion, and we would not be able (© draw any
conclusions about similarities between John and Paul, Tt would be much better to
represent these facts as

MAN(JOHN)
MAN(PAUL)

since now the structure of the representation reflects the structure of the knowledge
itself. We are in even more difficulty if we try to represent the sentence

All men are mortal

because now we really need quantification unless we are willing to write separate
statements about the mortality of every known man.

So we appear to be forced to move to predicate logic as a way of representing
knowledge because it permils representations of things that cannot reasonably be
represented in propositioral fogic. In predicate logic, we can represent real-world
facts as statements written as wifs. But a major motivation for choosing to use
logic at all was that if we used logical statements as a way of representing
knowledge, then we had available a good way of reasoning with that knowledge.
In this section, we briefly introduce the language and methods of predicate logic.

The elementary compenents of predicate logic are predicate symbols, variable
symbols, function symbols, and constent symbols. A predicate symbol is used to
represent a relation in a domain of discourse. For example, to represent the fact
“Robet is in Room r|,” we might use the simple atomic formula:

INROOM{(ROBOT »; }

In this atomic formula, ROBOT and ry are constant symbols. In general, atomic
formulas are composed of predicate symbols and terms. A constant symbol is the
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simplest kind of term and is used to represent objects or entities in a domain of
discourse. Variable symbols are terms also, and they permit us to be indefinite
about which cntity is being referred to, for example, INROOM(x,y). Function
symbols denote functions in the domain of discourse. For example, the function
symbol mother can be used o denote the mapping between an individual and his
or her fermale parent. We might use the following atomic formula to represent the
sentence “John's mother is married to John's father.”

MARRIED[ father(JOHN), mother(JOHN)}

Ar atomic formula has value T (true) just when the corresponding statements
about the domain are true and it has the value F (false) just when the correspond-
ing statement is false. Thus INROOM(ROBOT,r ) has value T, and
INROOM(ROBOT,r; ) has value F. Atomic formulas are the elementary building
blocks of predicate logic. We can combine atomic formulas to form more complex
wils by vsing connectives such as A (and), V (on), and = (implics). Formulas
built by connecting other formulas by A's are called conjunctions, Formulas built
by connecting other formulas by V's are called digjunctions. The connective
“ mm " g used for representing “if-then” statements, e.g., as in the sentence “Tf
the monkey is on the box, then the monkey will grasp the bananas™

ON(MONKEY, BOX) = GRASPIMONKEY, BANANAS)

The symbol “~" (pot) is used negate the truth value of a formula, that is,
it changes the value of a wi from T o F and vice versa. The {true) sentence
“Robot is not in Room r; ™ might be represented as

~INROOM({ROBOT 4 )

Sometimes an atomic formula, P(x}, has value T for all possible values of x.
This property is represented by adding the universal quantifier (¥x) in fromt of
P(x). H P{x) has value T for at Jeast one value of x, this property is represented
by adding the existential quantifier (3x) in front of P(x). For example, the sen-
tence “All robots are gray” might be represented by

{Y0)[ROBOT(x) => COLOR{x,GRAY)]
The sentence “There is an object in Room r, ” might be represented by
{OHINROOMx,r )

If P and ¢ are two wils, the truth values of composite expressions made up of
these wils are given by the following table:

P @ PVQ PAQ P=>(Q ~P
T T T T T E
F T 1 F |\ T
T F T F E E
F F F F T T
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If the truth valees of two wils are the same regardless of their interpretation,
these two wifs are said to be equivalent. Using the truth table, we can establish
the following equivalences:

~{~P) is cquivalent to P

PvQ is equivalent to ~P e
deMorgan’s laws:

~(Pv () is equivalent to ~PA~Q

~(PAOY is equivalent to ~Pv -~
Distributive laws:

PA(OVR) is equivalent to (PAOOYVIPAR)

PV{OAR) is equivalent to EPVIA(PVYER)
Commatative laws:

PAQ is equivalent to OAP

PvQ is equivalent to ove
Associative laws;

(PAOYVR is equivalent to PA(OARY

(PVO)vR is equivalent to PV(QVR)
Contrapositive law:

P = ¢ is cquivalent to e
In addition, we have

~ {31} P{x) is egquivalent to (vx)] ~P(x)}

~{¥x)P(x) is eguivalent to (3x)] ~ P(x}]

In predicate logic, there are rules of inference that can be applied to certain
wifs and sets of wis to produce new wifs. One important inference rule is modus
ponens, that is, the operation to produce the wif W, from wifs of the form W) and
W, = W,. Ancther rule of inference, universal specialization, produces the wif
W(d) from the wif (vx}Wix), where A is any constant symbol. Using modus
poncns and universal specialization together, for example, produces the wif W, (4)
from the wifs (Vo) [ W, (x} = W,(x)] and W, (4).

Inference rules are applied to produce derived wifs from given ones. In the
predicate logic, such derived wfls are called theorems, and the sequence of infer-
ence rule applications used in the derivation comstities a proof of the theorem. In
artificial intelligence, some problem-solving tasks can be regarded as the task of
finding a proof for a theorem. The sequence of infercnces used in the proofs gives
a solution to the probiem.

Example: The state space representation of the monkey-and-bananas problem
can be modified so that the states are described by wiffs. We assume that, in
this example, there are three operators- grasp, climbbox, and pushbox.

Let the initial state 55 be described by the following set of wifs:

-~ ONBOX
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AT(BOX,B)
AT(BANANAS.C)
~HB

The predicate ONBOX has value T only when the monkey is on top of the
box, and the predicate HB has value T only when the monkey has the bana-
nas.

The effects of the three operators can be described by the following wifs;

1. grasp
{vs){ONBOX(s) AAT(BOX,C,s) == HB(grasp(s))}

meaning “For all 5, if the monkey is on the box and the box is at C in
state s, then the monkey will have the bananas in the state attained by
applying the operator grasp to state 5.” It is noted that the value of
grasp(s) is the new state resulting when the operator is applied to state s.

2. climbbox
{¥s) {ONBOX(climbbox{s) )}

meaning “For all 5, the monkey will be on the box in the state attained by
applying the operator climbbox to state 5.7

3. pushbox
(¥xvs){ ~ONBOX(s) => AT(BOX,x pushbox(x,s})}

meaning “For all x and s, if the monkey is not on the box in state 5, then
the box will be at position x in the state attzined by applying the operator
pushbox(x) to state 5.”

The goal wff is

(39)HB($)

This problem can now be solved by a theorem-proving process to show that
the monkey can have the bananas (Nilsson [1971]). O

10.5 MEANS-ENDS ANALYSIS

So far, we have discussed several scarch methods that reason ecither forward or
backward but, for a given problem, cne direction or the other must be chosen.
Gften, however, a mixture of the two directions is appropriate. Such a mixed stra-
tegy would make it possible to solve the main parts of a problem first and then go
back and solve the small problems that arise in connecting the big pieces together.
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A technique known as means-ends analysis allows us to do that. The technique
centers around the detection of the difference between the current state and the
goal state. Once such a difference is determined, an operator that can reduce the
difference must be found. It is possible that the operator may not be applicable o
the current state. So a subproblem of getting to a state in which it can be applied
is generated. It is also possible that the operator does not produce exactly the goal
state. Then we have a second subproblem of getting from the state it does produce
to the goal state. If the difference was determined correctly, and if the operator is
really effective at reducing the difference, then the two subproblems should be
easier to solve than the original problem, The means-ends analysis is applied
recursively to the subproblems. From this point of view, the means-ends analysis
could be considered as a problem-reduction technigue,

In order to focus the system’s attention on the big problems first, the
differences can be assigned priority levels. Differences of higher priority can then
be considered before lower priority ones, The most important data structure used
in the means-ends analysis is the “goal.” The goal is an encoding of the current
problem situation, the desired situation, and a history of the atiempts so far to
change the current sitwation into the desired one. Three main types of goals are
provided:

Type 1. Transform object A into object B.
Type 2. Reduce a difference between object A and object B by modifying object 4.

Transform A o 8§

Reduge differonce ans
between A and B, Transformn
producing outpat 4 ' A w08

Reduce difference

between A and B Apply operator Qw0 A

Select a relevaat Reduce difference Apply © to A"
operater (2 and apply between A and the ApPly &0 A
. . L producing
it 0y A, producing preconditions for @, I
outpuz A7 praducing output 4° pu

Figure 10.11 Methods for means-ends analysis.
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Type 3. Apply operator @ to object 4,

Associated with the goal types are methods or procedures for achieving them.
These methods, shown in a simplified form i Fig. 10.11, can be interpreted as
problem-reduction operators that give rise either to AND nodes, in the case of
transform or apply, or ©© OR nodes, in the case of a reduce goal.

The first program to exploit means-ends analysis was the general problem
solver (GPS). Hs design was motivated by the observation that people often use
this techaique when they solve problems. For GPS, the initial task is represented
as a transform goal, in which A is the initial object or state and B the desired
object or the goal state. The recursion stops if, for a trangform goal, there is no
difference between A and B, or for an apply goal the operator @ is immediately
applicable. For a reduce goal, the recursion may stop, with failure, when all
relevant operators have been tried and have failed.

In trying to transform object A into object B, the fransform method uses a
matching process to discover the differences between the two objects.  The
difference with the highest priority is the one chosen for reduction, A difference-
operator table lists the operators relevant to reducing cach difference.

Consider a simple robot problem in which the available operators are listed as
follows:

Preconditions Operator Results
PUSHLOR,LOCY
1. AT(ROBOT.0OB)) e AT(OBJ LOC
A LARGE(ORI} A AT{ROBOT,LOC)
ACLEAR(OBY)
AHANDEMPTY
CARRY{OBILLOC)
2. AT(ROBOT OBl — AT(OBI,.LOC
A SMALLLOBI) A AT{ROBOT,LOC)
WALK(LGC)
3. None — AT(ROBOT,LOC)
PICKLUP{8E)
4. AT(ROBOT,0OBI) — HOLDING(OBD
PUTIHIWNGBI)
3. HOLDING{OB)) e ~ HOLDING(OBI)
PLACE(CBILOBIZ
6. AT(ROBOT.OBIZ} e ON{OBI OBIZ}
AHOLDING(OBI 1)

Fig. 10.12 shows the difference-operator table that describes when each of the
operators is appropriate. Notice (hal sometimes there may be more than one
operator that can reduce a given difference, and a given operator may be able 10
reduce more than one difference.
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Operator PUSH CARRY WALK PICKUP [PUTDOWN| PLACE
Ditference

Move phject w ~
Move robot v
Clear object v
Get abject o5 objout ¥
Get hand empty G v

Be holding object ¥

Figure 10.12 A difference-operator table,

Suppose that the rebot were given the problem of moving a desk with two
objects on it from one room te another. The objects on top must also be moved.
The main difference between the initial state and the goal state would be the loca-
tion of the desk. To reduce the difference, either PUSH or CARRY could be
chosen. If CARRY is chosen first, its preconditions must be met. This results in
two more differences that must be reduced: the location of the robot and the size
of the desk. The location of the robot can be handled by applying operator
WALK, but there are no operators that can change the size of an object. So the
path leads to a dead end. Following the other possibility, operator PUSH will be
attempted.

PUSH has three preconditions, two of which produce differences between the
initial state and the goal state. Since the desk is already large, one precondition
creates no difference. The robot can be brought to the correct location by using
the operator WALK, and the surface of the desk can be cleared by applyving opera-
tor PICKUP twice. But after one PICKUP, an attempt to apply the second time
results in another difference—the hand must be empty. The operator PUTDOWN
can be applied to reduce that difference.

Once PUSH is performed, the preblem is close to the goal state, but not quite.
The objects must be placed back on the desk. The operator PLACE will put them
there. But it carnot be applied immediately. Another difference must be elim-
inated, since the robot must be holding the objects. The operator PICKUP can be
applied. In order to apply PICKUP, the robot must be at the location of the
objects, This difference can be reduced by applying WALK. Once the robot is at
the location of the two objects, it can uwse PICKUP and CARRY to move the
objects to the other room.

The order in which differences are considered can be critical. It is important
that sigaificant differences be reduced before less critical ones. Section [0.6
describes & robot problem-solving system, STRIPS, which uses the means-ends
analysis.
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10.6 PROBLEM SOLVING

The simplest type of robot problem-solving systemn is a production system that uses
the state description as the database. State descriptions and goals for robot prob-
lems can be constructed from logical statements. As an example, consider the
robot hand and cosfigurations of blocks shown in Fig. 10.1. This situation can be
represented by the conjunction of the following statements:

CLEAR(B) Block B has a clear top
CLEAR((C) Block € has a clear top
ON(C,A) Block C is on block A

ONTABLE(4) Block A is on the table
ONTABLE(B) Block B is on the table
HANDEMPTY The robot hand is empty

The goal is to construct a stack of blocks in which block B is on block € and
block 4 is on bleck B. In terms of logical statements, we may describe the goat
as ON(B,Cy A ON(A4,B).

Robat actions change one state, or configuration, of the world into another.
One simple and useful technique for representing robot action is employed by a
robot problem-solving system called STRIPS (Fikes and Nilsson {19711, A set of
rules is used to represent robot actions. Rules in STRIPS consist of three com-
ponents,  The first is the precondition that must be true before the rule can be
applied. It is usually expressed by the left side of the rule. The second com-
ponent is a list of predicates called the defere fist. When a rule is applied to a
state description, or database, delete from the database the assertions in the delete
list. The third component is called the add fist. When a rule is applied, add the
assertions in the add list to the database. The MOVE action for the block-stacking
exampie is given below:

MOVE(X,Y.Z) Move object X from Yo Z

Precondition: CLEAR(X), CLEAR(Z)Y, ON(X, Y}
Delete liss: ON(X, Yy, CLEAR(Z)
Add list: ON(X,Zy, CLEAR(Y}

H MOVE is the only operator or robot action available, the search graph (or tree)
shown in Fig. 10.2 is generated.

Consider a more concrete example with the initial database shown in Fig. 10.1
and the following four robot actions or operations in STRIPS-form:

1. PICKUP(X}
Precondition and delete list: ONTABLE(X), CLEAR(X), HANDEMPTY
Add list: HOLDING(X)
. PUTDOWN(X)
Precondition and delete list: HOLDING(X)
Add hst: ONTABLE(X), CLEAR(X), HANDEMPTY

[
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3 STACKIXY)
Precondition and delete list: HOLDING(X), CLEAR(Y)
Add list. HANDEMPTY, ON{X,Y), CLEAR(X)
4. UNSTACK(X.Y)
Precondition and delete list: HANDEMPTY, CLEAR(X), ON(X,¥)
Add list: HOLDING(X), CLEAR(Y)

Suppose that our goal is ON(B,C) A ON(A,B). Working forward from the ini-
gal state description shown in Fig. [0.1, we obtain the complete state space for
this problem as shown in Fig. 10.13, with a solution path between the initial state
and the goal state indicated by dark lines. The solution sequence of actions con-
sists  of: {UNSTACK{(C,4), PUTDOWN{(C), PICKUP(ZB), STACK(B.(C).
PICKUP(A}, STACK{4,B)}. U is called a “plan” for achieving the goal,

If & problem-solving system knows how each operator changes the state of the
world or the database and knows the preconditions for an operator © be executed,
it can apply means-ends analysis to solve problems. Briefly, this technique
involves looking for a difference between the current state and a goal state and try-
ing to find an operator that will reduce the difference. A relevant operator is one
whose add list contains formulas that would remove some part of the difference,
This continues recursively until the goal state has been reached. STRIPS and most
other planners use means-ends analysis.

We have just seen how STRIPS computes & specific plan to solve a particular
robot problem. The next step is to generalize the specific plan by replacing con-
stants by new parameters. In other words, we wish to elevate the particular plan
to a plan schema. The need for a plan geseralization is apparent in a learning sys-
tem. For the purpose of saving plans so that portions of them can be used in a
later planning process, the preconditions and effects of any portion of the plan
need to be known. To accomplish this, plans are stored in a rriangle 1able with
rows and columns corresponding to the operators of the plan. The triangle table
reveals the structure of a plan in a fashion that allows parts of the plan to be
extracted later in soiviag related problems.

An example of a triangle table is shown in Fig. 10.14. Let the leftmost
column be called the zeroth column; then the jth column is headed by the jth
operator in the sequence. Let the top row be called the first row. If there are N
cperators in the plan sequence, then the last row is the (¥ + I)}h row. The
entries in cell (i, j) of the table, for j > 0 and i < N + 1, are those statements
added to the state description by the jth operator that survive as preconditions of
the ith operator. The entries in cell (4, 0) for i < N + 1 are those statements in
the initial state description that survive as preconditions of the ith operator. The
entries in the (N + 1)th row of the table are then those statements in the original
state description, and those added by the various operators, that are components of
the goal.

Triangle tables can easily be constructed from the initial state description, the
operators in the sequence, and the goal description. These tables are concise and
convenient representations for robot plans. The entries in the row to the left of the
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figure 10.13 A swmte space for a robot problem.

ith operator are precisely the preconditions of the operator. The entries in the
column below the ith operator are precisely the add formula statements of that
operator that are needed by subsequent operators or that are components of the
goal.

Let us define the ith kernel as the intersection of all rows below, and includ-
ing, the ith row with all columns o the left of the ith column. The fourth kernel
is outlined by double lines in Fig. 10.14. The entries in the ith kernel are then
precisely the conditions that must be matched by a state description in order that
the sequence composed of the ith and subseguent operators be applicable and
achieve the goal, Thus, the first kernel (i.e., the zeroth column), contains those
conditions of the initial state needed by subseguent operators and by the goal; the
(N + 1)h kernel [i.e., the (¥ + 1)th row] contains the goal conditions them-
selves. These properties of triangle tables are very useful for monitoring the
actual execution of robot plans.

Since robot pians must ultimately be executed in the real world by a mechani-
cal device, the execution system must acknowledge the possibility that the actions
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[

HANDEMPTY
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5| ONTABLE(A} | CLEAR¢A) HANDEMPTY 3
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[ CLEAREY  |HOLDINGA) b
stacki(A.8)

i ON(B.CY ON(A B;

Figure 10.14 A triangle table,

in the plan may not accomplish their intended tasks and that mechanical tolerances
may miroduce errors as the plan is executed. As actions are executed, unpianned
effects might either place us unexpectedly close to the goal or throw us off the
track. These problems could be dealt with by generating a new plan tbased on an
updated state description) afier each execution step, but obviously, such a strategy
would be o costly, so we instead seek a scheme that can intelligently monitor
progress as a given plan is being executed.

The kernels of triangle tables contain just the information reeded to realize
such a plan execution system. At the beginning of a plan execution, we know that
the entire plan is applicable and appropriate for achieving the goal because the
statements in the first kernel are matched by the initial state description, which was
used when the plan was created. (Here we assume that the world is static; that is,
no changes occur in the world except those initiated by the robot itseif.) Now sup-
pose the system has just executed the first i — 1 actions of a plan sequence,
Then, in order for the remaining part of the plan (consisting of the ith and subse-
quent uctions) to be both applicable and appropriate for achieving the goal, the
statements in the /th kernel must be matched by the new current state description.
(We assume that a sensory perception system continuously updates the state
description as the plan is executed so that this description accurately modeis the
carrent state of the world.) Actually, we can do better than merely check to sec if
the expected kernel matches the state description after an action; we can look for
the highest numbered matching kernel. Then, if an unanticipated effect places us
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closer to the goal, we need only execute the appropriate remaining actions; and if
an execution error destroys the results of previous actions, the appropriate actions
can be reexecuted.

To find the appropriate matching kernel, we check cach one in turn starting
with the highest numbered one (which is the last row of the table) and work back-
ward, If the goul kernel (the last row of the table) is matched, execution halts;
otherwise, supposing the highest numbered matching kernel is the ith one, then we
know that the ith operator is applicable to the current state description, In this
case, the system executes the action corresponding to this ith operator and checks
the outcome, as before, by searching again for the highest numbered matching ker-
nel. In an ideal world, this procedure merely executes in order each action in the
plan. In a real-world situation, on the other hand, the procedure has the Hexibility
to omit execution of unnecessary actions or to overcome certain kinds of failures
by repeating the exccution of appropriate actions. Replanning is initiated when
there are no matching kernels.

As an example of how this process might work, let us return to our block-
stacking preblem and the plan represented by the triangle table in Fig. 10.14.
Suppose that the system executes actions corresponding to the first four operators
and that the results of these actions are as planned. Now suppose that the system
attempts 1o execate the pickup block A action, but the execution routine (this time)
mistakes block B for block A and picks up block B instead. [Assume again that
the perception system accurately updates the state description by adding
HOLDING(B) and deleting ON{B,C); in particular, it does not add
HOLDING(A4).] H there were no execution error, the sixth kernel would now be
matched; the resuit of the error is that the highest numbered matching kernel is
now kemnel 4, The action corresponding to STACK(B.C) is thus reexecuted, put-
ting the system back on track.

The fact that the kernels of triangle tables overlap can be used to advantage to
scan the table efficiently for the highest nurnbered matching kernel. Starting in the
bottom row, we scan the table from left to right, looking for the first cell that con-
tains a statement that does not match the current state description. If we scan the
whole row without finding such a cell, the goal kernel is matched; otherwise, if we
find such a cell in column i, the number of the highest numbered matching kernel
cannot be greater than i. In this case, we set a boundary at column i and move up
to the next-to-bottom row and begin scanning this row from left to right, but not
past column . If we find a cell containing an unmatched statement, we reset the
column boundaty and move up another row to begin scanning that row, etc. With
the column boundary set to k, the process terminates by finding that the kth kernel
is the highest numbered matching kerne! when it completes a scan of the kth row
{from the botrom) up to the column boundary.

Example: Consider the simple task of fetching a box from an adjacent room
by a robot vehicle. Let the initial statc of the robot’s world model be as
shown in Fig. 10.15. Assume that there are two operators, GOTHRU and
PUSHTHRU.
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ROOM R, [ ROOM R,
DOOR D ks
‘
ROBOT % DOOR
R
ROOM R,

Initial datz base My
INROOM (ROBOT R
CONNECTS (D ,R.Rp
CONNECTS (15.8.85)
BOX (B3
ENROOM (BB}

{¥x ¥y ¥z} fCONNECTS {x}{y¥{z) — CONNECTS ({322}

Goal Gy
(Bx) [BOX(xy A INROOM 11,801

Figure 10,35 Initial world model.

GOTHRU(d,r;,ry ) Robot goes through deor d from room ry into room ry

Precondition: INROOM(ROBOT »; ) A CONNECTS(d,7,.r;) the robot is in
room ry and door 4 connects room #| to room

Delete list: INROOM(ROBOT,S) for any value of §

Add list: INROOM(ROBOT, )

PUSHTHRU(b,d,r;,r, ) Robot pushes object b through door d from room r,
o Toom 1o

Precondition: INROOM({b,r ) A INROOM(ROBOT,r;)
A CONNECTS(d,r .72}

Delete list: INROOM{(ROBOT,S), INROOM(b,5)

Add Hst: INROOM(ROBOT,r, }, INROOM(b,r;)

The difference-operator table is shown in Fig. 10.16. 1

When STRIPS is given the problem, it first attempts to achieve the goal G,
from the initial state My. This problem cannot be solved inmediately. However,
if the initial database contains a statement INROOM(B, R, ). the problem-solving
process could continue. STRIPS finds the operator PUSHTHRU(B, .d.r ,R|)
whose effect can provide the desired statement. The precondition G, for
PUSHTHRU is

G,: INROOM(B,,r;) A INROOM(ROBOT,r) A CONNECTS(d,r R, )
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Operaer ) GOTHRU PLISHTHR:
Intterence

Locagion
of box v
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ol robint v

Location of
box and robot \s

Figure 10.16 Dxfference-operator table,

From the means-ends analysis, this precondition is set up as a subgoal and STRIPS
tries to accomplisk it from M.

Although no imumnediate solution can be found to solve this problem, STRIPS
finds that f r =R, d=D; and the current database contains
INROOM(ROBOT, R, ), the process could continue. Again STRIPS finds the
operator GOTHRU(d,r( R, } whose effect can produce the desired statement. Hs
precondition is the next subgoal, namely:

G,: INROOM(ROBOT,r;) A CONNECTS(d,r| Ry,

Using the substibntions 1y = Ry and 4 = Dy, STRIPS is able to accomplish G .
it therefore applies GOTHRU(D, Ry, R;) to My to yield

M,: INROOM(ROBOT.R,}, CONNECTS(D, R, .R;)
CONNECTS(D, ,R;.R;), BOX(B,)
INROOM(B, ,R;), . ..

{Vx3(vy)(vz) [CONNECTS(x,v,z) = CONNECTS{x,z,y)}

Now STRIPS attempts to achieve the subgoal Gy from the new database M,.
It finds the operator PUSHTHRU(B,,D, .R;,R,) with the substitutions r| = R,
and d = D, Application of this operator 10 M, yields

M,: INROOM(ROBOT,R, }. CONNECTS(D, R, .R;)
CONNECTS(D, .R:,R;), BOX(B,)
INROOM(B, .R)), . . .

(vxvy¥z) CONNECTS(x,y,z) =2 CONNECTS{r.z,y}]
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INROGM{ROBOT R,
CONNECTS(E, R, Ky GOTHRU, R, Ry

INRGOMES, ;)
5 CONNECTSHD) KR, INRGOMEROBOT Ry
CONNECTS(v. vy PUSHTHRU(B,.D Ry R

CONMNECTS(x,v,73

INRODM{ROBOT.R))
3 INROOM1#, R, )

Figure 10.17 Triangle table,

Next, STRIPS attempts to accomplish the original goal G, from M,. This attempt
is successful and the final operator sequence is

GOTHRU(D, ,R|.R;), PUSHTHRU(B,.D, .k, R))

We would like to generalize the above plan so that it could be free from the
specific constants [y, R, Ry, and By and used in situations involving arbitrary
doors, rooms, and boxes. The triangle table for the plan is given in Fig. 10.17,
and the triangle table for the generalized plan is shown in Fig. 10.18. Hence the
plan could be generalized as follows:

GOTHRU(d; ,ry 1)
PUSHTHRU(b,d; 1y ,7y)

and could be used to go from one room to an adjacent second room and push a
box to an adjacent third room.

10.7 ROBOT LEARNING

We have discussed the use of triangle tables for generalized plans to control the
execution of robot plans. Triangle tables for generalized plans can also be used by
STRIPS to extract a relevant operator sequence during a subsequent planning pro-
cess, Conceptually, we can think of a single triangle table as representing a family
of gencralized operators. Upon the selection by STRIPS of a refevant add list, we
must extract from this family an economical parameterized operator achieving the
add list. Recall that the (i + I)th row of a triangle table (excluding the first cell)
represents the add list, 4 ;. of the ith head of the plan, i.e., of the sequence
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OP,,...,OP, An nstep plan presents STRIPS with n alternative add lists. any
one of which can be used to feduce a difference encountered during the normal
planning process, STRIPS tests the relevance of each of a generalized plan’s add
lists in the usual fashion, and the add lists that provide the greatest reduction in the
difference are selected. Often a given set of relevant statoments will appear in
more than one row of the table. In that case only the lowest-numbered row is
selected, since this choice results in the shortest operator sequence capabie of pro-
ducing the desired statements.

Suppose that STRIPS selects the ith add st 4, ;. { < n. Since this add
list is achieved by applying in sequence OPy, ..., OP;, we wili obviously not be
interested in the application of OF;., ... ,0P,, and will therefore not be

interested in establishing any of the preconditions for these operators, In general,
some steps of a plan are needed only to establish preconditions for subsequent
steps. If we lost interest in a tail of a plan, then the relevant instance of the gen-
eralized plan need not contain those operators whose sole purpose is (o establish
preconditions for the tail. Also, STRIPS will, in general, have used only some
subset of A; . ; in establishing the relevance of the ith head of the plan. Any of
the first / operators that does not add some statement in this subset, or help estab-
lish the preconditions for some operator that adds a statement in the subset, is not
needed in the relevant instance of the generalized plan.

In order to obtain a robot planning system that ¢an not only speed up the
planning process but can also improve its problem-solving capability to handle
more complex tasks, one could design the system with a learning capability.
STRIPS uses a generalization scheme for machine learning. Another form of
learning would be the updating of the information in the difference-operator table
from the systemn’s experience.

Learning by analogy has been considered as a powerful approach and has been
applied to robot planning. A robot planning system with learning, calied PULP-I,
has been proposed (Tangwongsan and Fu [1979]). The system uses an analogy
between a current unplanned task and any known similar tasks to reduce the search

i INROON(ROBOT 1)

CONNECTES! g ) GOTHRUH pr.fr2.05)
: INROOMIU iy frs)
N CONNECTS pygprg 15} [NRGOM{ROBOT pe)
- CONNECTS(x.v.0) PESHTHRU pe.pry-pra-pod
CONMECTS(v .0

INRGOM{ROBOT . po)
INROGM( py oy}

Figure 10.18 Triangle table for generalized plan.
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for a solution. A semantic network, instead of predicate logic, is used as the inter-
nal representation of tasks. Initially a set of basic task examples is stored in the
system as knowledge based on past experience. The analogy of two task state-
ments is used to express the similarity between them and s determined by a
semantic matching procedure. The matching algorithm measures the semantic
“closeness”; the smaller the value, the closer the meaning, Based on the semantic
matching measure, past experience in terms of stored information is retrieved and
a candidate plan is formed. Each candidate plan is then checked by its operators’
preconditions to ensure its applicability to the current world state, If the plan is
not applicable, it is simply dropped out of the candidacy. After the applicability
check, several candidate plans might be found. These candidate plans are listed in
ascending order according to their evaluation values of semantic matching., The
one with the smaliest value of semantic matching has the top priority and must be
at the beginning of the candidate list. Of course, if no candidate is found, the sys-
tem terminates with failure.

Computer simulation of PULP-I has shown a significant improvement of plan-
ning performance. This improvement is pot merely in the planning speed but also
in the capabilify of forming complex plans from the learned basic task exampies.

1.8 ROBOT TASK PLANNING

The robot planners discussed in the previous section reguire only a description of
the initial and final states of @ given task. These planning systems typically do not
specify the detailed robot motions necessary to achieve an operation. These sys-
tems issue robot commands such as: PICKUP(A) and STACK{X, Y} without speci-
fying the robot path. In the foreseeable future, however, robol tusk planners will
need more detailed information about intermediate states than these systems pro-
vide. But they cun be expected to produce a much more detailed robot program.
In other words, a task planner would transform the task-level specifications into
manipulator-level specifications, To carry out this transformation, the task planner
maust have a description of the objects being manipulated, the task environment, the
robot carrying out the task, the initial state of the environment, and the desired
final (goal) state. The output of the task planner would be a robot program to
achieve the desired final state when executed in the specified initial state.

There are three phases im task planning: modeling, task specification, and
manipulator program synthesis. The world model for a task must contain the fol-
lowing information: (1) geometric description of zll objects and robots in the task
environment; (2) physical description of all objects; (3) kinematic description of all
linkages; and (4) descriptions of robot and sensor characteristics. Muodels of task
states also must include the configurations of all objects and linkages in the world
model.
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10.8.1 Modeling

The geometric description of ohjects is the principal component of the world
model. The major sources of geemetric models are computer-aided design (CAD)
systems and computer vision. There are three major types of three-dimensional
object representation schemes (Requicha and Voelcker [1982]):

i. Boundary reprosentation
2. Sweep representation
3. Volumetric representation

There are three types of volumetric representations: (1) spatial occupancy, (2) cell
decomposition, and (3) constructive solid geometry (CS3G). A system based on
constructive solid geometry has been suggested for task planning. In CSG, the
basic idea is that complicated solids are constructed by performing set operations
on a few types of primitive solids. The object in Fig. 10.192 can be described by
the structure given in Fig. 10.195,

The legal motions of an object are constrained by the presence of other objects
in the environment, and the form of the constraints depends on the shapes of the
obiects. This is the reason why a task planner needs geometric descriptions of
objects. There are additional constraints on motion impesed by the Kinematic
structure of the robot itself. The kinematic models provide the task planner with
the information required 1o plan manipulator metions that are consistent with exter-
nal constraings.

Many of the physical characteristics of objects play important roles in planning
robot operations.  The mass and inertia of parts, for example, determine how fast
they can be moved or how much force can be applied to them before they fall
over. Another important aspect of a robot system is its sensing capabilities. For
task planning, vision enables the robot to obtain the configuration of an object to
some specified accuracy at execution time; force sensing allows the use of compli-
ant motions; touch information could serve in both capacities. In addition to sens-
ing, there are many individual charscteristics of manipulators that must be
described; for example, velocity and acceleration bounds, and positioning accuracy
of each of the joints.

10.8.2 Task Specification

A model state is given by the configurations of all the objects in the environment;
tasks arc actually defined by sequences of states of the world model. There are
three methods for specifying configurations: (1) using a CAD syslem te position
models of the objects at the desired configurations, (2) using the robot itself to
specify robot configurations and fo locale features ol the objects, and (3) using
symbolic spatial refationships among object features to constrain the configurations
of objects. Methods 1 and 2 produce numerical configurations which are difficuit
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Figure 18.19 Constructive solid geometry (CSG). Atiributes of A and B: length, width,
height; attributes of ' radius, height. Set relational operators: U, union, 1), intersection,
—, difference.

to interpret and modify. In the third method, a configuration is described by a set
of symbolic spatial relationships that are required to held between objects in that
configuration,

Since maodel states are simply sets of configurations and task specifications are
sequences of model states, given symbolic spatial relationships for specifying
configurations, we should be able to specify tasks. Assume that the model includes
names for objects and object features. The first step in the task planning precess
is transforming the symbolic spatial relationships among object features to equa-
tions on the configuration parameters of objects in the model. These equations
must then be simplified as much as possible to determine the legal ranges of
configurations of all objects. The symbolic form of the relationships is also used
during program synthesis.
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10.8.3 Manipuiator Program Synthesis

The syathesis of a manipulator program from a task specification is the crucial
phase of task planning. The major steps involved in this phase are grasp planning,
motion planning, and error detection. The output of the synthesis phase is a pro-
gram ¢omposed of grasp commands, several kinds of motion specifications, and
error tests. This program is generally in a manipulator-level language for a partic-
ular manipulator and is suitable for repeated exccution without replanning.

10.9 BASIC PROBLEMS IN TASK PLANNING

10.9.1 Symbelic Spatial Relationships

The basic steps in obtaining configuration constraints from symbolic spatial rela-
tionships are: (1) defining a coordinate system for objects and object features, (2}
defining equations of ohject configuration parameters for each of the spatial rela-
tionships among features, (3) combining the eguations for each object, and (4)
solving the equations for the configuration parameters of each object. Consider the
following specification, given in the state depicted in Fig. 10.20;

PLACE Blockli(f, against f3) and {f5 against f)

The purpose is to obtain a set of equations that constrain the configuration of
Block! relative to the known configuration of Block2. That is, the face f, of
Block?2 must be against the face f; of Blockl and the face f; of Block2 must be
against the face f; of Blockl.

Each object and feature has a set of axes embedded in it, as shown in Fig.
10.21. Configurations of entities are the 4 X 4 transformation matrices:

1000 0100
0100 -1 000
fi=lo01 0 =1 9010
0011 1 101 1
1000 0 -1 0 0
0100 1 000
fi=loo01 0 fe=1o0 01 0
'R 1011

Let twix{(8) be the transformation matrix for a rotation of angle ¢ around the x
axis, trans(x,y,z) the matrix for a translation x, y, and z, and let 3 be the matrix
for the rotation around the y axis that rotates the positive x axis into the negative x
axis, with M = M ™', Each against relationship between two faces, say, face f on
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Block]

Figure 10.26 Dlustration for spatial relationships among objects,
object 4 and face g on object B, generates the following constraint on the
configuration of the two objects:

A = f7'M wix(8) (0, y, 2)¢B (10.9-1)

The two against relations in the example of Fig. 10.15 generate the following
equations:

Blockl = fi 'M twix(8,) trans(0,y, .z, )}f) Block2

Blockl = fi 'M twix(#,) trans(0,v,,7; 3f> Block2 {10.9-2)
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Figure 10.21 Axes embedded in cbjects and features from Fig. 10,20,
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Equation (10.9-2) consists of two independent consiraints on the configuration
of Block! that must be satisfied simultaneously. Setting the two expressions equal
to each other and removing the common term, Block2, we get

£ "M twix(8) rans(0,y,,2,) fi = fi "M iwix(8y) trans(0,y0,22) fo  (10.9-3)
Applying the rewrite rules, (10.9-3) is transformed to
Fi M twix(By) trans(0,y; + Lz + 1)(fy) ™"
X trans(0, ~ yy, 2 ) tWix(~0)M" " f =1 (10.9-4)

where the primed matrix denotes the rotational component of the transformation,
obtained by setting the last row of the matrix to [0,0,0,1].

It can be shown that the rotational and translational components of this type of
equation can be solved independently. The rotational equation can be obtained by
replacing each of the trans matrices by the identity and only using the rotational
components of other matrices, The rotational equation for Eq. (10.9-4) is

(f5)7'M twin(8)(f2) ™! wix(—8)M(f) =1 (10.9-5)

Since f5 = I, (10.9-5) can be rewritten as

twix(df?])(f’z)“i twix{ ~8;) = M{f’4}“1M {10.9-6)
Also, since
g —1 0 0
.y N —lpy 1 0 0 0
(fa) = M(fy)"'M = 0 01 0
0 0 0 1

Eq. (i0.9-6) is satisfiable and we can choose #, = 0. Lewting #; = 0 in Eg.
(10.8-6), we obtain

twix(8)) = M(fi) " TM(f5) = 1 (10.9-7)

From Eq. (10.9-7) we conclude that ¢; == (. Thus, Eq. (10.9-2) becomes

-1 0 0 0 -1 0 0 0
Blockl = 01 N N
00 -1 0 0 0 -1 ©
1y 24z 1 2—yw 0 24z 1
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Equating the corresponding matrix terms, we obtain
2 -y =1
¥y =0

24 =2+

Hence, v» = 1, 3 = 0, and z; = z;; that is, the position of Blockl has |
degree of freedom corresponding to translafions along the z axis.

The method used in the above example was proposed by Ambier and Popple-
stone [1975). The contact relationships treated there include against, fits, and
coplanar among features that can be planar or spherical faces, cylindrical shafts
and holes, edges and vertices. Taylor [1976] extended this approach to noncontact
refationships such as for a peg in a hole of diameter greater than its own, an object
in a box, or a feature in contact with & region of another feature. These relation-
ships give rise to inequality constraints on the configuration parameters. They can
be used to model, for example, the relationship of the position of the tip of a
screwdriver in the robot’s gripper to the position errors in the robot joints and the
slippage of the screwdriver in the gripper. After simplifying the equalities and
inequalities, a set of linear constraints are derived by using differential approxima-
tions for the rotations around a nominal configuration. The values of the
configuration parameters satisfying the constraints can be bounded by applying
linear programming techniques to the linearized constraint equations.

10.9.2 Obstacle Avoidance

The most common robot motions are transfer movements for whick the only con-
straint is that the robot and whatever it is carrying should not collide with ohjects
in the environment. Therefore, an ability t plan motions that avoid obstacles is
essential to a task planner. Several obstacle avoidance algorithms have been pro-
posed in different domains. In this section, we briefly review those algorithms that
deal with robot obstacle avoidance in three dimensions. The algorithms for robet
obstacle avoidance can be grouped into the following classes: (1) hypothesize and
test, (2) penalty function, and (3) explicit free space.

The hypothesize and test method was the earliest proposal for robot obstacle
avoidance. The basic method consists of three steps: first, hypothesize a candidate
path between the initial and final configuration of the robot manipulator; second,
test a selected set of configurations along the path for possible collisions; third, if a
possible collision is found, propose an avoidance motion by examining the
obstacle(s) that would cause the collision. The entire process is repeated for the
modified motion.

The main advantage of the hypothesize and test technique is its simplicity.
The method’s basic computational operations are detecting potential collisions and
modifying proposed paths to avoid collisions. The first operation, detecting poten-
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tial collisions, amounts to the ability to detect nonnull geometric infersections
between the manipulator and obstacle models. This capability is part of the reper-
toire of most geometric modeling systems. We have pointed out in Sec. 10.8 that
the second operation, modifying a proposed path, can be very difficult. Typical
proposals for path modification rely on approximations of the obstacles, such as
enclosing spheres, These methods work fairly well when the obstacles are
sparsely located so that they can be dealt with one at a time. When the space is
cluttered, however, attempts to avoid a collision with one obstacle wil typically
lead to another collision with a different obstacle. Under such conditions, 2 more
accurate detection of potential collisions could be accomplished by using the infor-
mation from vision and/or proximity sensors.

The second class of algorithms for obstacle avoidance is based on defining a
penalty function on manipulator configurations that encodes the presence of
objects. In general, the penalty is infinite for configurations that cause collisions
and drops off sharply with distance from obstacles. The total penalty fanction is
computed by adding the penalties from individual obstacles and, possibly, adding a
penalty term for deviations from the shortest path. At any configuration, we can
compute the value of the penalty function and estimate its partial derivatives with
respect to the configuration parameters. On the basis of this local information, the
path search function must decide which sequence of configurations to follow. The
decision can be made so as to follow local minima in the penalty function. These
minima represent a comprontise between increasing path length and approaching
too close to obstacles. The penalty function methods are aftractive because they
provide a relatively simple way of combining the constraints from muitiple objects.
This simplicity, however, is achieved only by assuming a circular or spherical
robot; only in this case will the penalty function be a simple transformation of the
obstacle shape. For mmore realistic robots, such as two-link manipulator, the
penalkty function for an obstacle would have to be defined as a transformation of
the configuration space obstacle. Otherwise, motions of the robot that reduce the
value of the penalty function will not necessarily be safe. The distinction berween
these two types of penalty functions is illustrated in Fig. 10.22. It is noted that in
Fig. 10.22a moving along decreasing values of the penalty function is safe,
whereas in Fig. 10.22b moving the tip of the manipulator in the same way leads to
a collision,

An approach proposed by Khatib [1980] is intermediate between these two
extremes. The method uses a penalty function which satisfies the definition of a
potential field: the gradiem of this field at a point on the robot is interpreted as &
repelling force acting on that point. In addition, an attractive force from the desti-
nation is added. The motion of the robet results from the interaction of these two
forces, subject to kinematic constraints. By using many points of the robot, rather
than a single one, it is possible to avoid many situations such as those depicted in
Fig. 10.22.

The key drawback of using penalty functions to plan safc paths is the strictly
local information that they provide for path searching. Pursuing the local minima
of the penalty function can lead to situations where no further progress can be
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Figure 10.22 THustration of penalty function for (a) simple circular robot and (b} the two-
link manipulator. (Numbers in the figure indicate vaiues of the penalty function.)

made. In these cases, the algorithm must choose a previous configuration where
the scarch is to be resumed, but in a different direction from the previous time.
These backup points are difficult to identify from local information. This suggests
that the penalty function method might be combined profitably with a more global
method of hypothesizing paths, Penalty functions are more suitable for applica-
tions that require only small modifications to a ksown path.

The third class of obstacle aveidance algorithms builds explicit representations
of subsets of robot configurations that are free of collisions, the free space. Obsta-
cle avoidance is then the problem of finding a path, within these subsets, that con-
nects the initial and final configurations. The algorithms differ primarily on the
basis of the particular subsets of free-space which they represent and in the
representation of these subsets. The advantage of free space metheds is that their
use of an explicit characterization of free space allows them to define search
methods that are guaranteed to find paths if one exists within the known subset of
free space. Moreover, it is feasible to search for short paths, rather than simply
finding the first path that is safe. The disadvantage is that the computation of the
free space may be expensive. In particular, other methods may be more cfficient
for unclutiered spaces. However, in relatively cluttered spaces other methods will
cither fail or expend an undue amount of effort in path searching,

10.9.3 Grasp Planning

A typical robot operation begins with the robot grasping an object; the rest of the
operation is influenced by choices made during grasping. Several proposals for
choosing collision-free grasp configurations on objects exist, but other aspects of
the generai problem of planning grasp motions have received little atiention, In
this section, farget object refers to the object to be grasped. The surfaces on the
robot used for grasping, such as the inside of the fingers, are gripping surfaces.
The manipulator configuration which has it grasping the targel object at that
object’s initial configuration is the inftial-grasp configuration. The manipulator
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configuration that places the targer object at its destination is the final-grasp
configuration.

There are three principal considerations in choosing a grasp configuration for
objects whose configuration is known. The first is safery: the robot must be safe at
the initial and final grasp configurations. The second is reachability: the robot
must be able to reach the initial grasp configuration and, with the object in the
hand, to find a collision-free path to the final grasp configuration. The third is sta-
Bility: the grasp should be stable in the presence of forces exerted on the grasped
object during ftransfer motions and parls mating operations, If the initiai
configuration of the target object is subject to substantial uncertainty, an additional
consideration in grasping is ceriainty: the grasp motion should reduce the
uncertainty in the target object’s configuration.

Choosing grasp configurations that are safe and reachable is related to obstacle
avoidance; there are significant differences, however. The first difference is that
the goal of grasp planning is to identify a single cenfiguration, not a path, The
second difference is that grasp plasning must consider the detailed interaction of
the manipulator’s shape and that of the target object. Note that candidate grasp
configurations are those having the gripping surfaces in conmtact with the target
object while avoiding collisions between the manipulator and other objects. The
third difference is that grasp planning must deal with the interactior: of the choice
of grasp configuration and the constraints imposed by subsequent operations
involving the grasped object. Because of these differences, most existing methods
for grasp planning treat it independently from obstacle avoidance.

Maost approaches to choosing safe grasps can be viewed 2s instances of the fol-
lowing method:

I. Choose a set of candidate grasp configurations. The choice can be based on
considerations of object geometry, stability, or uncertainty recuction. For
parallel-jaw grippers, a common choice is grasp configurations that place the
grippers in contact with a pair of parallel surfaces of the target object, An
additional consideration in choosing the surfaces is to minimize the torques
about the axis between the grippers.

2. The set of candidate grasp configurations is then pruned by removing those that
are not reachable by the robot or lead to collisions. Existing approaches 1o
grasp planning differ primarily on the collision-avoidance constraints, for exam-
ple:

a. Potential collisions of gripper and neighboring objects at initial-grasp
configaration.

b. p convexity (indicates that all the matter near a geometric entity lies to one
side of a specified plane).

¢. Existence of collision-free path to initial-grasp configuration.

4. Potential collisions of whole manipuiator and neighboring obiccts at initial-
grasp configuration, potentia! collisions of gripper and neighboring objects at
final-grasp configuration, potential collisions of whole manipulator and
neighboring objects at final-grasp configuration, and existence of collision-
free paths from initial to final-grasp configuration.
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3. After pruning, a choice is made among the romaining configurations, if any.
One possibility is choosing the confliguration that lcads 1o the most stable grasp;
another is choosing the one least likely to cause a collision in the presence of
position error or uncertainty.

It is not difficult to see that semsory information (vision, proximity, torque, or
force) should be very useful in determining a stable and collision-free grasp
configuration.

10.10 EXPERT SYSTEMS AND KNOWLEDGE ENGINEERING

Most techniques in the area of artificial intelligence fall far short of the com-
petence of humans or even animals. Computer systems designed to sce images,
hear sounds, and understand speech can only claim limited success. However, in
one area of artificial intelligence—that of reasoning from knowledge in a limited
domain—computer programs can not only approach human performance but in
some cases they can exceed it.

These programs use a collection of facts, rules of thumb, and other knowiedge
about a given field, coupled with methods of applying those rules, to make infer-
ences. They solve problems in such specialized fields as medical diagnosis,
mineral exploration, and oil-well log interpretation. They differ substantially from
conventional commputer programs because their tasks have no algorithmic solutions
and because often they must make conclusions based on incomplete or uncertain
information. In building such expert systems, researchers have found thal amass-
ing a large amount of knowledge, rather than sophisticated reasoning techaigues, is
responsible for most of the power of the system. Such high-performance expert
systems, previously limited to academic rescarch projects, are beginning te enter
the commercial marketplace.

10.16.1 Constructiorn: of an Expert System

Not all fields of knowledge are suitable at present for building expert systems,
For a task to qualify for “knowledge engineering,” the following prerequisites
must be met:

i. There must be at least one human expert who is acknowledged to perform the
task well.

2. The primary sources of the expert’s abilities must be special knowledge, judg-
ment, and experience.

3. The expert must be able to articulste that special knowledge, judgement, and
experience and also explain the methods used to apply it to a particular task.

4. The task must have a well-bounded domain of application.



ROBOT INTELLIGENCE AND TASK PLANNING 517

Somctimes an expert system can be built that does not exactly match these preve-
quisites; for example, the abilities of several human experts, rather than one, might
be brought to bear on a problem.

The structure of an expert systern 1s modular. Facts and other knowledge
about a particular domain can be separated from the inference procedure—or con-
trol structure—for applying those facts, while another part of the system—the glo-
bal database-is the model of the “world™ associated with a specific probiem, its
status, and its history. It is desirable, though not yet comnon, to have a natural-
language interface 1o facilitate the use of the system both during development and
in the field. In some sophisticated systerns, an explasation module is also
included, allowing the user to challenge the systern’s conclusions and to examine
the underlying rcasoning process that led to them.

_An expert system differs from more conventional computer programs in
several important respects. In a conventional computer program, knowledge per-
tinent 10 the problem and methods for using this krowledge are intertwined, so it
is difficult to change the program. In an cxpert system there is usually a clear
separation of general knowledge about the problem (the knowledge base) from
information about the current problem (the input datz) and methods (the inference
machine) for applying the general knowledge to the problem. With this separation
the program can be changed by simple modifications of the knowiedge base. This
is particularly true of rule-based systems, where the systers can be changed by the
simple addition or subtractior of rules in the knowledge base.

10.10.2 Rule-Based Systems

The most popular approach to representing the domain knowledge (both facts and
heuristics) needed for an expert system is by production rules (also referred to as
SITUATION-ACTION rules or IF-THEN rules). A simple example of a produc-
tion rule is: IF the power supply on the space shuttle fails, AND a backup power
supply is available, AND the reason for the first failure no longer exists, THEN
switch to the backup power supply. Rule-based systems work by applying rules,
noting the results, and applying new rules based on the changed situation. They
can also work by directed logical inference, either starting with the initial evidence
in a situation and working toward a solution, or starting with hypotheses about
possible solutions and working backward to find existing evidence—or a deduction
from existing evidence—that supports particular hypothesis.

One of the carliest and most often applied expert systems is Dendral (Barr et
al. [1981, 1982]). It was devised in the late 1960s by Edward A. Feigenbaum and
Joshua Lederberg at Stanford University lo generate plausible structural representa-
tions of organic molecules from mass spectrogram data. The approach called for:

1. Deriving constrainis from the data

2. Generating candidate structures

3. Predicting mass spectrographs for candidates
4, Comparing the resuits with data
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This rule-based sysiem, chaining forward from the data, Hlustrates the very com-
mon Al problem-solving approach of “generation and test.” Dendral has been used
as a consultant by organic chemists for more than 15 years. It is currently recog-
nized as an expert in mass-spectral analysis.

One of the best-known expert systems is MYCIN {Barr et al. [1981,1982]),
design by Bdward Shortliffe at Stanford University in the mid-1970s. It is an
interactive system that dizgnoses bacterial infections and recommends antibiotic
therapy, MYCIN represents expert judgmental reasoning as condition-conclusions
rules, linking patient data to infection hypotheses, and at the same time it provides
the expert’s “certainty” estimate for each rule. It chains backward from
hypothesized diagnoses, using rules to estimate the certainty factors of conclusions
based on the certainty factors of their antecedents, to see if the evidence supports a
diagnosis. If there is not enough information to narrow the hypotheses, it asks the
physician for additiona! data, exhaustively evaluating all hypotheses. When it has
finished, MYCIN maltches treatments to all disgnoses that have high certainty
values,,

Another rule-based system, R1, has been very successful in configuring VAX
computer systems from a customer’s order of various standard and optional com-
ponents. The initial version of R1 was developed by John McDermott in 1979 at
Carncgic-Melon University, for Digital Equipment Corp. Because the config-
uration problem can be solved without backiracking and without undeing previous
steps, the system’s approach is to break the problem up into the following subtasks
and deo each of them in order:

. Correct mistakes in order.

. Put components into CPU cabinets.

Put boxes in Unibus cabinets and put components in boxes.
. Put panels in Unibus cabinets.

Lay out system: floor plan.

. Do the cabling.

At each point in the configuration development, several rules for what to do next
are usually applicable. Of the applicable rules, R1 selects the rule having the most
IF clauses for its applicability, on the assumption that that rule is more specialized
for the current situation. (R1 is written in OPS 3, a special language for executing
production rules.) The system now has about 1200 rules for VAXs, together with
information about some 1000 VAX components. The total system has about 3000
rales and knowledge about PDP-11 as well as VAX components.

10.14.3 Remarks

The application areas of expert systems include medical diagnosis and prescription,
medical-knowiedge automation, chemical-data interpretation, chemical and biologi-
cal synthesis, mineral and oil exploration, planning and scheduling, signal interpre-
tation, military threat assessment, tactical targeting, space defense, air-traffic con-
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trol, circuit analysis, VLSI design, structure damage assessment, equipment fault
diagnosis, computer-configuration selection, speech understanding, computer-aided
instruction, knowledge-base access and management, manufacturing process plan-
ning and scheduling, and expert-system construction.

There appear to be few constraints on the ultimate use of expert systems,
However, the nalure of their desigr and construction is changing. The Hmitations
of rule-based systems are becoming apparent: not all knowledge can be structured
as empirical associations. Such associations tend to hide causal relationships, and
they are also inappropriate for highlighting structure and function. The newer
expert systems contain knowledge about causality and structure. These systems
promise to be considerably more robust than current systemns and may yield correct
answers often enough to be considered for use in autonomous systems, not just as
intelligent assistants,

Another change is the increasing trend toward non-rule-based systems. Such
systems, using semantic networks, frames, and other knowledge-representation
stractures, are often hetter suited for causal modeling. By providing knowledge
representations more appropriate to the specific problem, they alse tend to simplify
the reasoning required. Some expert systems, using the “blackboard™ approach,
combine rule-based and non-rule-based portions which cooperate to build solutions
in an incremental fashion, with each segment of the program contributing its own
particular expertise.

10.11 CONCLUDING REMARKS

The discussion in this chapter emphasizes the problem-solving or planning aspect
of a robot. A robot planner attempts to find a path from our initial robot world to
a final robot world. The path consists of a sequence of operations that are con-
sidered primitive o the system. A solution to a problem could be the basis of a
corresponding sequence of physical actions in the physical world. Planning should
certainly be regarded as an intelligent function of a robot.

In late 1971 and early 1972, two main approaches to robot planning were pro-
posed. One approach, typified by the STRIPS system, is to have a fairly general
robot planner which can solve robot problems in a great variety of worlds. The
second approach is to select a specific robot world and, for that world, to write a
computer program 1o solve problems. The first approach, like any other general
problem-solving process in artificial intelligence, usually requires extensive com-
puting power for searching and inference in order to selve a reasonably complex
real-world problem, and, hence, has been regarded computationally infeasible. On
the other hand, the second approach lacks generality, in that 2 new set of computer
programs must be written for each operating environment and, hence, significantly
limits the robot’s flexibility in real-world applications.

in contrast 1o high-level robot task planning usually requires more detailed and
numerical information describing the robot world. Existing methods for task plan-
ning are considered computationally infeasible for real-time practical applications.
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Powerful and cfficient task planning algorithms are certainly in demand. Again,
special-purpose compuiers can be used to speed up the computations in order to
meet the real-time requirements.

Robot planning, which provides the intelligence and problem-solving capability
to a robot system, is still a very active area of research. For real-time robot appii-
cations, we still need powerful and efficient planning algorithms that will be exe-
cuted by high-speed special-purpose computer systems.
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PROBLEMS

18.1 Suppose that three missionaries and three cannibais seek to cross a river from the right
bank to the left bank by boat. The maximum capacity of the boat is two persons. If the
missionaries are outnumbered at any time by the cannibals, the cannibals will cat the mis-
sionaries. Propose a computer program fo find 2 solution for the safe crossing of all six
persons. Hinr: Using the state-space representation and search methods described in Sec.
10.2, one can represent the state description by (N,,. N}, where N,,, N, are the number of
missionaries and cannibals in the left bank, respectively. The initial state is (0,0}, Le., no
missionary and cannibal are on the left bank, the goal state is (3,3) and the possible inter-
mediate states are (0,1), €0,2), €0,3), (1,1), 2,2, (3,00, (3,1), (3,2).

10.2 Imagine that you are a high school geometry student and find & proof for the theorem:
“The diagonals of a parallelogram bisect each other.” Use an AND/OR graph to chart the
steps in your search for a proof. Indicate the solution subgraph that constitutes a proof of
the theerem.

10.3 Represent the following sentences by predicate logic wifs. (2) A formula whose main
comneciive is a =—=> is equivalent to scme formula whose main connective is a V. (B} A
robot is intelligent if it can perform a task which, if performed by a huvman, requires intelli-
gence. (¢} If a block is on the table, then it is not also on ancther block.
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10.4 Show how the monkey-and-bananas problem can be represented so that STRIPS would
generate a plan consisting of the following actions: go to the box, push the box under the
bananas, climb the box, grasp the bananas.

10.5 Show, step by step, how means-ends analysis could be used to solve the robot plan-
ning problem described in the example at the end of Sec. 10.4.

10.6 Show how the monkey-and-bananas problem can be represented so that STRIPS would
generate a plan consisting of the following actions: go to the box, push the box under the
bananas, climb the box, grab the bananas. Use means-ends analysis 2y the control straiegy.





